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Abstract: In this paper, a filtering method is presented to esti-
mate time-varying parameters of a missile dual control system
with tail fins and reaction jets as control variables. In this
method, the long-short-term memory (LSTM) neural network is
nested into the extended Kalman filter (EKF) to modify the
Kalman gain such that the filtering performance is improved in
the presence of large model uncertainties. To avoid the unstable
network output caused by the abrupt changes of system states,
an adaptive correction factor is introduced to correct the net-
work output online. In the process of training the network, a
multi-gradient descent learning mode is proposed to better fit
the internal state of the system, and a rolling training is used to
implement an online prediction logic. Based on the Lyapunov
second method, we discuss the stability of the system, the result
shows that when the training error of neural network is suffi-
ciently small, the system is asymptotically stable. With its appli-
cation to the estimation of time-varying parameters of a missile
dual control system, the LSTM-EKF shows better filtering perfor-
mance than the EKF and adaptive EKF (AEKF) when there exist
large uncertainties in the system model.
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1. Introduction

The estimation of the parameters in a missile control sys-
tem is still a very hot topic. It is very important to estab-
lish an accurate dynamic model in the design of missile
control systems [1—3]. Since a high maneuverability is
demanded for an interceptor missile, the missile must fly
with a large angle of attack to create a large maneuver
acceleration. Especially for dual controlled missiles with
tail fins and reaction jets, when the jets work, they will
produce a great impact on the motion of the missile. For
dual controlled missiles which actuate large angle of
attack maneuvers, the nonlinear characteristics of aerody-
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namics become obvious. In this case, the constant aerody-
namic parameters assumption and the model lineariza-
tion no longer hold. Then the estimation of time-varying
aerodynamic parameters and the disturbance amplifica-
tion coefficients on reaction thrust and reaction moment
becomes an urgent problem for the control system design
of dual controlled missiles. There are three main reasons
for model uncertainty: (i) model uncertainty caused by
unmodeled terms, such as external interference; (ii) model
uncertainty caused by unknown parameters, such as time-
varying aerodynamic parameters; (iii) linearization error
caused by the linearization of a non-linear system. There-
fore, even if time-varying aerodynamic parameters and
disturbance amplification coefficients are considered in
the establishment of the model for dual controlled mis-
siles, there must still exist model uncertainties due to the
complexity of the control system. Therefore, it is neces-
sary to study an efficient estimation method for time-
varying parameters in the presence of model uncertainties.

Kalman filter has been widely used in state estima-
tions for linear Gaussian systems since it was proposed.
For state estimations of nonlinear systems, some filters
based on the modification of Kalman filtering have been
proposed, such as extended Kalman filter (EKF),
unscented Kalman filter (UKF), cubature Kalman filter
(CKF), particle filter (PF) [4—6] and so on. Among them,
EKF is widely used because of its simple structure and
low computation burden. This classical nonlinear filter-
ing is established by locally linearizing the system model
around specific points. As we all know, it is a sub-opti-
mal algorithm. When the linearization error is large and
the model is uncertain, the performance of EKF will be
greatly decreased. Jetto et al. [7] proposed an adaptive
EKF (AEKF) to solve the problem of robot positioning.
The performance of the filter is improved by adjusting the
measurement and the process noise covariance matrices
adaptively online. Robles et al. [8] applied the AEKF into
the state prediction of aircraft with unknown aerody-
namic parameters. The adaptive filter can effectively
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overcome the interference caused by model uncertainty.
Chen [9] proposed a method to convert the identification
of time-varying parameters into the identification of con-
stant parameter. In this method, the time-varying parame-
ters curves are approximated by multiple polyline seg-
ments, and the identification process is completed by the
least squares technique. However, there is a disadvantage
in this method. To improve the accuracy of the approxi-
mation, the number of polyline segments must be
increased such that the number of parameters to be esti-
mated and the computation burden will be increased.
Moreover, Chen has only discussed the identification of
linear systems, rather than nonlinear systems.

When the nonlinearity, complexity and model uncer-
tainty of the system increase, the above filters result in
large estimation errors and even divergence. With the
development of the neural network technology, some
scholars apply neural networks to the state estimation of
complex systems. Sun and Liu [10] used a chain neural
network (CNN) to estimate the aerodynamic parameters
of aircraft. However, this layered structure usually per-
forms poorly in capturing the time dependencies, which
are usually encountered in adaptive regression problems
[11]. Actually, the capability of CNNs is quite limited in
adaptive learning applications.

Recurrent neural networks (RNNs) can be used to cap-
ture the time dependency, because such networks have a
feedback connection that enables them to store past infor-
mation [12]. However, basic RNNs lack control struc-
tures such that long-term components cause either expo-
nential growth or decay in the norm of gradients [13].
Thus, they are insufficient to capture long-term depen-
dencies, which significantly restricts their performance in
practical applications. In order to resolve this issue, a
novel RNNs architecture with several control gates, i.c.,
long-short-term memory (LSTM) neural network, is
introduced [14—16]. LSTM neural network achieves good
performance in the time series prediction problem [17].
However, some scholars have proposed that when facing
complex system processes, it is not reliable to use the
neural network alone for prediction. Thus, many scholars
combine the LSTM neural network with Kalman filter to
preserve the physical process of the system and increase
the reliability of the algorithm. Zhou et al. [18] used
LSTM neural network to solve the initialization problem
of Jacobian matrix in the EKF algorithm. By integrating
LSTM neural network with UKF, the problem of noise in
experimental data was solved [19]. Zheng et al. [20]
nested LSTM neural network and EKF to study the tra-
jectory prediction of non-cooperative vehicle. In this
method, an LSTM neural network is used to modify the
filter input and to compensate for the Kalman gain calcu-

lation error caused by model uncertainties. By training a
large number of real trajectory data, a good prediction
result is obtained. Bao et al. [21] used Kalman filter in
combination with the LSTM network to estimate the bio-
electricity size, and used LSTM network to fit each
parameter matrix in Kalman filter algorithm to improve
the filter performance. Ni et al. [22] and Hong et al. [23]
used the LSTM network to replace the state equation of
lithium battery system, and eventually brought it into
Kalman filtering algorithm to estimate the state of lithium
battery system. Zmitri et al. [24] used the LSTM network
to modify the covariance matrix in the Kalman filtering
algorithm to improve the filtering performance. Ni et al.
[25] trained the LSTM network with input and output
data of lithium battery system, and smoothed its output
value by calculating the weighting averaged value of the
output of the LSTM and that of Kalman filter algorithm,
so as to get a more accurate estimate and reduce the bur-
den of training the network.

In this paper, a novel AEKF is proposed for online
identification of time-varying aerodynamic parameters of
aircraft. The algorithm transforms the time-varying
parameters identification problem into the time invariant
parameters identification problem by using the Weier-
strass approximation theorem in the filter design. Inspired
by attention mechanism [26—28], online adjustment fac-
tor is introduced to adaptively adjust the modification
ability of neural network to EKF. In the training process
of neural network, multi-gradient descent training algo-
rithm and rolling training method are proposed to realize
online parameters identification, and Lyapunov second
method is given to discuss the stability of the system. In
the simulation analysis, the feasibility of this filtering
algorithm is verified and the filtering performance is
compared with EKF and Sage-Husa filter [29].

The rest of this paper is arranged as follows.

(1) In Section 2, we introduce the identification method
of time-varying parameters of the missile dual control
system, and make observability analysis of the designed
filters.

(i1) In Section 3, the basic structure of the LSTM neu-
ral network and LSTM-EKF algorithm is introduced, and
an adaptive LSTM-EKF with a correction factor is pre-
sented.

(iii) In Section 4, the method of training the LSTM-
EKF is discussed. The rolling training method and the
multi-gradient descent training method are introduced.
After that, based on Lyapunov second method, we ana-
lyze the stability of LSTM-EKF algorithm. The results
show that when the approximation error &, of the neural
network is small enough, the system is asymptotically
stable.
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(iv) In Section 5, the simulation results for the applica-
tion of the adaptive LSTM-EKF estimation method to the
missile dual control system are provided.

(v) In Section 6, the conclusions are presented.

2. Estimation of time-varying parameters of
missile dual control system

The dual control system is obviously different from the
single control system. Take the dual control missile as an
example. Generally, the missiles using this control stra-
tegy have strong mancuverability and a range of attack
angle changes. When the thruster engines are ignited, the
side direct force will directly affect the missile attitude,
causing sudden changes in the flight state, which often
causes significant changes in the flight aerodynamic
parameters, making it difficult to identify the system
parameters.

The missile body coordinate system ox,y;z; and the
missile velocity coordinate system ox;y;z; are defined in
Fig.1. The axis ox; presents the central axis of symmetry
of the vehicle, and the axis ox; is along the velocity of
the missile V. The dotted line is the projection of the
velocity on the plane ox;y,. The axis oy, and axis oy; are
all in the axisymmetric plane of the vehicle. The relation-
ship between the two coordinate systems is determined
by two angles, which are the angle of attack @ and the
sideslip angle B. Let w., 4., and F, denote the pitch rota-
tional rate, the rudder deflection and the lateral thrust of
the reaction jets, respectively. Define the aerodynamic
parameters of the missile control system as a; = —M:*/ J.,
a(@)=-M!(a)/J., ay=—M>[J., and I, = -I/J., where
M:* is the partial derivative of the pitching moment M,
with respect to the pitching angular rate w,, M? is the
partial derivative of the pitching moment M, to the angle
of attack ar, M’ is the partial derivative of the pitching
moment M, to the rudder deflection angle ¢,, and J, is
the component of moment of inertia on axis o0z3, [ is the
distance from the point of direct force to the center of
mass.

Fig.1 Velocity coordinate system and body coordinate system

For a missile dual control system, accounting for the
aerodynamic nonlinear properties, the attitude dynamic
differential equation of the pitch channel can be written
as

d)zz_alwz_aZ(a)a_a36z_lez (1)

where the aerodynamic parameter a, is considered as a
function of @. According to the first law of Weierstrass
approximation theorem, for any continuous function, a
polynomial with the highest term order not greater than n
can be found, and the difference between it and the con-
tinuous function is zero, i.e., the continuous function on
the closed interval can be uniformly approximated by a
polynomial series. Thus, the function a, (@) can be writ-
ten as

@ (@) = ary + ki@ +kod? + -+ 2)

where ayy, ki, k,,--- are unknown constants. When «
changes within the critical range, this function can be
approximated by a first-order polynomial with respect to
a,ie.,

a, (@) = ay + ky a. 3)

Substituting (3) into (1) gives the attitude dynamic
equation of the pitch channel as

ll..)Z = —alll.)z—az()a’_kﬂa'z—Cl3(sz—lZFz. (4)
Define a state vector X as

T
X:[x1 X, X3 X4 Xs x()] 6)

where X =W;, Xp=4d;, X3 =0y, X4= kz], X5 = lz» and
X¢ = as. Then, a state function is written as

X=rX) (6)
where the state transition matrix
[ =X, — X3a(t) — x,0%(F) |
—X60,(1) — x5 F (1)

JX)=

0
0
0
0
0

Since we have converted the problem to a time-invari-
ant parameter identification problem, all states except x;
are constant and their time derivative is 0.

The measurement variable is

Zk = thk+Rk (7)
and the measurement matrix is

h=[100000].
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According to the weak observability theory of nonli-
near systems, if the system has six state variables and one
observation variable, the fifth order Lie derivative needs
to be calculated. Now for a nonlinear system consisting
of (6) and (7), the zero order Lie derivative is

dy=hX =x,, (8)
the first order Lie derivative is
0d, 0d,
=—+—fX
d, T aXf( ), )
the second order Lie derivative is
0d, 0d,
=— 4+ —FfX 1
dy = <+ LX), (10)
the third order Lie derivative is
od, 0d,
dy = —+ —f(X), 11
3 o1 + ) Xf (X) (1m

the fourth order Lie derivative is

0d;, 0d,
d, = — +—f(X), 12
4 o1 + 8Xf( ) (12)
and the fifth order Lie derivative is
_0dy  0d,
ds = b S0, (13)
Denote
T
r=\d d d da dy ds|, (14)

then the observation matrix can be written as
or
0O=—. 15
X 15)
According to the actual value range of each variable in
the above equation, when w,, F., @, and state variable X
are not be zero simultaneously, the observability matrix
has a full rank, that is, the system is weakly observable.

3. Adaptive LSTM-EKF algorithm based on
LSTM neural networks

3.1 LSTM neural network

The LSTM neural network shown in Fig. 2 contains three
parts, i.e., a forget gate, an input gate, and an output gate.
Except for the same hidden state g, as the RNNS, it also
introduces a cell state ¢, for keeping the long-term memo-
ry information. At the current time ¢, it is to update the
cell state through the forget gate and input gate data to
achieve a long-term memory update. Then it is to mix the
cell state ¢,, the last step hidden state g, ; and the current
step input X, via the output gate to obtain a network out-
put.

C)C O ©

o] i 7]

@

Fig.2 LSTM neural network structure

The LSTM neural network is expressed as follows:

0, = o(net,,), (16)

net,, =W,g._+W,X +b,, 17
[ =o(net;,), (18)

net;, =W,g_+W,X +b,, (19)
¢, = tanh(net,,), (20)

net;, =W.g_,+W.X,+b,, (21)
i, = o(net;,), (22)

net;, =W,g,_,+W.X, +b, (23)
¢, =f0¢.1+1i,0¢&, (24)

g =o0,0tanh(c,), (25)

where © denotes the element-wise multiplication, ¢, € R™
is the cell state vector, and X, € R™ is the input vector.
Furthermore, i,, f, and o, are the input, forget and output
gates respectively. b,, b;,b., and b; denote the bias term
of each gate. The sigmoid function o (-) and the hyper-
bolic tangent function tanh (-) apply point wise to the vec-
tor elements. The weight matrices are W, € R,

Wo.x € R , ng € R , fo € R , ch € R ,
ch c R"‘Xn‘ , Wig € Rn\an , Wix c Rn\.xm’ bo € RIX"‘ ,
b; e R™, b, e R" and b; e R™™.
3.2 LSTM-EKF algorithm
Consider a discrete nonlinear system:

Xi=f( X))+

k f( k l) Qk (26)
Z,=hX)+R,

where X, and Z, are the state vector and measurement
vector respectively. @, and R, are the process noise and
the measurement noise matrix respectively.

Normally, the EKF is not an optimal estimator due to
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the uncertainty of the model and the linearization error. In
practical estimation problems, it is hard to accurately
describe some complex high-order modes of the esti-
mated system. The process noise caused by this uncer-
tainty is usually a non Gaussian noise, and it is hard to be
described by a process noise covariance matrix precisely.
Moreover, in the EKF algorithm, the linearization of the
model at the operation point is required for each step of
estimation, which will introduce the linearization error of
the model.

In order to improve the estimation accuracy of EKF
and its adaptability to inaccurate models, we embed an
RNN which is called gain-modified network (GMN) to
deal with the unmodeled uncertainty and the lineariza-
tion error of the model.

The GMN is used to identify and compensate for the
influences of the unmodeled uncertainty and the li-
nearization error of the model on the estimation. These
uncertainties make bad influence on the error covariance
matrix Py, and the Kalman gain K;. The GMN is used
to modify the Kalman gain.

Define X, as state vector, Xk,”k,l as the estimation of
the last step, Pi_i;-1 as the error covariance matrix of the
last step, and K, as the output of the GMN. The GMN is
embedded into EKF before the update of the state and the
error covariance matrix as shown in Fig. 3.

A v
P,y [Prediction Py, [Calculate: s, (Calculate Update Pux
) residual — Kalman X —
covariance S gain K, covariance
4 4
)
Gy r | H,
K,
Prediction Calculate Update
X states X residual 7 states X,

.

Fig. 3 LSTM-EKF algorithm structure

The process of the LSTM-EKF is as follows:
(1) Prediction of state and error covariance matrix:

Ror = fRicye) +0u @7
Py =F.P_y F} +0Q,. (28)
(i) Calculation of Kalman gain:
Fo=2—h(Ry ), (29)
S.=H.Py_ H +R,, (30)
K, =Py HS,', (31)

(gk,i{k) = GMN(gk—l’Kk:X,k—llk—l’Pk—llk—l), (32)

where H, = 0h/0X | %, 1s the state transition matrix.
(ii1) Updates of status and error covariance matrix:

Xk\k = Xklk—l +I~(dk, (33)
Pk|k = (I— Kka)Pk\k—l . (34)

3.3 Adaptive LSTM-EKEF algorithms

Although the LSTM neural network has a good ability to
predict time series, it will be difficult for neural network
to accurately fit the dynamics of a system with abrupt
changes. For example, for the missile with dual control
system, when the reaction jets are ignited, the flight state
of the missile will have a sudden change, which will lead
to a declining of the network training estimation. In order
to deal with this problem, an adaptive correction factor is
introduced to adjust the network output. The factor is
determined by the network output error.
Define e as the error of the network, i.e.,

(7% Zkk—Kk. (35)

In order to eliminate the network output error caused
by the declining of network fitting ability caused by the
abrupt change, a correction factor & is introduced, and its
calculation rule is defined as

lex|

= 36
& ||ek|+Kk| (0

A network output correction law is designed as
K= (1 -k, + s.K,. (37)

According to (36), when the error of LSTM network
increases, the value of g, also increases. More precisely,
we can adaptively adjust the modification ability of the
neural network through the training error of it. As we all
know, when the filter tends to converge, the value of fil-
ter gain is very small. In this case, if there is a large fluc-
tuation in the network input, it is obvious that the output
value of the network will also fluctuate, which is very
detrimental to the filtering performance. By introducing
the correction factor g, in (36), the value of the adjust-
ment factor can be increased when the filter tends to con-
verge, thereby reducing the modification effect of the
neural network on the filter.

Thus, the network output can be adjusted and cor-
rected adaptively according to the network output error.

4. Training method of LSTM-EKF
4.1 Rolling training method
Although the LSTM neural network can be employed in a
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long-term dependent series estimation, when the length of
the target series is too large, the burden of one-step train-
ing is great, which is a disadvantage of this algorithm. To
decrease the computational burden, a rolling learning
method has been proposed, where a sliding window [30]
is used to segment a long-term series prediction into seve-
ral short-term series predictions, as shown in Fig. 4.

Sample data
1

Sliding window
/ Data set

x '\
A
A Current data
Historical data

Future data
Fig. 4 Roll training method

The rolling training function is as follows:

E, yi—yk
E yZ,l —Yi-1
L _ —
Ep = . = . (38)
Ek—p+] J’Z,pﬂ — Yi—p+1

where p presents the length of sliding window, E, is the
error matrix at the time step k, y{ and y, denote the
desired value and networks output value at step k respec-
tively.

4.2 Multi-gradient descent training method

In the optimization problem with multiple constraints, it
is difficult to completely describe the system dynamics
by using a single input-output error gradient descent
method. In the training process, the training error
between the output value and the real value of the filter is
a target constraint, but in the iterative process of the
Kalman filter, the Kalman gain also plays an important
role in describing the system dynamics. Therefore, in this
system, the difference between the real value of the
Kalman gain and the output value of the gain modified
network is taken as the second error. Because the net-
work errors are all about their functions, in the actual
training process, the sum of squares of error E, and E,
are compared, and then the larger one is selected as the
error value obtained by gradient.
Define a loss function E as

E,, |E\| > |E,
E = (39)
E,, |E\|<|E,|
where
u A 2
EI = Z (Xk\k i Xi) 5 (40)
i=1

J

~ 2

E,= Z(Kk_Kk) .
k=1

(41)

When E = E|, the gradients of the loss function with

respect to the weights of the LSTM network

W, W, are given by

0E  O0E Onet,,
oW, ~ Onet,, ow,,

8E _ diag [2()2““ ‘X")]’

0X,
gz = diag[ 2.~ (Ko ).
% ) gfv - %f = diag[tanh(c,)],
?)_jt = diag[o, ® (I — tanh(c,)*)],
33—eotrw = diaglo,0 (I -0))],
aiﬁ_ﬂ, = diag[f,0 I~ )1,
61?:1 = diagli, 0 (I =i)],
e = dinell =2

onet,, Onmet;, Onet;, Onet;,

ow,, oW, oW, oW,

0E 0E  Onetg,
oW,  Omet,, 0W, ~

0E 0E  Onet,,
oW,  Onet., O0W,’

0E  O0E Onet,,
oW,  Onmet;, 0W,

According to the chain rule, it follows that
0E 0E 0X, 0g, Oo,

Onet,, 0X, 0g, 0o, Onet,,

oE 0E 0X, 0g Of:

onet,, 0X, 0g, 0f Onet;’

OE 0E 0X, 0g, Oc

onet.,, O0E, 0g, 0c, Onet,’

dE  OE 0X, dg  0i,

omet, 0X, 0g, 0i, Onet;,

= = = &1

ng:

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(S1)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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Substituting (55) through (51) into (42) yields:

oE
ow,

= 2(Rus — X))+ (21— h (Riyr, )) - (diag[tanh(c,)])-

| (diaglo,0(I - 0) g
(59)

In the same way, substituting (55) through (51) into
(52) through (54), the gradients of the loss function with
respect to the weights of the LSTM network W,,, W,
Wi, b,, b;, b., b; can be obtained.

For the gradients of the loss function with respect to
weights W,., W,,, W, W,,, we replace the second term
of (52) through (54) with Onet.,,/ 0W,,, = X,, so that, we
can obtain the formula of 0E/0W,,,, also the same way
for 0E/ 0b,,.

When E = E,, the training method of the LSTM-EKF
is the same as the traditional method, so it will not be
repeated. Up to now, the weight updating formulas of the
learning EKF has been obtained.

4.3 LSTM neural network training stability analysis

To determine the stability of LSTM neural network train-
ing, it is essential to determine whether the output va-
lues of the network y, approximate the nominal values y,
after training. Let’s define the loss function 6, = K, —K,,
state error function E, = X, — X,. Reference to the neural
network theory, the network output error is bounded after
enough training iterations. Thus there is ||6,|| < . Based
on the Lyapunov second method, designing the Lya-
punov function:

V=E'P'E, (60)

Obviously (60) is positive definite.
Define AV =V,,, -V, so that
AV=E' Pl E. —-EP'E<
E/ (P —qD'E,.,-E'P'E.. (61)
According to (33) and (34), we can obtain

E. =(I-KH)E. ., (62)

Pr+1—611=(1—f(:Hr)Pn (63)

where Q, is the process noise matrix and Q, = gI. Also
(62) can be written as

E,.,—-E =-KHE,. (64)
According to (62) and (63), we can obtain
(Ps1—gD'E,., = P'E,. (65)
Substituting (65) into (61), there is

AVLE! P'E,. -E'P'E <
(E...,-E)'P'E,. (66)
Substituting (64) into (66), there is
AV<-E'H'K'P;'E,. (67)
According to the formula of EKF, we can obtain
E=X-X=X.+KZ-(X_+KZ)=
6,Z,<0Z,. (68)
Substituting (68) into (67), there is
AV<-0*ZTH'K'P;' Z, <
~0’Z H (K =687 P;'Z, <
o (Z,TH,TKFP,‘Z, )
~Z;H;6;P]'Z,
Let’s introduce M, = H,P.H' +rl, so K,= PH'M;",

R, = rI is the measurement matrix. Obviously, the matrix
M, and M;! are axially symmetric:

Z'H'M'H,Z,
-Z'H'§'P'Z,)

(69)

AV < —0'2( (70)

Because M, =HPH'+rl, M;'<rl, (70) can be
rewritten as
Z'H'rH,Z,

AV < -0
(—Z,TH,T&TP,‘]Z,

) <-0’Z'H/(rH,- 6/ P")Z..
(71)

To ensure that AV is negative definite or negative semi-
definite, we should make that the matrix H' (rH,— 68" P;")
is positive definite or positive semi-definite.

According to (7), the matrix H' (rH,— 6" P;') can be
rewritten as

r=6,P; 6P, Y
0 0 .. 0
H!(rH,- 87 P;") =

(72)

where P;! presents the ith column of the matrix P;'.
Obviously, except for the first order principal minor, the
other principal minors are all zero matrix. Therefore, as
long as the first order principal minor is bigger than zero,
the matrix is semi positive definite. Therefore, the prob-
lem is transformed into ensuring that the inequality is sa-
tisfied as

r—6'P;l >0. (73)

According to the previous definition, 6, is the approxi-
mation error of the LSTM neural network. Through
enough training iterations, the approximation error ¢, is
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bounded. When the value of §, satisfies inequality (73),
AV is positive semi-definite, V is positive definite, so the
system is asymptotically stable.

5. Simulations

In the simulation process, the LSTM-EKF algorithm pro-
posed in this paper is compared with the traditional EKF
algorithm and the Sage-Husa filter algorithm with adap-
tive process noise. The results will verify the modifica-
tion of the LSTM neural network to Kalman gain and the
adaptability of the adaptive LSTM-EKF to model uncer-
tainties.

In simulations, the true values of the aerodynamic
parameters are given by a; =0.075, a; =24.5, and the
true value of the reaction jets control parameter is given
by I, =0.05. Based on previous experimental experi-
ences, the aerodynamic parameters a, increase with the
rising of @, and when @ changes from 0° to 30°, the value
of a, rises to two times of its initial value. Thus, the true
values of the parameters about a, are set to be ay = 11.5
and k, = 14. In order to stimulate the observability of
the control system, let the missile pitch angle track a
command ¢, containing a cos signal and a ramp signal,
ie.,

. = pycos(pst) + pit (74)

where p;, p,, and p; are adjustable parameters.

In order to estimate [, which is a parameter about reac-
tion jets control, three lateral thrust pulses are actuated on
the missile. The amplitude of each pulse is 200 N and the
ignition duration of each pulse is 4 ms, the interval
between two adjacent pulses is 36 ms, and the first pulse
is output after 1 s from the start of the simulation.

During the network training process, missile flight data
are used to train the network with a total time of 10 s and
a single step interval of /=0.001 s, that is, the total num-
ber of training samples is 10 000. Set the rolling training
sliding window size #=20. Thus in this simulation, the
total number of sliding windows is 10 000. The training
data of the neural network uses a set of flight data gene-
rated by computer simulation for an aircraft. The aircraft
dynamics and kinematics model is referenced in [31]. The
cost functions that evaluate the training performance of
the neural network are defined as

Error Cost, = E] - E,, (75)

Error_Cost, = E] - E,. (76)

The variations of @, and the pulse are shown in Fig. 5
and Fig. 6.
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Fig. 6 Pulse engine ignition curve

Fig. 5 shows the variation of @ and Fig. 6 shows the
ignition of the pulse engine. It can be seen from the fi-
gure that @ is inclined and sinusoidal with the given
amount of control signal as shown in (74). The reason for
using the above control signal is to improve the filtering
performance, and the corresponding relationship between
a with the aerodynamic parameters a, mentioned above
is established only when « is positive, which guarantees
that « is positive in the whole flight process. The pulse
engine control force shown in Fig. 6 is introduced to
identify the direct force parameters /.. Since the control
here is open-loop only for the purpose of identifying the
parameters, it can also be seen from Fig. 5 that @ changes
dramatically under the action of the direct force.

Fig. 7 shows the comparison of each channel of the
LSTM-EKF gain and the EKF gain. Where, gk,—gks
present the elements of the Kalman gain vector. The
Kalman filter principle shows that when the model uncer-
tainty increases, the accuracy of the state predicted by the
model decreases, and accordingly, the measurement
information is more reliable. From Fig 7, it can be seen
that the filter gain of LSTM-EKF under the action of
LSTM neural network is significantly higher than that of
traditional EKF, especially in the state channel without
measurement information. This shows that LSTM neural
network has significantly modified the filter gain, and the
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same results can be obtained from the following simula-
tion results.
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Fig. 7 Kalman gain of EKF and LSTM-EKF

Figs.8—13 show the estimation of each state of the fil-
ter. From the filter design, it is known that the pitch rota-
tional rate w, of channel 1 can be measured, so the model
uncertainty has little influence on this state estimation.
However, it can be seen in the magnified image that the
LSTM-EKF performance is slightly better than that of
EKF and AEKF. Fig.s 9—13 are the estimations of other
states without measurements, so the performance of these
state estimation is strongly influenced by model uncer-
tainty. It can be seen from the figures that LSTM-EKEF is
superior to traditional EKF and AEKF in both conver-
gence speed and filter estimation accuracy. This shows
that LSTM-EKF has obvious superiority in the presence
of large model uncertainty.
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Fig. 8 Estimation of pitch angular rate

20

15+

——: LSTM-EKF; =-=-- : EKF;

20

Time/s

Fig. 9 Estimation of ay

10

: True.

——: LSTM-EKF; ----- : EKF;

Time/s

Fig. 10 Estimation of kj;

: True.

——: LSTM-EKF; —---- : EKF;

30

Time/s

Fig. 11 Estimation of a;

10

: True.

25

20

a,

——: LSTM-EKF; =-=-= : EKF;

Fig. 12 Estimation of a3

459



460 Journal of Systems Engineering and Electronics Vol. 35, No. 2, April 2024

0.10
0.05 |
F-'r’ir__,m
0/
. I
~ [ii
—0.05F f
-0.10 +
-0.15 . L . .
0 2 4 6 8 10
Time/s
——: LSTM-EKF; =---- : EKF; : AEKF; e True.

Fig. 13 Estimation of /,

Fig 14 shows the estimation of time-varying parame-
ters a,. Equation (3) shows that the aerodynamic parame-
ter a, is a function of @ when « is within the operating
range of the aircraft. By polynomial approximation, the
problem of estimating time-varying parameter is reduced
to that of estimating several time invariant parameters.
Therefore, the estimation of time-varying parameter
depends on the estimation of the constant parameters a,,
and k,;. As can be seen from Fig.14, since LSTM-EKF is
better than EKF and AEKF in estimation accuracy, the
estimation performance of a, is also better than EKF and
AEKF, and LSTM-EKF has a faster convergence rate.
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Fig. 14 Estimation of a;
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Fig.15 shows the variation of the correction factors &
for each channel. There are dynamic and steady pro-
cesses in the working process of the filter. When the fil-
ter is in the dynamic process, the correction factor value
is smaller, so the modified value of LSTM neural net-
work is trusted more, which improves the convergence
rate of the filter. When the pulse engines are ignited, the
value of the correction factor increases significantly,
because the direct force action is abrupt. In order to sup-
press the influence of the abrupt state on the system, the
correction factor should be increased appropriately, so as

to improve the system stability and filter performance.
When the filter enters the steady state, the gain of each
channel tends to zero, and the correction factor is large,
even to 1, thus avoiding unnecessary steady-state error.
Especially in channel 6, when the pulse engine is not
ignited, the filter is in steady state, as can be seen from
Fig. 15, at which time the correction factor is 1.
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Fig. 15 Variation of correction factor ¢

Fig.16 shows the training performance of each sliding
window. It can be seen from Fig. 16 that most of the win-
dow training errors are within the specified range except
for individual windows under the constraint of double
gradient descent. When the pulse engines are ignited, the
LSTM neural network is insensitive to mutations due to
its memory of previous information, which affects net-
work convergence. However, the influence only exists in
individual windows. As the training
increases, the LSTM neural network gradually finds the

information

ignition rule of the pulse engine. It can be seen that the
training error is lower than that of the first ignition when
the second and third pulse engines are ignited.
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Fig. 16 Training performance of each sliding windows

6. Conclusions

An EKF with an adaptive factor is presented to estimate
the time-varying parameters of the missile dual control
system. The Kalman gain is modified by the LSTM neu-
ral network to improve the performance of EKF in the
presence of large model uncertainties. Compared with
other estimation methods using neural networks, this
method retains the physical process of the system through
Kalman filtering, and its filtering performance is more
reliable. The multi-gradient descent constraint is used in
the network training process, and the derivation process
of the whole system error back propagation is given to fit
the dynamic process of the system. In order to reduce the
network error caused by the time dependence in the long-
term prediction of the LSTM neural network, an adaptive
correction factor is introduced to correct the network out-
put in real time. The rolling training mode is used to
implement an online training correction and an online
prediction logic. In the simulation experiment, the LSTM-
EKF algorithm proposed in this paper is superior to the
traditional EKF and AEKF.
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