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Abstract: In engineering application, there is only one adaptive
weights estimated by most of traditional early warning radars for
adaptive interference suppression in a pulse reputation interval
(PRI). Therefore, if the training samples used to calculate the
weight vector does not contain the jamming, then the jamming
cannot be removed by adaptive spatial filtering. If the weight
vector is constantly updated in the range dimension, the training
data may contain target echo signals, resulting in signal cancel-
lation effect. To cope with the situation that the training samples
are contaminated by target signal, an iterative training sample
selection method based on non-homogeneous detector (NHD) is
proposed in this paper for updating the weight vector in entire
range dimension. The principle is presented, and the validity is
proven by simulation results.
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1. Introduction

To suppress sidelobe interference, adaptive beamforming
(ABF) and sidelobe cancellation (SLC), which are
designed based on adaptive array specific criteria such as
minimum variance distortionless response (MVDR) and
maximum signal to interference plus noise ratio (SINR),
have been highly applied in early warning radars [1].
Compared to conventional non-adaptive beamformers,
the well-known MVDR beamformer has excellent sup-
pression performance against interference plus noise as
long as the covariance matrix of interference and noise is
known.

In adaptive radar applications, the covariance matrix of
interference and noise is usually estimated from the col-
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lected training samples containing only interference
[2—4]. This is often referred to as supervised training [5].
However, if there are errors between the desired steering
vector and the assumed steering vector, such as array gain-
phase error and direction of arrival (DOA) error, and if
the target signal is included in the training samples (this
is possible when there are range-spread targets or multi-
ple dense targets in the received data cube), the perfor-
mance of the MVDR beamformer decreases significantly
[6—11]. This effect is known as signal cancellation, which
is more obvious when there are limited sample effects
[12—16]. For this reason, in engineering application, train-
ing samples are usually collected from remote samples at
the end of a pulse reputation interval (PRI). The reason is
that the power of remote target echoes is very small, then
the ABF still works normally when the interference
observed is disrupted by target signal.

However, the biggest drawback of collecting training
samples from remote samples is that there may not be
jamming signal in the remote sample cells. That is to say,
if the electronic jammer does not emit interference at the
end of palse reputation interval (PRI), the ABF calcu-
lated using remote samples may not include the interfer-
ence information. Therefore, the ABF can not suppress
interference. Currently, some robust beamforming meth-
ods are developed to avoid the signal cancellation prob-
lem if the target signal is including in the training data
[17]. However, the existing robust beamforming methods
have some drawbacks. Firstly, when the input signal to
noise ratio (SNR) is high, the performance of the existing
robust beamforming methods is significantly reduced.
Secondly, the constraint parameters are often selected
empirically. Finally the computational complexity of
robust ABF methods is too high to implement in real
time.

Based on the non-homogeneous detector (NHD) [ 18-22],
a method which can calculate the weight vector in the
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whole range domain is proposed in this paper. The entire
range samples in the PRI are divided into multiple range
segments, each range segment calculates a new weight
vector separately. Moreover, to mitigate the impact of
signal cancellation, an iterative training sample selection
criterion is proposed to eliminate the range samples cor-
rupted by target echo from training data of each range
segment, therefore the remaining training samples can
serve as clear training samples to compute robust weight
vector.

This paper is organized as follows. In Section 2, some
background on the ABF are introduced. The proposed
method is presented in Section 3. Simulation results are
shown in Section 4, and conclusions are presented in Sec-
tion 5.

2. Background

Consider a M-sensor uniform linear array (ULA) with
half-wavelength spacing between adjacent sensors. The
data received at the nth snapshot can be represented as
P
x[nl = )" a(6,)s,[n]+nln] (1)
p=1
where s,[n] is the pth jamming source, r[n] is the addi-
tive noise with a power o2, a(d,) is the Mx 1 steering
vector of the pth signal, and P is the number of jamming
sources.
The well-known MVDR beamformer is the solution to
the following constrained problem:
min w'R,.w
st.wla=1 )

where [-]" denotes the Hermitian transpose, w is the
M x 1 adaptive weights, R,, is the covariance matrix of
interference plus noise, and @ is the presumed steering
vector. The weight vector [1] is given by
R la
w=——0. 3)

P
a'R_'a

In practice, R, is replaced by the sample covariance
matrix
L
R..=) x[nlx[n)" @)
n=1
where L is the number of training cells.

Theoretically, only interference and noise are needed
to estimate covariance matrix. Advanced jammers can
emit interference at a specified distance, the traditional
adaptive radars collected the training sample cells from
remote samples may not obtain the statistical information
about interference. As shown in Fig. 1, where w repre-
sents the weight vector.
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Fig. 1
the long distance sample cells

The adaptive weights for each cell under test can be
estimated. Nevertheless, if the training samples are cor-
rupted by target signal and there are steering vector errors
between the desired and assumed steering vectors simul-
taneously, MVDR beamformer suppresses the target sig-
nal as jamming, that is signal cancellation.

3. Proposed method

This section first presents the principle of the generalized
inner product (GIP) based NHD, and then, the proposed
robust ABF method based on iterative training sample
selection will be developed for early warning radar.

3.1 GIP based NHD

To cope with the problem of non-homogeneity in the
space-time adaptive processing (STAP), test statistics
proposed by NHD are commonly used to identify the out-
liers in the training data [23-27]. The GIP algorithm is
the most commonly used NHD for detecting outliers in a
heterogeneous environment [28-31]. The GIP statistics
are defined as

n= x,HR;):x, Q)

where x; is the testing sample cell.

Here, two scenarios of GIP statistics will be analyzed.
For the first scenario, the sample cell is assumed to con-
tain the target signal, x, is then given by

,
x, = as[n] +Za(9p)s,, [n] +n(n] ()
p=1

where a and s[n] are the steering vector and the received
target echo, respectively.

All received target signal, interference and noise are
assumed not correlated with each other. The covariance
matrix of interference plus noise can be represented as

R.=UAU"+0,UU" 7

where A =diag{4;,4,,---,4p} consists of the P largest
eigenvalues of R,,, U; =[u,u,,---,up] is the interfer-
ence subspace composed of the principal eigenvectors,
and the remaining eigenvectors U, = [Up,1,Upir, -+ U]
is the noise subspace.

Due to orthogonality between the signal steering vec-
tor and the noise subspace, by ignoring the influence of
noise in the received signal, the GIP statistics can be writ-
ten as
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In the second scenario, assume the sample cell only
contains jamming and noise, (5) can be rewritten as
L luta (o))
m=x"Rx, = Z |p/l—(p)|s; [n]s,[n]. (9
p=1 P

If A, is greater than o in the case of strong jamming,
we get 17; > 1,. We clearly see that there is a significant
difference in the GIP statistics of the range samples dis-
rupted by the target echo compared to the range samples
without the target echo. Thus, the contaminated samples
can be removed, and then the remaining range samples
without target echo are used to calculate the adaptive
weights that is robust against signal cancellation.

In fact, the above analysis can be assured in the ideal
case where R,, is fully known. In practice, the sample
covariance matrix is used. Thus, we presume that a small
amount of range cells are disrupted by target echo, i.e.,
the majority of range cells do not contain target echo. In
this case, the target statistics in the sample covariance
matrix can be ignored, so that the GIP based NHD can
work well.

3.2 Iterative training sample selection based on
kurtosis of GIP statistics

In this section, a GIP based iterative method is proposed
to iteratively eliminates contaminated range cells in the
training range cells.

Let us define that

nln] = x"[n]R ;! x[n] (10)

is the GIP statistics of the training sample -cells
x[n](n=1,2,---,N).

In [18], it has been proven that if the probability den-
sity function (PDF) of x[n] satisfies a Gaussian distribu-
tion, the PDF of GIP statistics in (10) will satisfy a Chi-
squared distribution with the M complex degree of free-
dom .

In probability theory and statistics, the kurtosis of the
Chi-squared distribution with M degrees of freedom has
the following key property:

12
k=3+— 11
> (a1
where & is the kurtosis of a distribution. As degree of
freedom grows larger the graph of the Chi-square distri-
bution becomes more like the graph of a normal distribu-
tion, and then, the kurtosis of the Chi-squared distribu-

tion approaches three.
Obviously, kurtosis can be used to measure how outlier-
prone a distribution is. The kurtosis of the Chi-square dis-

. 12 C . .
tribution is 3+ u Distributions that are more outlier-

prone than the Chi-square distribution have kurtosis

12
greater than 3 + WV Based on this key property of a Chi-

square distribution, an iterative training sample selection
method is proposed by eliminating the corrupted training
cells iteratively. The basic concept of the proposed itera-
tive training sample selection method is to compute the
kurtosis of the GIP statistics in (10) firstly. If the kurtosis
of the GIP statistics differs significantly from the theore-
tical kurtosis value of (11), then the training sample cell
which has the maximum value of GIP statistics will be
treated as corrupted sample cell and removed from the
training cells resulting in a new training data that con-
sists of the N —1 remaining sample cells. Otherwise, the
existing training data will be retained for estimating the
covariance matrix. The second iteration excises in simi-
lar fashion a sample cell from the remaining N -1 sam-
ples where the sample covariance matrix is calculated
from these samples. This method is reiterated until the
kurtosis of GIP statistics of the remaining samples

12 . .
approaches 3 + v We can see that there is a systematic

way to determine the stop criterion of the proposed itera-
tive selection method by using the key property which the
GIP statistics obey the Chi-square distribution, the kurto-

is of which is 3+ —.
sis of which is i

3.3 Description of the proposed adaptive
radar beamforming

The basic concept of the proposed method is to identify
contaminated sample cells in the training cells using the
above GIP based iterative training selection method
before calculating the adaptive weights of the ABF beam-
formers. The pulse width (PW) emitted by the early
warning radars is very long, ranging from hundreds of
microseconds to tens of milliseconds, in order to obtain
sufficient power to achieve remote detection perfor-
mance. Both the noise jamming and repeater jamming are
usually regarded as continuous wave if the PW is long,
thereby easily collecting interference signal for ABF.
Thus traditional radars usually actualize the SLC or ABF
before pulse compression. Due to long PW emitted by
radars, many range samples may be corrupted by target
echo, meaning that a large amount of training range sam-
ples will be contaminated, leading to NHD failure. Fur-
thermore, if a large number of contaminated training
range cells are removed, the remaining training range
cells are insufficient to estimate a good sample covari-
ance matrix, resulting in severe performance reduction of
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the ABF. After pulse compression, the target signal is
clearly sparse in space and range domain, which can cope
with the risk of applying the proposed GIP based method
before pulse compression. Thus, after pulse compression,
the proposed method then performs iterative training
sample selection and ABF processing.

Accordingly, the proposed iterative training sample
selection based ABF using GIP based NHD for early
warning radar application is summarized as follows:

Step 1  After pulse compression, the entire received
range samples of a PRI is divided into several range seg-
ments.

Step 2 Estimate a temporary interference plus noise
covariance matrix by using all range samples within a
range segment.

Step 3 Use the estimated temporary covariance matrix
to caculate the GIP statistics of range samples.

Step 4 Use the method mentioned in Subsection 3.2
to remove the range samples with abnormal GIP statis-
tics from training samples, and then compute a new inter-
ference plus noise covariance matrix using the remaining
sample cells for the considered range segment.

StepS Calculate adaptive weights using the new inter-
ference plus noise covariance matrix for ABF in the con-
sidered range segment.

Step 6 After ABF, all potential targets can be detect-
ed using a constant false alarm rate (CFAR) detector.

Step 7 Repeat the above steps for the next range seg-
ment.

It should be noted that it is not possible to use GIP
based NHD to identify all samples with targets. We only
hope to identify range samples polluted by high power
target echo. Then, after ABF, the CFAR detector will be
utilized to detect the potential targets.

The proposed method calculates a new adaptive
weights for each range segment. Fig. 2 shows the pro-
posed ABF method based on the principle of segmenta-
tion processing. In other words, unlike the ABF of tradi-
tional radars, the adaptive weights of the proposed
method are calculated multiple times over the entire PRI.
This approach still works normally when there is a signal
cancellation problem. In addition, the adaptive weight
vector of a segment is calculated from the range samples
within this segment in order to better suppress interfer-
ence, avoiding the adverse situation where interference is
not included in the training data.
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Fig.2 Proposed segmentation processing based beamforming

4. Simulations

In this section, the performance of the proposed robust
ABF method is studied by simulations. A ULA with
M =10 sensors and half-wavelength spacing between
adjacent sensors is considered. An interference signal
with interference to noise ratio (INR) of 40 dB incident
on the array from the angle of —40°. The DOA of the tar-
get of interest is at 0°, and the array points toward the
direction of target. Assume that the considered range seg-
ment has 100 sample cells, each containing interference.
Two sample data scenarios will be considered for the
range segment. In the first scenario, both the 10th and
40th samples of the considered range segment are dis-
rupted by target echo. The second scenario is that there is
clear sample data without target echo.

4.1 Effectiveness of GIP based NHD

In this example, the performance of GIP based NHD for
contaminated samples detection is considered. The SNR
of target signal for the 10th and 40th sample cells is 20 dB.
The GIP statistics associated with two scenarios of train-
ing samples is shown in Fig. 3. We can clearly see that
the difference in the GIP statistics between the two sce-
narios of range samples is significant. From the GIP
statistics of corrupted training samples, range samples
corrupted by target signal are easily detected. Therefore,
prior to calculating adaptive weights for ABF, the sam-
ples corrupted by target echo can be removed from the
training samples.
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—>—: Training data corrupted by target signal.

Fig.3 GIP statistics corresponding to two sample scenarios

4.2 ABF performance

In the second simulation, we demonstrate the perfor-
mance of the proposed robust ABF and the two scenarios
of traditional ABF using the corrupted training samples
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and clear training samples to estimate the covariance
matrix, respectively. The simulation parameters are the
same as the first example.

Fig. 4 shows the resultant beampattern of the proposed
robust ABF. It is obvious that both the proposed robust
ABF and the traditional ABF with clear samples can
achieve good performance. We also clearly see that the
traditional ABF using corrupted samples cannot provide a
reasonable results, and the sidelobe level is very high.
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Fig. 4 Beampattern of the considered ABF

Fig. 5 shows the beamforming output. The target
detection performance of the 10th range cell using cell
average CFAR detector after ABF processing is shown in
Fig. 6. It can be clearly seen that the proposed robust
ABEF has similar performance to the traditional target free
ABF, and is much better than traditional ABF using cor-
rupted samples. The output SINR of the traditional ABF
using corrupted samples decreases severely, resulting in a
decrease in detectability.
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Fig. 5 Output of the beamformers
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Fig. 6 Detection probability versus SNR

4.3 Effect of signals with high SNR on the detection
performance of signals with low SNR

In the third example, we consider the effect of signals
with high SNR on the detection performance of low SNR
signals. We consider the 40th range cell contain a large
target signal of SNR=30 dB. Fig. 7 shows the ABF out-
put when the SNR of target signal of the 10th sample cell
is 20 dB. The target detection performance of the 10th
range cell using cell average CFAR detector after ABF
processing is shown in Fig. 8. Obviously, for traditional
ABF, the target signal with high SNR in the training
range samples deteriorates severely the detection perfor-
mance of the target signal with low SNR.
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—o—: Traditional ABF without target signal;
—>—: Traditional ABF corrupted by target signal;
—a—: Proposed robust ABF.

Fig. 7 Output of the beamformers of the third example

Like many existing radars, if the weight vector is com-
puted using remote sample cells at the end of PRI, the
SLC or ABF cannot adapt to the complex and change-
able interference environment. If the weight vector is
updating in the whole range without considering the case
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that the target signal contaminates training data, signal
cancellation will reduce the target detection. However,
the results shown in Fig. 7 and Fig. 8 clearly show that
the robustness of the ABF can be guaranteed using the
proposed GIP based method to remove corrupted range
samples from training samples when calculating and
updating adaptive weights in the entire range domain.
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Fig. 8 Detection probability of the third example

5. Conclusions

Based on the practical need to improve interference sup-
pression of early warning radar, a robust ABF method for
calculating and updating the adaptive weights over the
entire range domain has been proposed, which is differ-
ent from traditional ABF calculating the weight vector at
long distance. The range samples of a PRI are divided
into multiple segments, each with its own weight vector,
and the samples in that range segment are used for calcu-
lation. To mitigate the signal cancellation problem, the
proposed method utilizes statistical properties of GIP kur-
tosis to identify the contaminated samples, and then cal-
culates the weight vector using the remaining range sam-
ples. Simulation results demonstrate the validity of the
proposed method. In future research, we will conduct
analysis based on real data to further confirm the effec-
tiveness of the proposed method.
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