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Abstract: It is important to calculate the reachable domain (RD)
of the manned lunar mission to evaluate whether a lunar landing
site could be reached by the spacecraft. In this paper, the RD of
free return orbits is quickly evaluated and calculated via the clas-
sification and regression neural networks. An efficient database-
generation method is developed for obtaining eight types of free
return orbits and then the RD is defined by the orbit’s inclination
and right ascension of ascending node (RAAN) at the perilune. A
classify neural network and a regression network are trained
respectively. The former is built for classifying the type of the
RD, and the latter is built for calculating the inclination and
RAAN of the RD. The simulation results show that two neural
networks are well trained. The classification model has an accu-
racy of more than 99% and the mean square error of the regres-
sion model is less than 0.01° on the test set. Moreover, a serial
strategy is proposed to combine the two surrogate models and a
recognition tool is built to evaluate whether a lunar site could be
reached. The proposed deep learning method shows the superio-
rity in computation efficiency compared with the traditional dou-
ble two-body model.
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1. Introduction

Lunar exploration and related scientific research have
been heating up in recent years. The United States has
proposed the Artemis program which aims to land the
human on the Moon in 2024 and prepares for the next
giant leap, the exploration of Mars[1,2]. In December
2020, China successfully implemented the lunar explo-
ration mission of Chang’e-5, indicating that China mas-
tered the lunar surface sampling and return technology
[3]. It lays a solid foundation for China’s manned lunar
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exploration mission in the future.

The manned lunar exploration mission is a complex
engineering project and one of the key techniques is the
design of lunar transfer orbits. The spacecraft in the cislu-
nar space is mainly affected by the central gravity of mul-
tiple celestial bodies, non-spherical perturbative forces
and solar pressure, resulting in the complex mechanical
environment [4]. Zheng et al. [5] introduced the mission
constraint and the flight mode of the manned Iunar
project. Peng et al. [6] presented six manned lunar land-
ing flight modes by employing the space station. Top-
puto [7] proposed a direct transcription and multiple
shooting strategy to solve the coplanar two-impulse Earth-
Moon transfers in the restricted four-body model, and
systematically concluded the variation of the velocity
increment with the flight time. Lyu et al. [8] researched
the two-impulse Earth-Moon transfers in the circular
restricted three-body problem (CRTBP) based on a differ-
ential correction approach. Gao et al. [9] designed the two-
impulse Earth-Moon trajectory by employing the lunar
orbit station and analyzed orbital transfer windows in typ-
ical years. A special type of two-impulse Earth-Moon
transfers is named the circumlunar free return orbit
(FRO), which is quasi-symmetric about the Earth-Moon
line in the cislunar space [10]. The FROs are usually
employed by the manned spacecraft in order to guarantee
the high safety of astronauts. Zhou et al. [11] studied the
high-precision solution of the fixed-thrust FRO centered
on rendezvous and docking with a lunar space station.
Luo et al. [12] designed the FRO by an improved differ-
ential correction method.

On the basis of the Earth-Moon orbit design method,
the reachable domain (RD) of orbits is important for the
manned lunar mission implementation that could help
select the lunar land site. For the spacecraft in low Earth
orbit (LEO), the RD designates the collection of all posi-
tions accessible of the spacecraft under a given initial
orbit and fuel constraint [13]. As for the RD in the
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manned lunar mission, it is usually characterized as the
reachable region of the lunar surface that could be
reached by the lunar probe with mission constraints satis-
fied. Furtherly, the RD of the manned lunar mission can
be defined as the high-dimensional domain of the charac-
teristic orbital parameters of the lunar probe, such as the
orbital inclination and right ascension of ascending node
(RAAN) of the arrived lunar orbit [14,15]. Peng et al.
[14] studied the parameter characteristics of the hybrid
lunar transfer orbit and discussed the extension of the RD
of the lunar surface. Li et al. [16] proposed the multi-seg-
ment FRO that was composed of the two-segment FROs
and it could extend the RD of the lunar surface compared
with the one-segment FRO. He et al. [17] studied the
solution set of the Sun-perturbed optimal two-impulse
trans-lunar orbit. Li et al. [18] investigated the site selec-
tion of manned lunar exploration and found that the RD
influenced the strategy of the site selection considering
engineering constraints. However, as for the computation
of the RD in the manned lunar mission, the existing
researches [14—17] mainly adopted the traversal shooting
method with low efficiency. Moreover, the inherent
mechanism and characteristics of the lunar RD have not
been uncovered.

The practical engineering constraints in the manned
lunar mission are strongly nonlinear, and the coupling
mechanism between the lunar transfers and the RD is
complex. Besides, it is difficult to achieve a balance
between the solution accuracy and the computation effi-
ciency for large-scale analysis. The artificial intelligence
has developed rapidly, and especially the machine learn-
ing (ML) method has been successfully applied to regres-
sion (RG) statistics, classification (CL), prediction, clus-
ter analysis, and so on. ML has been used in the field of
astrodynamics such as fuel cost estimation, orbit CL, and
orbit propagation [19]. Izzo et al. [20] used unsupervised
ML methods to solve the multiple asteroid rendezvous
problem and explained the nonlinear characteristics of the
selection of the target asteroids. Uriot et al. [21] pre-
sented the design and results of the spacecraft collision
avoidance challenge competition, in which the ML mod-
els were used to predict the final collision risk between
orbiting objects. Li et al. [22] used the deep networks to
estimate the final mass for the multitarget interplanetary
missions with a mean relative error of less than 0.5% for
low-thrust transfers and less than 4% for multi-impulse
transfers. Peng et al. [23] used the artificial neural net-
work to improve the orbit prediction accuracy. The simu-
lation results show that the learning model could reduce
prediction errors relative to physics-based models. Zhu et
al. [24,25] used the deep neural network (DNN) to esti-
mate the fuel consumption of the low-thrust transfers and

perturbed long-duration impulsive transfers. Yang et al
[26] proposed a DNN-based method to optimize the con-
tinuous low-thrust trajectory of the non-cooperative
maneuvering spacecraft, and the method shows good gen-
eralization capacity of DNN. Chen et al. [27] developed
the DNN to approximate the gravitational field of aster-
oids and a continuation approach was proposed to quickly
optimize the time-optimal asteroid landing trajectories. Li
et al. [28] used DNN to approximate the nonlinear func-
tions in the actor-critic structure of the reinforcement
learning method, which is employed to solve the optimal
control problem of the switching system. For the manned
lunar mission, the previous research shows that there is
also a lack of recognition function or functional tool that
can quickly evaluate and pattern recognize the lunar RD.
For instance, it is required for the decision-maker to
quickly and accurately evaluate whether an arbitrary
lunar landing site is reachable. However, if the tradi-
tional trajectory optimization algorithm, e.g. the double
two-body model, is employed to compute the RD by the
traversal shooting strategy, the computation process
would be extremely inefficient. The universal approxima-
tion theorem [29] states that the DNN has a good advan-
tage of learning the underlying patterns and parameter
characteristics of the model. As a result, this paper hopes
to reveal the characteristics of the RD and approximate
the coupling mechanism between the model parameters
and the RD by the DNN. After the neural network is well
trained, the obtained surrogate model can be applied to
evaluating and calculating the RD in a quick way. The
main innovations and contributions are listed as follows:

(1) The relationship between the RD at the perilune
(PRL) and the orbit phase at the perigee is analyzed. It is
the first time to identify that the RD of the FROs should
be divided into eight types, and the orbit inclination
and RAAN of the RD should be estimated individually.

(i1) Two surrogate models based on the DNNs are pro-
posed, in which the CL model realizes the pattern recog-
nition of the lunar RD and the RG model realizes the fast
calculation of the lunar RD.

(iii) A serial design strategy is proposed by combining
the trained CL and RG models for rapid analysis of the
lunar RD. Moreover, a recognition tool is built in order to
quickly judge whether an arbitrary lunar landing site is
reachable.

The rest of the paper is organized as follows. Section 2
introduces the database-generation method of FROs. Sec-
tion 3 defines the RD in the manned lunar mission and
analyzes the characteristics of the RD of the FRO, which
could provide a foundation for learning parameters selec-
tion of the DNN. Section 4 presents the whole implemen-
tation process in rapid analysis of RD via the DNN. The
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CL and RG DNN are built to classify and calculate the
lunar RD respectively. Section 5 gives the simulation
examples and Section 6 draws the conclusions.

2. FRO optimization method

The orbit design and optimization method of the manned
lunar exploration is the premise for the analysis of the
RD. Due to the good symmetry of the “8” swing shape,
the FRO has a natural advantage in safely returning the
astronauts to the Earth and is usually used by the manned
spacecraft. Therefore, the optimization of the FRO is
introduced before RD analysis and the generation of the
learning database.

If the time at the PRL #p, and the corresponding
Earth-centered J2000 (EJ2000) position r52°° and velo-
city vER"® are given, the FRO can be determined by for-
ward and backward integration. Thus, in this paper the
parameters (fppp, Fh’, vhi®) are used to determine the
FRO and the PRL parameters in the lunar sphere of influ-
ence (LSOI) are used to obtain r52’® and vE2 for the
FRO design [11]. The selenocentric local-vertical-local-
horizontal (LVLH) coordinate system
Om — XoyiaYvinZoven 18 introduced in Fig. 1, where the x-
axis is the direction from geocentric to selenocentric, the
y-axis is orthogonal to x-axis along the direction of the
lunar motion and the z-axis forms a right-hand cartesian
coordinate system with the other axes.
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Fig. 1  Description of selenocentric LVLH coordinate and PRL

coordinate

Then the PRL coordinate oy —xyz is defined and the
related parameters @pg; = (Adpre, Ppre, Vere, ipre) 1 called
the pseudo PRL parameters. The angle ipy; is the velo-
city azimuth angle and vpr. is the PRL velocity. The
angle Aprp and @pyp is the pseudo longitude and latitude
of the PRL position. Rotate Apz. around the axis
Om — Xy, and then rotate —gpg; around the axis y, and
the PRL coordinate could be obtained.

Therefore, the direction of the PRL coordinate axes x,
v, and z are determined according to the angle App; and

¢rrL, and the rotation relationship from the selenocentric
LVLH coordinate to it. The origins of the two coordinate
systems are both located at the Moon center. The conver-
sion matrix from the PRL coordinate system to the LVLH
coordinate system is formulated by

Mypi—tvin = M3(=Apry) - Mo (@pro)- (D

With the orbit height 7, given, the position and
velocity in the PRL coordinate are rprp = [fppr+
R11,0,0]", and vpgp. = [0, Vprr €OS ipry, Vere SiNiprr. ]T , and in
the LVLH coordinate they are expressed by

2

Fivin = Mpri-rvin  Fere
Vivin = Mpri-Lyvii - VerL

Given the PRL time fpg;, the Moon’s inertial position
rE2% and velocity vE*™ can be interpolated by Jet
Propulsion Laboratory (JPL) ephemeris, and the space-

craft’s inertial states at PRL can be obtained by

EJ2000 _ .EJ2000

Tpre —Iv F+Tivins 3)
EJ2000 _ _ EJ2000
pRL Y™  TVLvLH- 4

Then the FRO could be determined by the backward
and forward integration method. In order to describe the
constraints of the FRO, the transfer process is divided
into two phases: the trans-lunar orbit starting from the
trans-lunar injection (TLI) to the PRL point, and the trans-
Earth orbit starting from the PRL to the vacuum point
(VCP) near the Earth, as shown in Fig. 1. The impulse at
TLI is along the tangential direction of the velocity, and
the TLI is the perigee of the geocentric launch phase. The
orbit’s RAAN and argument of latitude at TLI are
adjustable. The inclination of the geocentric launch phase
is restricted by the location of the launch site and the
downrange angle of the rocket. The altitude of TLI is
restricted by the carrying capacity of the rocket. There-
fore, the constraint parameters of the trans-lunar orbit are
the orbital height and inclination at TLI. As for the con-
straints of the trans-Earth phase, the reentry angle y at the
atmosphere entry time should be considered. With the
atmospheric height 7,0, given, the tangent of the reentry
angle y could be obtained by

ereen Sinfl"een
tany = ——— 5
7 T e €05 fron ©)
where e, and f.., are the eccentricity and true anomaly
of the trans-Earth orbit at VCP, respectively.
The relationship between the VCP height and the reen-

try atmospheric height /s is given by

ryep(l +erso0)
Teeen= 7> = hatmos + Re~ (6)
1 + €Lso €COS fl"een

By combining (5) and (6), the VCP height is expressed as



498 Journal of Systems Engineering and Electronics Vol. 35, No. 2, April 2024
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Then the constraint of the reentry angle could be trans-
formed into the constraint of the VCP height. Apart from
the constraints above, the inclination of the return orbit
should be also constrained because the distance of the
reentry flight is limited by the reentry capacity of the
lunar spacecraft. Therefore, the design variables of the
FRO are @®py; = (Apre,Ppre, VerLsIprL), and the mission
constraints include the orbit height and inclination of the
trans-Earth phase and the trans-lunar phase, as given
below:

hru — h;LI =0

fru =i =0 ®)
rver = Tycp = 0
iver = iyep = 0

where the superscript (‘)* indicates the mission con-

straints.

The optimization of the FRO is a two-point value
boundary problem and the numbers of the design vari-
ables and the constraints are equal to each other. Then,
the sequential quadratic programming (SQP) algorithm is
employed to solve the problem above [4].

3. Characteristics analysis of the lunar RD
3.1 Definition of the lunar RD

The decision-maker of the manned lunar mission mainly
cares about whether the spacecraft could reach the target
lunar site or whether the site is within the RD of the lunar
orbit. The RD of the lunar orbit usually refers to the
selenocentric longitudes and latitudes of the lunar sur-
face region that can be reached by the orbits. Further-
more, the RD could also be defined as the domain of the
characteristic parameters of the lunar orbit in high-dimen-
sion space. Given the initial time 7, and the initial states
x(ty) € @ C R, if there is a control vector u (r) € U" C R”
resulting in the terminate state y (¢,;) € @* C R* at the time
t;, the set @* is defined as the RD corresponding to the
initial set @" by

x(0) = flt,x(0),u@®)]

Yy =clt,x®)]

x(t) €@ u(t)eU",y(t;) € D ©)]

fG):0"xU" - 6"

c(): 0" > &

where y(f) = c[t,x(¢)] is a nonlinear function of ¢ and
x(#). The RD @* C R* could be obtained by y(#,). In this
paper, the orbital inclination ipg; and RAAN Qpy; at the

PRL is used to describe the RD as

D= (iprL> QPprL)- (10)

The two characteristic parameters iprpz and Qpgpp

describe the direction of the orbit plane at the PRL. When

ipre and Opgp are given, the sub-satellite point of the

lunar orbit is calculated by orbit propagation, and the

reachable region of the lunar surface could be further
obtained.

3.2 Analysis of RD characteristics

The lunar RD is defined in (10) and then the set of the
FRO is generated to analyze the variation features of the
RD, which would provide a reference for the feature
selection of the deep learning model. For the mission
constraints in (9), the TLI height is set as ;= 170 km
which is similar to the Apollo mission [30]. The TLI
inclination is set as ir;; = 28°, which considers the motion
of the Moon and the orbital transfer window [4]. Accord-
ing to the practical engineering constraints [31], €, =
0.97, y = —6°, the Earth radius is Rg = 6 378.137 km, the
atmospheric altitude is /0 = 122 km, and then the VCP
height hycp = 50 km can be obtained by (6) and (7). Con-
sidering the Earth land-return mission, the VCP inclina-
tion constraint is set by iycp =42°. In order to properly
describe the RD of the FRO, it is divided into four types,
ie., “I7, “II”, “IlI”, and “IV”, according to the orbital
phase at TLI and VCP. It is also labeled by “0” and “1”
according to the orbit phase at PRL. Thus, the RD is
divided into eight types in total as shown in Table 1.

Table 1 CL of eight orbit types of FRO

Type Name TLI phase VCP phase PRL phase
1-0 Ascending Ascending Ascending

! I-1 Ascending Ascending Descending
11-0 Ascending Descending Ascending

" 1I-1 Ascending Descending Descending
111-0 Descending Ascending Ascending

HI 1I-1 Descending Ascending Descending
V-0 Descending Descending Ascending

v V-1 Descending Descending Descending

The PRL altitude is Apg; = 100 km. The mission epoch
is required between 2029-04-01 00:00:00 and 2029-05-01
00:00:00. By applying the trajectory design method in
Section 2, different types of FROs are generated. The
nonlinear and graphic characteristics of the PRL inclina-
tion and RAAN of the RD are demonstrated in Fig. 2 and
Fig. 3.
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Fig. 2 RD of different types of FROs in LCF coordinate

From Fig. 2(a) it can be found that the RAAN of the
type “I” RD in the lunar-centered fixed (LCF) coordinate
varies from 0° to 360°, meaning full access to the lunar
surface along the selenocentric longitude. The inclination
is approximately from 164.2° to 177°. The relationship
between the RAAN and inclination of the “I” type RD is
approximately distributed as a curve of “S ” shape.
Besides, the RDs of the type “I-0” (red parts) and “I-1”
(blue parts) are independent from each other without
overlapping parts.

For the type “II” RD in Fig. 2(b), the PRL RAAN is
mainly between 0° and 180°, and a small amount of
points appear around 360°. The PRL inclination varies
from 165° to 180°. The nonlinear relationship between
the inclination and RAAN is not “one-to-one” and the
shape of the “II” RD looks like a reclining “tooth”.

For the type “III” RD in Fig. 2(c), the PRL RAAN also
has full lunar access along the selenocentric longitude
with a range from 0° to 360°. The curve of the RAAN
and inclination is plotted as a “heart” shape.

For the type “IV” RD in Fig. 2(d), the relationship of
the RAAN and inclination is interesting, which looks like
a rotating “peak” shape. The RAAN of the type “IV” also
has full access to the Moon surface.

Especially, for all the “I”’, “II”’, “III” and “IV” RDs, the
orbit phase “0” (the red parts) or “1” (the blue parts) at
the PRL does not overlap each other. It means that for a
specific inclination and RAAN, there is only one solu-
tion to the arrival phase at the PRL.

The RDs of all the eight types of FROs are all plotted
in Fig. 3.
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ted in one map)
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The orbits of “I” and “IV” types have a full access to
the Moon surface along the selenocentric longitude, while
the ranges of the “II”” and “III” types mainly lies between
0° and 180°. A small amount of the RAANSs of the “III”
type orbits locate between 340° and 360°. Besides, the
“II” RD could be approximately seen as a translation
transformation of the “II” RD.

The above characteristics analysis of the FRO’s RD
show that different types of FROs have different nonli-
near relationships between the RAAN and the inclination.
The graphic structure of the RD’s inclination and RAAN
also demonstrates different interesting features.

In the following, the deep learning method is used to
excavate and approximate the underlying patterns of the
RD of FROs.

4. Evaluating RD based on deep learning
method

The reachable regions of the lunar surface could be
known quickly with the FRO’s RD, which provided a re-
ference for the overall engineering decision making. The
characteristics above show that different orbits have dif-
ferent types of the RD at the PRL time. Moreover, the
mission constraints such as the orbit phase at the PRL
also has an important effect on the topological structure
of the graphic curve of the inclination and RAAN. The
database of FROs is designed and generated, then the
DNN is applied to approximating and calculating the RD.

4.1 Database generation

The learning database of FROs is generated and the simu-
lation parameters are listed in Table 2. The orbit inclina-
tion and height constraints at TLI are iz = 28°+2° and
higo = 170 km. The constraints at VCP are iycp = 42° +2°
and hycp =50km. The PRL height is set by /lpg =
100 km and the mission epoch is limited within three
months which starts from 2029-04-01 00:00:00 to 2029-
07-01 00:00:00. The ascending phase and descending
phase at the PRL and TLI are both considered. 87261
FROs are generated, in which the percentage of 70%,
15%, 15% are labeled by training sets, testing sets and
verifying sets respectively.

Table 2 Ranges of the orbit learning database of FROs

Parameter Range
iLeo /(%) 26-30
ivep/(%) 40-44
hipo/km 170
hVCP / km 50
T'Transfer/day 5.5-6.0
pPRL 2029-04-01 00:00:00—2029-07-01 00:00:00
TLI phase Ascending, Descending
PRL phase Ascending, Descending
VCP phase Ascending, Descending

In order to well approximate the RD of FROs, it is nece-
ssary to recognize the types of the RD correctly because
the RD of eight types of orbits has a completely different
graphic characteristics as demonstrated in Fig. 3. The sur-
rogate model of CL should be built to correctly classify
the type of the orbit and recognize the pattern of the RD,
which is a prerequisite for calculating the RD. Then, with
the orbit type known, the surrogate model of RG is
trained to quickly analyze the characteristics and the non-
linear relationship of the orbit RAAN and inclination at
the PRL, and to calculate them as well. In the following
part, the learning features selection and the training me-
thods are introduced for both the CL and RG neural net-
works.

4.2 Learning features selection

For the deep learning problem studied in this paper, the
combination of learning features has an important effect
on the learning performance and based on the domain
knowledge, we could select the appropriate orbital fea-
tures that obviously affect the learning effect and com-
bine the selected features as the input of the DNN. Due to
the quasi-symmetry of the FRO, when the spacecraft flies
in the cislunar space and arrives at the Moon, the distribu-
tion of the inclination and RAAN at the PRL is mainly
affected by the relative position between the Earth and
the Moon at the PRL time. For instance, the relationship
between the PRL phase of “I” FRO and the argument of
latitude u,, of the Lunar orbit is plotted in Fig. 4. It can be
found that the spacecraft in the FRO arrives at PRL in the
ascending phase when the u,, locates between 100° and
260°, and the spacecraft arrives in the descending phase
when the u,, falls in the other degree intervals. The argu-
ment of latitude has an obvious effect on the orbital phase
at PRL.

400
350
300 |
250
=200 |

Ny

150 t
100 t
50
0

20290401 2029-05-01  2029-06-01  2029-07-01

t/day

» : Ascending phase at PRL; « : Descending phase at PRL.

Fig. 4 Ascending and descending phases vs time and lunar argu-
ment of latitude

As a result, the argument of latitude of the lunar orbit
can be used as the input of the DNN. In fact, the lunar
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orbit around the Earth is an ellipse and the other orbital
elements are also used as the learning features, which is
listed in Table 3.

Table 3 Learning features of the CL model

Name Variable
Semi-major axis am
Eccentricity em
Inclination iM
RAAN Om
Argument of latitude um

Therefore, the first surrogate model for CL is mathe-
matically modeled as follows:

Netc (6) : RSP — RO™ (11)

where RE™ = (ay, e, iv, @y, Uy) is the input of the neu-

ral network, 6 is the network parameter, RO™ =
(“TYPE” ) is the output of the neural network including
the orbit type of “ascending phase” and “descending
phase”.

The inclination and RAAN of the RD at the PRL are
also influenced by the relative position between the Moon
and the Earth, and the orbital elements of the Moon’s
orbit are chosen as the input features of the RG model,
which is used for quickly calculating the RD. Besides, the
RD is influenced by the mission constraint such as the
departure orbit height and inclination at TLI, returning
orbit height and inclination at VCP, and these parameters
should be used as the input of the neural network as well.
The learning features of the RG network is summarized
in Table 4.

Table 4 Learning features of the RG model

Name Variable
Semi-major axis am
Eccentricity €m
Inclination im
RAAN Om
Argument of latitude um
LTO height hLeo
LTO inclination ILEO
PRL height hprL
VCP inclination iycp
VCP height hycp

And it is mathematically modeled as follows:

Netpa(6) : Rp2" — Rpe™ (12)

Input __ . . .
where RRG = (am, em, im» u, Unt, Mo iLEo, Aipres Pveps Tvep)

is the input of the RG network, 6 is the network parame-
ters and Ry = @* = (ipg, Qpry) is the RD at PRL and is
also the output of the network.

4.3 Neural network training

There are many types of DNNs, such as fully connected
neural networks, convolutional neural networks, long and
short memory neural networks, and so on [24]. For the
CL and RG problem in this paper, the fully connected
neural network is enough to approximate the nonlinear
characteristics of the RD. Thus, the fully connected neu-
ral network is chosen to solve the learning problem in this
paper. The structure of the fully connected neural net-
work is composed of three parts: the input layer, the out-
put layer, and the hidden layer. The input layer or the out-
put layer is composed of the nodes, the number of which
is determined by the learning features and the learning
results respectively. The structure of the hidden layer
includes the number of layers and the number of nodes in
each layer. The data is transmitted between nodes in each
layer and the activation of a node can be seen as the sum-
mation of all the weighted inputs, which is expressed as

xizﬁ[Zwijxj+b,~} (13)

where x; is the output of the node in the previous layer,
x; is the output of the current layer, w;; is the weight fac-
tor from node i to node j, b; is the variable bias of the
node 7, N is the number of the nodes in the previous layer,
and f; is the activation function.

Equation (13) indicates that the output of the previous
layer is the input of the current layer. The network train-
ing can be regarded as a process to adjust the weight fac-
tors and minimize the loss function.

For the CL network, the cross-entropy is employed as
the loss function and it is formulated by

1 N M
L= D yelen (14)

i=1 c=1

where N is the number of the training samples, M is the
number of the CL categories, y;. is the label of the train-
ing data, and p;. is the predicted CL probability by the
network.

For the RG network, the mean square error (MSE)
function is used as the loss function, and is expressed by

MSE = (15)
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where N is the number of the training samples, %; is the
predicted value by the network, and x; is the true value of
the training data.

Meanwhile, the mean absolute error (MAE) function is
also used as the RG network’s evaluation function, which
is formulated by

1
MAE = N;'x"_x"|' (16)

4.4 Implementation process

It should be noted that the similarity between the CL and
RG neural networks is that they both employ the full-con-
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nection neural network as the learning surrogate model.
The differences between the two training methods are
listed as follows. Firstly, the CL neural network uses the
cross-entropy as the loss function, while the RG neural
network uses the MSE function. Secondly, the tuning
results of the two network’s hyperparameters and train-
ing methods are different and they will be demonstrated
in the numerical simulation. Moreover, after the two neu-
ral networks being well-trained, a serial strategy is pro-
posed to combine them for quick RD analysis and a
recognition tool is built to assess whether the lunar site
can be reached, which is described in Fig. 5 and Fig. 6
respectively.
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Fig. 6 Implementation process of recognition tool

For the serial strategy, if a sample FRO is given, the
surrogate model of CL is firstly used to estimate the orbit
type of the RD. Because different types of RD have dif-
ferent topological characteristics and then it helps choose
the appropriate surrogate model of RG to quickly calcu-
late the orbit inclination and RAAN at the PRL.

The other application of the surrogate model is to build
a recognition tool to assess whether a lunar site can be
reached. The target lunar landing site is selected from the
candidate landing sites that is required by the mission,
and the decision-maker chooses the concerned orbit trans-
fer type. Then the corresponding RG surrogate model is
used to quickly generate the orbit’s RD and assess
whether the target site could be reached by the orbit. For
instance, if the position of the site could be overlapped by
the RD in the map, it is concluded that the site can be
reached.

Therefore, the total process of quickly evaluating the
RD via the DNN is illustrated in Fig. 7 and it is described

as follows. Firstly, the trans-lunar database of FROs is
generated according to the mission constraints and the
epoch, which includes the types of the RD and the corre-
sponding inclination and RAAN at the PRL.

The generated database used for the CL neural net-
work training is divided into four types of FROs: “I7,
“IT”, “III”, and “IV”. And four CL models are trained to
evaluate the ascending or the descending phase of the RD
at the PRL. As for the orbit database used for the RG net-
work training, it contains eight types of FROs that fur-
ther consider the PRL orbit phase: I-0, I-1, 1I-0, II-1, III-
0, II-1, IV-0 and IV-1. Thus, eight RG models should be
trained corresponding to the eight types of RD.

Then the CL neural network and the RG neural net-
work are trained respectively. When training the CL neu-
ral network, the loss function of cross-entropy is used,
and the ascending phase and the descending phase is the
output of the neural network for the eight types of the
generated CL database. And for the RG network training,
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the MSE loss function is used and the inclination and
RAAN at the PRL is the output of the neural network.
The selection of the two neural network’s hyperparame-
ters and the learning performance of the two models are
also discussed.
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Whole process of the RD analysis for the manned lunar

After being well trained, the two neural networks or
surrogate models are applied to quickly analyzing the RD
of the manned lunar mission. A serial strategy is pro-
posed to evaluate the RD in a quick way, where the surro-
gate model of CL is firstly used to estimate the orbit type
of the RD and then the surrogate model of RG is se-
condly used to calculate the orbit inclination and RAAN
at the PRL. Moreover, a recognition tool is built in order
to judge whether an arbitrary lunar landing site is reach-
able in a quickly and accurately way. The Monte Carlo
simulation is conducted to verify the correctness of the
proposed method.

5. Numerical simulation

In this paper the mission epoch of China’s manned lunar
mission is set in 2029. The computer processor is Intel

Core 17-7700 CPU 3.60 GHz. The RAM is 8.00 GB, and
the desktop system is Windows 10.

5.1 Hyperparameter tuning of neural network

The candidate hyperparameters of the CL and RG neural
networks are listed in Table 5. The training optimizers
include the stochastic gradient descent (SGD), the Adam,
the Nadam and the Levenberg-Marquarelt (LM). The
activation function in the hidden layer includes the sig-
moid, the softsign, the tanh and the ReLU function, and
the number of the hidden layers is set from 1 to 4. The
learning rate is limited between 0.00001 and 0.1. Note
that when the learning rate is too large, it is easier for the
trained model to converge but it is more possible to fall
into a local optimum. On the other hand, a too small
learning rate makes the neural network difficult to con-
verge.

Table 5 Search ranges of the hyperparameters for both the CL
and RG models

Hyperparameter Search range

Optimizer SGD, Adam, Nadam, LM

Activation function sigmoid, softsign, tanh, ReLU
Number of layers [1,4]
Number of nodes [8, 128]

Learning rate [0.00001, 0.1]

The tuning results of the suitable hyperparameters of
the two neural networks and the suggested configura-
tions are listed in Table 6. Both of the two training mo-
dels have two hidden layers. The number of the neural
nodes is 8 and 16 for the CL model, and it is 16 and 32
for the RG model. The optimizers are selected by the
Adam and LM algorithm for the two networks and the
activation functions in the hidden layers are the tanh
function and the ReLU function, respectively. A small
learning rate of 0.005 is preferred when training both the
CL and RG neural networks.

Table 6 Tuning results of the hyperparameters for both the CL
and RG models

Hyperparameter CL model RG model
Optimizer Adam LM
Activation tanh ReLU

Number of layers 2 2

Number of nodes [8,16] [16, 32]

Learning rate 0.005 0.005
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5.2 Performance of the neural network

5.2.1 CL model for evaluating RD

Four CL models are learned in order to evaluate the type
of the RD. The learning performance of the MSE, CL
accuracy, total training number, and training time of the
four CL models are summarized as in Table 7. The
learned result indicates that the obtained surrogate model
could approximate the RD’s underlying patterns well.
This is because in the above analysis, the ascending and
descending orbital phases of each type of FROs are ob-
viously affected by the argument of latitude of the lunar
orbit around the Earth. This paper takes the lunar orbital
elements as the learning feature input based on the
domain knowledge, so the CL model has a good CL accu-
racy. The CL results verify the correctness of the selected
learning features in turn.

Table 7 Learning results for the four CL models

Orbit Accurate  Total Accuracy  Training
MSE .
type number  number rate/% time/s
I 45108x104 21797 21803 99.97 306
I 0.0022 21810 21822 99.95 355
I 40856x10°4 21808 21812 99.98 327
v 0.001831 21813 21824 99.95 317

The learning error histograms of the four models are
shown in Figs. 8—11. The histogram errors are mainly
distributed at [-0.03462, 0.03462], [-0.08778,
0.08778], [-0.03758, 0.03758] and [0.084 14, 0.084 14]
respectively. The histograms are symmetrically dis-
tributed along the horizontal axis, which also verify the
correctness of the selection of the model hyperparame-
ters.
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Fig. 8 Learning error histogram of CL model I
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Fig. 9 Learning error histogram of CL model II
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Fig. 10 Learning error histogram of CL model III
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Fig. 11 Learning error histogram of CL model IV

5.2.2 RG model for calculating RD

For the four types of FROs, each type of the orbit is
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labeled according to the ascending or descending orbit
phase at the PRL, and a total of eight RG models are gene-
rated to calculate the orbit inclination and RAAN of the
RD. The learning performance is shown in Table 8. It can
be found that the training time increases compared with
the CL model, and most of the model’s training time is
more than eight minutes. The difference in the CL and
RG models’ training time is determined by the problem cha-

505

racteristics. According to the orbit characteristic analysis
in this paper, the CL neural network is built according to
the orbit types that is discrete, but the RG neural network
is constructed to solve the continuous problem, in which
the inclination and RAAN have a range of [0°,180°] and
[0°,360°], respectively. Therefore, it is more difficult to
learn the RG characteristics of the RD than the CL cha-
racteristics.

Table 8 Learning results for the four RG models

Orbit type Inclination MSE/(°) RAAN MSE/(°) Inclination MAE/(°) RAAN MAE/(°) Training time/s
1-0 1.635x 1075 2.858x 1074 5.665x 1074 1.518x 1073 553
I-1 9.178 x 107> 1.103x 1074 6.532x1073 7.504x 1073 373
1I-0 1.646x 1076 1.848x 1074 7.052x 1074 1.439%x 1073 523
II-1 2.524x107° 3.586x 1074 2.888x 1073 4.880x1073 461
1I-0 1.939%x 1073 3.733x 1073 3.093x 1073 7.864x 1073 528
-1 4.845x107° 4.850x 1074 1.394x 1073 2708 x 1073 545
V-0 4.024x 1073 1.930x 1074 5.102x 1073 8.275x 1073 542
V-1 8.532x 1073 1.277x1074 7.337x1073 6.591x 1073 535
Average 3.560% 1075 6.848x 1074 3.452x 1073 5.128x 1073 507.5

The performance of the RG neural network is shown in
Figs. 12—15, and all the eight obtained RG models are
well trained with acceptable learning errors. For the
learning error of the inclination at the PRL, the minimum
MSE is 1.646x10°° (Model 1I-0) and the maximum
MSE is 9.718 x 1075 (Model I-1). For the model perfor-
mance of the RAAN, the minimum MSE is 1.103x 10~
and the maximum is 3.733x 1073, The learning error of
RAAN is generally greater than that of orbital inclination
because the two orbit variables have different ranges. The
orbital inclination varies from 0° to 180° and the RAAN
varies from 0° to 360°. The histograms of the inclination
and RAAN’s MSEs are shown in Fig. 12 and Fig. 13,
respectively.
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For the MAE of the two variables, the minimum MAE
of the inclination is 5.665x 107, and the maximum is
7.337x1073. For the MAE of the RAAN at the PRL, the
minimum value is 1.439x 1073, and the maximum value
is 7.864x 107*. The average MSE and average MAE of
the RD’s inclination and RAAN are 3.560x 107,
6.848x 107, 3.452x 1073, and 5.128 x 1073, respectively.
The histograms of the inclination and RAAN’s MAEs are
shown in Fig. 14 and Fig. 15, respectively.

5.3 Application in manned lunar mission design

In the following part, the trained deep learning model is
applied to the RD analysis of the manned lunar mission,
and the generalization ability of the learning model is also
verified. The selected mission window is set from July 1
2029 to August 1 2029, and 875 FROs are randomly gene-
rated. Based on the proposed serial strategy, the CL sur-
rogate model is firstly used to recognize the type of the
RD. And 874 orbits are correctly judged, the accuracy is
more than 99%. Secondly, the RG surrogate model is
applied to estimating the orbit inclination and RAAN of
the RD at the PRL, and the MAEs are 0.001 710° and
0.038 715°, respectively. It is worth noting that although
there are some learning errors in the obtained neural net-
work, the calculation time of the surrogate model is very
short after it is well trained. For the 875 orbits in this
paper, the calculation time is about 0.1532 s. If the tradi-
tional optimization based on the double two-body model
is adopted, the calculation time of a single orbit is about
4.94 s and the overall calculation time is about 1.2 hours
and the results are compared in Table 9.

Table 9 Comparison of the computation time between two
models

Deep learning Double two-body

Computation time

model model
Total time 0.1532 4322.5
Computation time per
1.7509 x 10~ 4.94

orbit

Moreover, if the numerical method based on the high-
fidelity model is used, the computation time would be
much longer. Therefore, the RG model and the CL model
based on DNN learning have a good advantage in compu-
tation efficiency when the trained model is used for the
analysis of the RD of the manned lunar mission.

Finally, in order to further verify the correctness of the
obtained surrogate model proposed in this paper, the CL
model and the RG model is combined with each other,
and a recognition and estimation tool of the RD is built in
order to quickly judge whether an arbitrary lunar landing
site could be reached. A total of 10000 global lunar land-
ing sites are randomly generated, and the RD of “I” FRO
is considered. The Monte Carlo simulation results are
depicted in Fig. 16.
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Fig. 16 Simulation results of the 10000 randomly generated sites

It is shown that about 37 of the 10000 generated sites
can be “reached”, where the reachable sites are located in
the PRL RD graph of I-0 and I-1 FROs. The orbit inclina-
tions and RAANSs of 10 reachable sites are listed in Table 10
and the differences between the result of the deep learn-
ing model and the traditional optimization method based
on the double two-body model are also compared.

Table 10 Difference in the geocentric position of the recognition tool and the landing site ©)
Method
Number Monte Carlo data PRL method DNN method
Qrcr ILCF Qrer ILCF Qrer ILCF
1 176.71 157.96 176.71 157.95 176.71 157.95
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Continued
Method
Number Monte Carlo data PRL method DNN method
Qrcr ILCF Qrer ILCF Qrer ILCF

2 174.99 79.42 174.98 79.41 174.98 79.41

3 165.33 353.87 165.34 353.87 165.35 353.87

4 170.44 12.82 170.44 12.81 170.44 12.84

5 170.86 15.49 170.85 15.49 170.85 15.49

6 176.24 224.62 176.25 224.64 176.24 224.64

7 171.35 20.92 171.35 20.94 171.36 20.94

8 175.54 97.67 175.57 97.65 175.57 97.65

9 174.02 55.67 173.98 55.69 173.98 55.69

10 176.23 119.92 176.22 119.97 176.22 119.97

On the one hand, the Monte Carlo shooting data is
nearly the same to the generated RD graph, meaning that
the selected sites are reliably reachable. And the shooting
sites are also consistent with the RD data predicted by the
deep learning model. Therefore, the Monte Carlo simula-
tion proves that such a RD recognition and estimation
tool built by the DNN is a feasible idea, and it can be
used for calculating the RD with acceptable errors. On
the other hand, the computation time of the Monte Carlo
simulation via the DNN is 2.013 3 s. However, if the opti-
mization method by pseudo PRL parameters is used to
traverse the scatter points of the RD and then to judge the
intersection relationship between the RD graph and the
target site, the simulation process is very time-consum-
ing, which would consume more than tens of hours.
Therefore, the proposed method to estimate the RD of the
FRO can not only be used for quickly calculating RD, but
also be used to build a recognition tool for judging
whether a given target lunar site is reachable. They both
show the advantage of the proposed method in computa-
tion efficiency.

6. Conclusions

In this paper, a fast calculation method of the RD of
manned lunar FROs via deep neural network is proposed.
The RD of the manned lunar mission is defined, and the
RD database is generated based on the FRO optimization
method using pseudo PRL parameters. The nonlinear
characteristics between the inclination and RAAN of
eight different types of FROs at the PRL are analyzed in
the two-dimensional graphic structure of the RD. Then,
two neural networks are built, in which the classification
model is used for recognize the type of the RD and the
RG model is used to calculate the inclination and RAAN
of the RD. The simulation results show that the obtained
surrogate model could classify the RD with the accuracy

of more than 99%, and could also estimate the inclina-
tion and RAAN at PRL with the error of less than 0.01°.
The obtained surrogate models show the advantage in
computation efficiency that its computation cost is much
less than the traditional optimization method based on the
double two-body model. In order to apply the trained
models, a rapid recognition tool is built for quickly judg-
ing whether an arbitrary lunar landing site is reachable,
which can provide reference and support for the overall
decision-making of manned lunar landing missions in the
future.
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