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Abstract: In this paper,  a bandwidth-adjustable extended state
observer  (ABESO)  is  proposed  for  the  systems  with  measure-
ment  noise.  It  is  known  that  increasing  the  bandwidth  of  the
observer improves the tracking speed but tolerates noise, which
conflicts  with  observation  accuracy.  Therefore,  we  introduce  a
bandwidth scaling factor such that ABESO is formulated to a 2-
degree-of-freedom system. The observer gain is determined and
the bandwidth scaling factor adjusts the bandwidth according to
the tracking error. When the tracking error decreases, the band-
width  decreases  to  suppress  the  noise,  otherwise  the  band-
width does not change. It  is proven that the error dynamics are
bounded  and  converge  in  finite  time.  The  relationship  between
the upper bound of the estimation error and the scaling factor is
given.  When  the  scaling  factor  is  less  than  1,  the  ABESO  has
higher  estimation  accuracy  than  the  linear  extended  state
observer  (LESO).  Simulations  of  an  uncertain  nonlinear  system
with  compound  disturbances  show  that  the  proposed  ABESO
can successfully estimate the total disturbance in noisy environ-
ments. The mean error of total disturbance of ABESO is 15.28%
lower than that of LESO.
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1. Introduction
Uncertainties  and  disturbances  are  unavoidable  phenom-
ena  in  industrial  control  systems,  and  they  adversely
affect the quality of their control. A common strategy for
estimating system uncertainties and external disturbances
is  to  use  an  extended  state  observer  (ESO)  [1],  which
takes  as  input  the  control  signals  and  measurable  infor-
mation of the system, and outputs the estimated total dis-
turbance of the system and unmeasured state variables. In
this  way,  an  uncertain  system  can  be  controlled  using
simultaneous disturbance estimation and feedforward dis-

turbance compensation strategies. An ESO-based control
scheme is  an attractive solution because it  can deal  with
disturbances in uncertain systems directly and in time. To
date, it has been successfully applied in a variety of fields
and resolved numerous control problems [2−4]. The theo-
retical research and verification of ESO has also achieved
remarkable results [5−7].

In  the  actual  engineering  control  system,  high  fre-
quency noise is inevitably introduced when the output is
measured,  including  spacecraft  attitude  control  [8],
unmanned ground vehicles [9], electronic throttle system [5].
If high frequency noise can pass through the ESO, it will
contaminate  the  estimates.  Then,  controllers  utilizing
such  estimates  contain  redundant  parts  associated  with
amplifying noise. Not only do these parts increase energy
usage  to  saturate  the  control  input,  but  high-frequency
components retained in the control input excite the high-
frequency unmodeled dynamics of the system, which can
reduce the control performance and even destroy closed-
loop  stability  [5].  However,  in  the  design  of  ESOs,  the
gain of the observer will be increased in order to improve
the tracking speed, and the noise will be amplified at the
same  time,  so  that  adverse  effects  caused  by  measure-
ment noise cannot be ignored. Therefore, designing ESOs
for systems with measurement noise has always been an
attractive research topic.

So far, scholars have proposed many solutions to atten-
uate  measurement  noise,  which  can  be  divided  into  two
distinct  approaches.  The  first  approach  is  to  modify  the
observer  design,  mainly  including:  combining  ESO with
a Kalman filter [5,10], cascading observers [6,7], design-
ing linear and nonlinear parts without any switching ele-
ments  [9].  In  the  other  approach,  gain  adjustment  tech-
niques are used to improve estimation accuracy and noise
immunity.  In  [11],  the  gain  adaptation was  implemented
as the output of a stable filter using the squared norm of
the  measured  output  estimation  error  and  the  mismatch
between each estimate and its  saturated value.  Ahrens et
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al. [12] proposed a technique by which the gain matrix of
a  high  gain  observer  was  switched  between  two  values.
Its  purpose  was  to  take  advantage  of  higher  gain  during
transients, providing better estimation and tracking. Once
the  tracking  error  arrived  at  the  threshold,  the  gain  was
switched  to  a  smaller  value  to  suppress  measurement
noise. However, in order to avoid repeated switching, it is
necessary to ensure the monotonic decrease of the estima-
tion  error  and  consider  the  influence  of  the  initial  peak
value,  which  increases  the  difficulty  complexity  of
numerical  implementation.  In  [13],  a  bi-bandwidth  ESO
(BESO) was proposed using the switching technique. The
gain switching is triggered by the transient variation ten-
dency of the estimation error, and no additional threshold
is  required  to  determine  the  switching  zone.  However,
only the convergence of second-order BESO was studied
in [13]. Although this approach was extended to multiple-
input-multiple-output  (MIMO)  systems,  the  observer
remains  essentially  a  second-order  BESO  since  the
observed  plant  is  fully  measurable.  The  difficulty  of
designing BESO with order higher than 2 is to prove the
stability of switching system. In addition, since the gain is
switched  repeatedly  between  two  values,  if  the  two  val-
ues  differ  greatly,  the  bandwidth  adjustment  will  be  too
large, resulting in the observer being more sensitive to the
bounded noise.

Inspired  by  [13],  a  switched-gain  technique  is
employed  to  the  extended  state  observer.  We  use  the
change rate of absolute value of estimation error to define
a bandwidth scaling factor. If the error increases, a larger
bandwidth is needed to improve the tracking speed. How-
ever,  in  order  to  prevent  the  bandwidth  adjustment  from
being too large,  the  bandwidth is  kept  unchanged at  this
time.  If  the  error  is  reduced,  a  smaller  bandwidth  is
needed  to  suppress  the  noise.  Thus,  the  bandwidth  is
reduced  compared  to  the  original  one.  In  this  way,  a  2-
degree-of-freedom  observer  is  obtained.  By  designing
appropriate gain and bandwidth scaling factor, both track-
ing  speed  and  noise  suppression  are  taken  into  account.
In addition,  we give a  sufficient  condition for  the stabil-
ity  of  the  third-order  switching  system.  It  is  proved  that
the  proposed  ESO  in  this  paper  is  convergent  and  the
relation between the upper bound of the estimation error
and  the  bandwidth  scaling  factor  is  given.  Theoretical
analysis shows that when the scaling factor is less than 1,
the ABESO proposed in this paper has higher estimation
accuracy than LESO.

The contents  and organization outlines are as  follows:
Section  2  introduces  the  statement  of  the  problem.  Sec-
tion 3 presents the convergence analysis of ABESO. Sec-
tion  4  performs  the  numerical  simulations  to  compare
effects  of  LESO,  BESO,  and  ABESO  on  the  noise  sup-

pression.  Section  5  summarizes  the  main  work  of  this
paper. 

2. Problem statement
A  general  second  order  nonlinear  uncertain  system  is
considered:ẍ(t) = aẋ(t)+b∗(x(t)+g(x)u(t)+ f (x)+d∗(t))

y(t) = x(t)+ω(t)

a,b∗ ∈ R ẋ(t) ẍ(t)
x(t)

u(t) ∈ R d∗(t) ∈ R
g(x) ∈ R

f (x) ∈ R y(t) ∈ R
ω(t) ∈ R

where  are  constants,  and  denote  the
first  derivative  and  second  derivative  of ,  respec-
tively,  is  the  control  input,  is  the
unknown  external  disturbance,  represents  the
influence  of  the  control  signal  on  the  system  dynamics,

 describes  nonlinear  internal  dynamics, 
is  the  system  output,  and  corresponds  to  high
frequency noise. Such systems often appear in electrome-
chanical and mechanical systems, where position is mea-
sured.

ĝ ∈ R\{0} g(x)Let  be a nominal value of .  The system
can be written as ẍ(t) = bu(t)+d(t, x)

y(t) = x(t)+ω(t)
, (1)

b = b∗ĝ,where  and
d(t, x) = aẋ(t)+b∗(x(t)+ f (x))+

b∗((g(x)− ĝ)u(t)+d∗(t))

is defined as the total disturbance depending on the state
of  the  system  and  external  disturbances,  including  the
effects  of  external  disturbances,  model  parameter  pertur-
bations, nonlinearity of the system, etc.

The  state-space  model  of  system in  (1)  is  represented
as follow: 

ẋ1(t) = x2(t)
ẋ2(t) = d(t, x)+bu(t)
y(t) = x1(t)+ω(t)

. (2)

Obviously,  system  in  (2)  is  observable.  This  paper
focuses on the disturbance observation problem. Thus, we
can give the following assumption.

x(t)

d(t, x)

Assumption  1　 The  system  in  (1)  is  stable  or  the
closed  loop  is  stable,  which  implies  and  its  deriva-
tive  are  bounded.  The derivative  of  the  total  disturbance

 is also bounded as

|ḋ(t, x)| ⩽ md.

This assumption represents a class of continuous time-
varying  disturbances,  such  as  slow and fast  disturbances
that exist in many practical applications.

ω(t)
Assumption  2　Assume  that  the  measurement  noise

 is bounded, i.e.,
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|ω(t)| ⩽ mω.

Since the traditional LESO only takes the bandwidth as
an  adjustable  parameter,  it  cannot  take  into  account  the
measurement  noise  and  estimation  accuracy  at  the  same
time.  Ahrens  et  al.  [12]  proposed  a “switching  zone” to
adjust  the  bandwidth,  considering  that  transient  and
steady-state  responses  had  different  requirements  for
observer gain. But there is no good way to determine the
switching  threshold.  Then,  Prasov  et  al.  [14]  proposed  a
scheme  to  adjust  the  threshold,  however,  it  would
increase the burden and uncertainty of implementation. In
[13],  a  directional  switching  operator  was  defined  to
make the gain switch between two values without thresh-
old.  However,  the  extended  state  observer  was  only  for
the  first-order  plant.  Even  if  generalized  to  MIMO  sys-
tems,  it  was  essentially  a  second-order  ESO  that  recon-
structed  the  state  and  disturbance  of  a  specified  type  of
system.  Inspired  by  [12−14],  for  system  in  (1),  an
ABESO is designed as

˙̂x1(t) = x̂2(t)+ l1δen(t)
˙̂x2(t) = x̂3(t)+bu(t)+ l2δ

2en(t)
˙̂x3(t) = l3δ

3en(t)

, (3)

where

δ = ρ
−min

{
sign

(
d|en(t)|

dt

)
,0
}
. (4)

x̂i(t)(i = 1,2,3)
en(t) = x̂1(t)− y(t) y(t)

li(i = 1,2,3)
δ

ρ > 0

In  the  ABESO,  are  the  states  of  the
observer,  is the estimation error of ,
including  measurement  noise,  are  observer
gains,  is defined as a bandwidth scaling factor, in which

 is  a  constant,  the  value  range  will  be  determined
later.

ρ = 1Obviously, (3) is a LESO if . The observer gains
can be chosen as 

l1 = −3wo

l2 = −3w2
o

l3 = −w3
o

(5)

wo > 0

wo ρ , 1
δ ρ

via the parameter  tuning technique in  [15].  Here, 
represents  the bandwidth of  the observer.  Following this
approach,  all  three  poles  are  placed  at .  If ,  the
parameter  switches  between  1  and ,  adjusting  the
bandwidth  of  the  observer  according  to  the  direction  of
the tracking error.

ρ < 1
δ = ρ,

woρ

δ = 1, wo

Remark  1　The  estimation  performances  of  ABESO
are better when the parameter . If the absolute value
of estimation error decreases,  the bandwidth of the
observer  is  which  becomes  smaller  to  suppress  the
noise. Otherwise,  the bandwidth is , which pro-
vides fast tracking speed. In [13], the observer bandwidth

woρ wo/ρswitched  between  and .  Large  and  frequent
switching of bandwidth increases estimation error. Subse-
quent  theoretical  analysis  and  numerical  simulations
show  that  our  gain  adjustment  strategy  outperforms  the
one proposed in [13]. 

3. Convergence of ABESO
In this section, we will study the convergence of the pro-
posed  ABESO.  Select  the  same  observer  gains  as  (5)  in
the following paper.

Define ei(t) = x̂i(t)− xi(t), i = 1,2,3
e(t) = (e1(t),e2(t),e3(t))T .

The error dynamic system for system (1) and (3) is as fol-
lows:

ė(t) = Aδe(t)+Hδ(t) (6)

where

Aδ =

 −3woδ 1 0
−3w2

oδ
2 0 1

−w3
oδ

3 0 0

 ,
Hδ(t) =

 3woδω(t)
3w2

oδ
2ω(t)

w3
oδ

3ω(t)− ḋ(t, x)

 . (7)

δ AδDue  to  the  definition  of ,  has  the  following  two
forms:

A1 =

 −3woρ 1 0
−3w2

oρ
2 0 1

−w3
oρ

3 0 0

 ,
A2 =

 −3wo 1 0
−3w2

o 0 1
−w3

o 0 0

 ,
ρ > 0, ρ , 1where .  Therefore,  the  system  in  (6)  is  a

switched  linear  system consisting  of  two modes.  Firstly,
the stability of the switched linear system

ė(t) = Aδe(t) (8)

is  investigated,  whose  subsystems  are  linear  time-invar-
iant systems

ė(t) = Aie(t), i = 1,2.

A1, A2

Rn rank(A1− A2) = 1

A1, A2

A2 A1

Lemma 1 [16]　Let  be  two  Hurwitz  matrices
in  with . A necessary and sufficient
condition  for  the  existence  of  a  common  quadratic  Lya-
punov function for the switched system in (8) with 
as  the  two  subsystems  is  that  the  matrix  product 
does not have any negative real eigenvalues.

All  subsystems  of  the  switched  system  have  a  com-
mon  quadratic  Lyapunov  function  to  guarantee  the
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quadratic stability of the switched system. Quadratic sta-
bility means asymptotic stability , which is a special kind
of exponential stability. Based on Lemma 1, the stability
of the system in (8) is shown below.

wo > 0, ρ > 0Lemma  2　 If ,  the  system  in  (8)  is
quadratically stable.

γ Aδ
Aδ

Proof　 Let  be  the  eigenvalue  of  matrix .  The
characteristic equation of matrix  is

γ3+3woδγ
2+3w2

oδ
2γ+w3

oδ
3 = 0.

Aδ
wo > 0, δ > 0

Using  the  Routh-Hurwitz  stability  criterion,  is  a
Hurwitz matrix if and only if .  Furthermore,
we have

rank(A1− A2) = rank

 −3woρ+3wo 0 0
−3w2

oρ
2+3w2

o 0 0
−w3

oρ
3+w3

o 0 0

 = 1.

A2 A1Below we will discuss the eigenvalues of . Calcu-
late the matrix product:

λ3+3w2
o(ρ2−3ρ+1)λ2−3w4

oρ(ρ
2−3ρ+1)λ−w6

oρ
3 = 0.

(9)

Denote
p = ρ2−3ρ+1,

F(λ) = λ3+3w2
o pλ2−3w4

oρpλ−w6
oρ

3.

Obviously, 
lim
λ→+∞

F(λ) = +∞

lim
λ→−∞

F(λ) = −∞
. (10)

F(λ)Calculating the derivative of , we have

F′(λ) = 3λ2+6w2
o pλ−3w4

oρp.

Let

∆ = 36w4
o p(p+ρ).

According to the definition of p, we have

p+ρ = (ρ−1)2 ⩾ 0.

In the following, we discuss three cases.
∆ < 0 p < 0 F′(λ)

F′(λ) > 0 λ ∈ R F(λ)
(i) , that is .  has no zero point, which

means  when . Therefore,  is a mono-
tonically  increasing  function.  Under  the  condition  (10),
the  characteristic  equation  (9)  has  a  unique  real  root.  In
addition,

F(0) = −w6
oρ

3 < 0,

which indicates that the unique real root is positive.
∆ = 0(ii) .  This  case  is  similar  to  the  first  case,  the

characteristic equation has only one positive real root.
∆ > 0 p > 0 F′(λ)(iii) ,  that  is .  In  this  case,  has  two

zero points, i.e.,

λ = w2
o

(
−p−

√
p(p+ρ)

)
< 0 < w2

o

(
−p+

√
p(p+ρ)

)
= λ,

F(λ)
F′(λ)

F(λ)

which are also the two extreme points of . Since the
quadratic  curve  of  the  function  opens  upward,  the
function  must  first  increase,  then  decrease,  then
increase. Note that

λ1λ2λ3 = w6
oρ

3 > 0

λi(i = 1,2,3) F(λ) = 0

λ1 > 0

λ λ

λ,λ

F(λ) F(λ)
F(λ) < 0

where  are  the  three  roots  of .
Therefore, the characteristic equation (9) has at least one
positive real root, written as .  Whether the charac-
teristic equation has negative real roots can be discussed
by analyzing the extreme points  and . From the above
analyses,  are  the  maximum and  minimum points  of

,  respectively.  Therefore,  does  not  have  any
negative zero points  if  and only if .  By calcula-
tion, we have

F(λ) = w6
o

(
−p−

√
p(p+ρ)

)3
+3w6

o p
(
−p−

√
p(p+ρ)

)2
−

3w6
oρp

(
−p−

√
p(p+ρ)

)
−w6

oρ
3 =

−w6
o

(
p+

√
p(p+ρ)+ρ

) [
(−p−

√
p(p+ρ)+ρ)

2
+

ρ
(
p+

√
p(p+ρ)

)
+3p

]
.

F(λ) < 0 A2 A1Obviously, .  In  conclusion,  the  matrix 
does not have any negative eigenvalues. □

∥e(t)∥

Above we have shown the stability of the switched li-
near  system  in  (8),  i.e.,  all  subsystems  have  a  common
quadratic  Lyapunov  function.  Below  we  analyze  the
derivative  of  the  Lyapunov  function  along  (6)  to  obtain
the convergence of .

∥e(t)∥Theorem  1　 The  estimation  error  will  ulti-
mately converge to a bound in finite time.

e = Λη
Λ = diag{w−2

o ,w
−1
o ,1}, η ∈ R3

Proof　 Changing  variables  as ,  where
, (6) can be transformed into

η̇(t) = wo A′δη(t)+H′δ(t), (11)
where

A′δ =

 −3δ 1 0
−3δ2 0 1
−δ3 0 0

 ,
H′δ(t) =

 3w3
oδω(t)

3w3
oδ

2ω(t)
w3

oδ
3ω(t)− ḋ(t, x)

 .
A′δ Aδ wo = 1

P ∈ R3×3

Since  is a special case of  when , it can be
seen from Lemma 2 that there is a positive definite sym-
metric matrix , satisfying

A′T
δ P+ PAδ = −I

δ wo

where I is  an  identity  matrix.  Note  that P is  a  matrix
determined  by ,  and  independent  of .  Define  a  Lya-
punov function
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V(η) =
1
2
ηT(t)Pη(t),

which satisfies

λmin(P)∥η(t)∥2 ⩽ V(η) ⩽ λmax(P)∥η(t)∥2 (12)

λmin(P) λmax(P)
∥ · ∥

V(η)

where  and  are  the  minimum  and  maxi-
mum  eigenvalues  of P,  respectively,  represents  the
2-norm  in  this  paper.  Compute  the  derivative  of 
with respect to time t along (11), giving

V̇(η) = woη
T(t)(A′T

δ P+ PAδ)η(t)+2ηT(t)PH′T
δ (t) ⩽

−wo∥η(t)∥2+2λmax(P)∥η(t)∥∥H′

δ(t)∥ ⩽
−wo∥η(t)∥2+2λmax(P)∥η(t)∥(w3

oδ̄mω+md) (13)

δ̄ = 9δ2+9δ4+δ6where . From (12), we can get that
1

λmax(P)
V(η) ⩽ ∥η(t)∥2 ⩽ 1

λmin(P)
V(η). (14)

Let

L =
4λ4

max(P)
µ2λmin(P)

(
w2

oδ̄mω+
md

wo

)2

(15)

µ ∈ (0,1) V(η)
V(η) ⩾ L

where  is a constant. Since  is positive defi-
nite, if , then

V
1
2 (η) ⩾

2λ2
max(P)

µλ
1
2

min(P)

(
w2

oδ̄mω+
md

wo

)
. (16)

Combining (14) and (16), we derive that

V(η) ⩾
2λ2

max(P)

µλ
1
2
min(P)

(
w2

oδ̄mω+
md

wo

)
V

1
2 (η) =

2λ2
max(P)
µ

(
w2

oδ̄mω+
md

wo

)(
1

λmin(P)
V(η)

) 1
2
⩾

2λ2
max(P)
µ

(
w2

oδ̄mω+
md

wo

)
∥η(t)∥. (17)

V(η) ⩾ LThus,  from (13),  (14),  and (17),  if ,  it  can be
concluded that

V̇(η) ⩽ − wo

λmax(P)
V(η)+

woµ

λmax(P)
V(η) ⩽

− wo(1−µ)
λmax(P)

V(η). (18)

Denote

D = {η|V(η) < L}. (19)

η < DThe  inequality  (18)  shows  that  any  will  con-
verge to D after some time T, satisfying

T ⩽ T0 =
λmax(P)

wo(1−µ) ln
V0

L
, (20)

V0 = V(η(0)) V(η) T0in which  is the initial value of .  can
be obtained by the comparison theorem.

e = Λη t > T0Note  that ,  therefore,  if ,  from  (15)  and
(19), we can get that

∥e(t)∥⩽ ∥η∥⩽

√
V(η)
λmin(P)

⩽
2λ2

max(P)
µλmin(P)

(
w2

oδ̄mω+
md

wo

)
. (21)

□

mω = 0

md = 0

wo

ρ < 1 δ̄ < 1 δ = 1

Remark 2　From (21),  it  can  be  seen  that  if  there  is
no  measurement  noise,  i.e., ,  the  estimation  error
is determined by the bound on the derivative of the total
disturbance.  And  the  slower  the  total  disturbance
changes,  the  smaller  the  estimation  error.  In  particular,
the ABESO converges asymptotically when .  The
disturbance rejection performance of the observer can be
improved  by  increasing  the  bandwidth.  When  there  is
measurement  noise in  the system, the estimation error  is
affected by the measurement noise and total disturbance.
In this case, a large  is beneficial to suppress the total
disturbance, but it magnifies the noise. Therefore, a com-
promise  is  needed  to  improve  the  disturbance  rejection
performance,  which  is  similar  to  LESO.  However,  if

,  from (4)  we  can  get .  In  particular,  if ,
(21) gives the error bound for LESO. This shows that for
systems  with  measurement  noise,  the  ABESO  proposed
in this paper has higher estimation accuracy for state and
disturbance estimation. 

4. Numerical simulations
This  section  presents  a  simulation  example,  defines  five
performance  indicators,  and  analyzes  the  disturbance
immunity  performance  of  ABESO  in  transient  response
and steady-state response. The results are compared with
LESO [15] and BESO [13].

For this purpose, a second-order plant is considered:ẍ(t) =
sin(x1(t))+ sin(x2(t))

4π
+d∗(t)+u(t)

y(t) = x(t)+ω(t)
(22)

d∗(t) ω(t)where  is  the  external  disturbance,  is  the  mea-
surement noise. Let

d(t, x) =
sin(x1(t))+ sin(x2(t))

4π
+d∗(t)

y(t) r(t)
d(t, x)

ω(t)

be the total disturbance. The control objective is to make
the output  track the desired trajectory  in the pres-
ence  of  total  disturbance  and  measurement  noise

.
d∗(t)In  simulations,  we  take  as  the  compound  distur-

bance:

d∗(t) =
t

4π
+ sin(0.4t+1).

ω(t)
r(t)

d(t, x)

The measurement noise  is a Gaussian white noise,
whose  variance  is  0.001.  The  desired  trajectory  and
total disturbance  are shown in Fig. 1.
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All the simulations are performed using the same outer
loop  controller  and  initial  states.  The  outer  loop  con-
troller is a linear control law:

u(t) =
u0(t)− x̂3(t)

b0
,

u0(t) = kp(r(t)− x̂1(t))+ kd x̂2(t),

kp,kdwhere  are controller parameters, being 25 and −10,
respectively.  The  initial  states  of  the  plant  (22)  and  the
ESOs are (1, 1) and (0, 0, 0), respectively.

x ẋ
d(t, x)

tr |emax|

In order to establish a fair base for further comparison,
we first define three indicators in Table 1, which respec-
tively  represent  the  mean  error  of  state  and  and  the
total disturbance . Many numerical experiments are
carried  out  on  the  design  parameters  to  determine  the
optimal  indicator.  Then,  we  define  another  two  indica-
tors: rise time  and error peak , which represent the
time  when  the  error  converges  to  [−0.01,0.01]  and  the
maximum deviation of response, respectively.
  

Table 1    Mean error indexes

Index Expression

Jex
1
t

w t

0
|x(s)− x̂(s)|ds

Jeẋ
1
t

w t

0
|ẋ(s)− ˙̂x(s)|ds

Jed
1
t

w t

0
|d(s)− d̂(s)|ds

 

ρ = 1
li(i = 1,2,3)

wo

wo

Jex
wo

Example  1　 Performances  of  LESO.  Taking 
and  as  (5),  system  in  (3)  is  the  LESO
designed in (16). There is only one tunable parameter .
Let  change from 4 to  10,  and Table  2 lists  the  mean
error indexes. It can be seen from Table 2 that the index

 first decreases and then increases as  changes from

Jeẋ
Jed

wo = 5,6,7

wo = 5,6,7

wo = 7

4 to 10. However, the indexes  and  keep increasing.
This  means  that  for ,  the  estimation  perfor-
mances  of  LESO  are  better  in  the  mean  error  sense.
Therefore, we take  to further analyze the dis-
turbance  rejection  performance  of  LESO  in  transient
response and steady-state response. Fig. 2 shows the esti-
mation  errors  for  the  three  bandwidths,  and  the  fourth
plot  is  the trajectory of total  disturbance by LESO when

. The first  three plots locally amplify the transient
and steady-state  responses,  respectively.  Their  rise  times
and error peaks are listed in Table 3. As shown in Fig. 2
and Table  3,  the  rise  time becomes shorter  and the peak
error becomes larger with the increase of bandwidth.
 
 

Table 2     LESO mean error indexes with the bandwidth changing
from 4 to 10

Index
wo

4 5 6 7 8 9 10

Jex 1.76 1.68 1.65 1.66 1.72 1.74 1.77

Jeẋ 10.79 10.73 11.53 12.75 14.85 16.83 17.21
Jed 26.03 26.32 28.73 33.48 40.43 48.91 59.03
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Fig. 2    LESO performances in estimating compound disturbances
with measurement noise
 

 
 

Table 3    Rise time and peakings of LESO for bandwidth changing
from 5 to 7

Index
wo

5 6 7

ei ex eẋ ed ex eẋ ed ex eẋ ed

tr 0.7 0.64 2.09 0.62 0.52 1.56 0.5 0.46 1.34

|emax | 0.04 0.39 0.53 0.04 0.43 0.62 0.05 0.51 0.73

 

wo ρ

ρ = 0.7 wo

Jex

wo = 5,6,7

tr wo |emax|
ex eẋ

x̂3 d(t, x)
ρ

Example 2　Performances of BESO. The BESO in [13]
has  two  tunable  parameters:  the  bandwidth  and .
Here we choose . Still let  change from 4 to 10,
the indexes of BESO estimation effect are listed in Table 4.
The  mean  error  indicator  is  not  strictly  first-increa-
sing  and  then  decreasing.  But  considering  these  three
indicators,  when ,  the  estimation  effect  of
BESO is better. Table 5 and Fig. 3 show the detailed esti-
mation  errors  of  BESO.  From Table  5,  we  see  that  the
rise time  decreases as  increases, but  increases.
Compared  to  LESO,  the  rise  times  of  and  are
shorter  when  observed  with  BESO.  However,  since  the
gain switches widely, BESO is more sensitive to the mea-
surement noise. Especially for total disturbance, as shown
in the fourth plot of Fig. 3,  does not track  very
well.  The  gain  of  ABESO  switches  between  1  and ,
which  improves  the  disturbance  rejection  performance
and is demonstrated in the example below.
 
 

Table 4     BESO mean error indexes with the bandwidth changing
from 4 to 10

Index
wo

4 5 6 7 8 9 10

Jex 2.84 2.76 2.68 2.59 2.78 2.66 2.77

Jeẋ 19.91 23.34 25.85 27.97 34.49 35.36 39.93
Jed 39.10 53.34 70.59 89.23 119.52 142.82 171.19

 

Table 5    Rise time and peakings of BESO for bandwidth changing
from 5 to 7

Index
wo

5 6 7

ei ex eẋ ed ex eẋ ed ex eẋ ed

tr 0.64 0.57 2.22 0.51 0.47 2.22 0.47 0.39 2.22

|emax | 0.06 0.61 0.94 0.06 0.71 1.26 0.06 0.97 1.64
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Fig. 3    BESO performances in estimating compound disturbances
with measurement noise
 
Example 3　Performances of ABESO. There are two

tunable  parameters  that  are  identical  to  BESO  and  take
the  same  value. Table  6 and Table  7 are  the  ABESO
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wo = 5,6,7
wo

Jed

d(t, x)

indexes  and  estimation  errors,  respectively.  The  detailed
estimation  performances  when  are  shown  in
Fig.  4.  When  changes  from  4  to  9,  three  estimation
indexes  for  ABESO  are  the  smallest  among  the  three
ESOs. Table  8 lists  the  comparisons  of  ABESO  with
LESO and  BESO.  In Table  8,  Reduction1 represents  the
reduction  rate  of  ABESO  relative  to  LESO,  and  Reduc-
tion2 represents  the  reduction  rate  of  ABESO relative  to
BESO. Note that for the index , the reduction rates of
ABESO  relative  to  LESO  and  BESO  are  15.28% and
68.21%,  respectively.  Hence,  the  ABESO  proposed  in
this paper has higher estimation accuracy for total distur-
bance. As shown in the fourth plot of Fig. 4, the total dis-
turbance  of the plant in (22) is well tracked, in the
presence  of  measurement  noise.  Furthermore,  the  rise
time  of  ABESO  is  faster  than  that  of  LESO,  and  the
ABESO  tracks  total  disturbance  faster  than  the  BESO.
This  means  that  in  the  presence  of  measurement  noise,
ABESO can quickly track system states and disturbances,
improving  observation  performance.  However,  it  is  also
noted that ABESO has no obvious effect on peaking.
  
Table  6      ABESO mean  error  indexes  with  the  bandwidth  chang-
ing from 4 to 10

Index
wo

4 5 6 7 8 9 10

Jex 1.57 1.50 1.54 1.57 1.67 1.72 1.87

Jeẋ 8.97 8.81 10.10 11.03 14.13 15.63 21.54
Jed 23.26 22.67 25.05 28.37 38.32 46.61 63.23

 

  
Table 7    Rise time and peakings of ABESO for bandwidth chang-
ing from 5 to 7

Index
wo

5 6 7

ei ex eẋ ed ex eẋ ed ex eẋ ed

tr 0.63 0.54 2.09 0.51 0.47 1.56 0.48 0.41 1.33

|emax | 0.04 0.36 0.53 0.04 0.41 0.62 0.04 0.48 0.73
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wo = 7

Table  8      Comparison  of  performance  indexes  of  ABESO  and
LESO with 

Algorithm
Index

Jex Jeẋ Jed tr ex( ) tr eẋ( ) tr ed( )

LESO 1.66 12.75 33.48 0.5 0.46 1.34

BESO 2.59 27.97 89.23 0.47 0.39 2.22

ABESO 1.57 11.03 28.37 0.48 0.41 1.33

Reduction1/% 4.89 13.46 15.28 4 10.87 0.75
Reduction2/% 39.26 60.56 68.21 -2.13 -5.13 40.09

  

5. Conclusions
In this paper, an extended state observer that switches the
gain  between  two  values  is  proposed  to  address  distur-
bance  and  measurement  noise  in  control  systems.
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wo

woρ ρ < 1

ABESO  is  a  2-degree-of-freedom  observer  with  two
parameters  to  be  designed,  the  gain  and  the  bandwidth
scaling factor, so that the bandwidth switches between 
and . When the estimation error decreases,  can
reduce the bandwidth to suppress the noise. It can be con-
cluded  that  ABESO  outperforms  LESO  and  BESO  in
terms  of  state  tracking  and  disturbance  rejection  when
there is measurement noise. Rigorous convergence analy-
sis  and numerical  simulations  verify  the  effectiveness  of
the proposed method.

However,  ABESO  proposed  in  this  paper  has  limita-
tions. The design of extended state observer for a class of
second-order  nonlinear  uncertain  systems  is  studied.
Although the gain switching strategy can be extended to
higher-order  systems,  the  stability  analysis  of  higher-
order switching systems is difficult.  In addition, the gain
of  ABESO is  switched  according  to  the  direction  of  the
error,  and  the  amplitude  is  fine-tuned  on  the  basis  of
bandwidth.  Although  the  sensitivity  of  the  observer  to
noise  is  reduced,  the  effect  on  peaking  value  is  not  ob-
vious.  Using  saturation  nonlinearity  to  reduce  the  peak-
ing  value  may  be  a  solution.  And  we  will  investigate
ESOs  for  higher-order  systems  with  measurement  noise
in other ways.
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