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Abstract: The rapid growth of mobile applications, the popula-
rity of the Android system and its openness have attracted many
hackers and even criminals, who are creating lots of Android
malware. However, the current methods of Android malware
detection need a lot of time in the feature engineering phase.
Furthermore, these models have the defects of low detection
rate, high complexity, and poor practicability, etc. We analyze
the Android malware samples, and the distribution of malware
and benign software in application programming interface (API)
calls, permissions, and other attributes. We classify the software’s
threat levels based on the correlation of features. Then, we pro-
pose deep neural networks and convolutional neural networks
with ensemble learning (DCEL), a new classifier fusion model for
Android malware detection. First, DCEL preprocesses the mal-
ware data to remove redundant data, and converts the one-
dimensional data into a two-dimensional gray image. Then, the
ensemble learning approach is used to combine the deep neural
network with the convolutional neural network, and the final clas-
sification results are obtained by voting on the prediction of each
single classifier. Experiments based on the Drebin and
Malgenome datasets show that compared with current state-of-
art models, the proposed DCEL has a higher detection rate,
higher recall rate, and lower computational cost.

Keywords: Android malware detection, deep learning, ensem-
ble learning, model fusion.
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1. Introduction

With the rapid development and popularization of mobile
Internet [1], smartphones and other mobile smart termi-
nals [2] have become indispensable tools in people’s
daily works and lives. According to the Internet data cen-
ter survey of International Data Corporation (IDC), as of
the third quarter of 2020, the market share of Android
operating system is 85.0% of the total mobile operating
system [3]. In 2018, Wang et al. [4] implemented a large-
scale analysis of six million Apps in 16 Chinese Android
App markets and the Google Play market. Approxi-
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mately 12.30% of Apps in Chinese Android App markets
were reported as malicious Apps based on at least 10 anti-
virus engines. In 2019, the 360 Security Brain inter-
cepted about 1.809 million new malicious Apps on
mobile terminals and intercepted about 5000 new mobile
malicious programs every day [5]. In April 2020, the sur-
vey of Atlas virtual private network (VPN)’s global mal-
ware infections in the past 30 days showed that about 404
million pieces of malware has been found worldwide [6],
which brings huge security risks to Android mobile
devices, including tariff consumption, privacy stealing,
and remote control. Tariff consumption is mainly for the
tariffs of mobile phone users, forcing customized ser-
vices and profiting from them. Privacy stealing mainly
implements collecting users’ private text messages, add-
ress books, call records, social data, etc. Remote control
mainly uses the hypertext transfer protocol (HTTP) to
receive control commands from command-and-control
(C&C) server to realize remoting manipulation [7].
Android malware detection methods are mainly
divided into two categories, including static detection and
dynamic detection [8]. With the static detection method,
there is no need to run the application [9]. However, the
static detection method has two main shortcomings. On
the one hand, the static detection method is easily
affected by obfuscation techniques. For example, renam-
ing package names, method names, or reordering instance
variables and local codes, may cause data obfuscation
[10], and moving method call location may cause control
flow obfuscation without changing semantics [11]. On
the other hand, injection of non-Java code, network activ-
ity, and runtime modification of objects (such as reflec-
tion) are not within the scope of static analysis because
they are only in the program runtime visible. Unlike static
analysis that directly parses Android application package
(APK) files, dynamic analysis requires executing applica-
tions, observing and collecting runtime data. Dynamic
detection needs to execute the application to obtain oper-
ating information, which can capture the runtime state of
the application, but the dynamic detection technology has
a large cost in time and resource consumption, and the
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extracted feature information is not stable, and the com-
plexity of dynamic analysis of the application is high.

Today’s malware detection methods have the follow-
ing three main challenges:

(i) Diversified forms of malicious code. Malicious
code creators continuously modify the source code of
malicious software to create many types of variants. The
increasingly mature obfuscation technology also makes
the obfuscated malicious code change greatly while
retaining the normal execution of malicious behaviors,
which makes the detection of malware more and more
difficult [12].

(i1) The number of samples to be analyzed is large. In
reality, the safety inspection system is faced with thou-
sands of samples to be analyzed every day, and analy-
zing each sample in detail is time-consuming and labo-
rious work. In recent years, there has also been a mal-
ware factory, which automatically morphs malware so
that it can generate numerous malware variants, which
has led to a dramatic increase in malware.

(iii) It is difficult to label sample data. Most malware
detection methods build classifiers based on a large num-
ber of labeled sample data to classify unlabeled samples.
However, it is a very time-consuming and laborious task
to obtain a large number of samples with labeled informa-
tion. Moreover, in actual situations, some newly inter-
cepted malicious samples belong to unknown families. At
this time, the family identification method based on
supervised learning cannot handle this type of sample.

In response to the above-mentioned main challenges,
effective malware detection techniques need to meet three
points, namely, high detection rate, low runtime over-
head, and a small number of labeled samples. However,
the existing methods can only meet one or two of them.
According to the different application scenarios and tech-
nical means, we divide the existing malware detection
methods into three categories:

(i) Based on the signature method: the detection pur-
pose is achieved by matching the signature of the soft-
ware to be detected with the signature of the existing mal-
ware, so its runtime overhead is small, and it can provide
certain evidence (the detected malicious signature) to
explain. However, this kind of method is easy to be
bypassed by deformed malicious code, so it cannot effec-
tively deal with the first challenge.

(ii)) Behavior-based method: a customized detection
method is proposed for specific malicious behaviors,
which can effectively explain the detected malware
behavior. However, they often use high-overhead data
flow analysis, natural language processing and other tech-
nologies, so they cannot handle large-scale sample sets
and cannot effectively deal with the second challenge.

(iii) Based on the machine learning method: through
feature engineering, the program is converted into fea-
ture vectors for representation, and then a classifier is

constructed to detect and classify malware quickly and
accurately. This kind of method can deal with different
malicious code variants to a certain extent, and it requires
less time overhead. However, this type of method
requires a large number of labeled samples for learning,
and a small number of samples will lead to low detection
accuracy and cannot effectively meet the third challenge.

Therefore, in this article, we propose a new classifier
fusion mechanism deep neural networks and convolu-
tional neural networks with ensemble learning (DCEL)
based on deep learning, which uses model fusion meth-
ods to improve the predictive ability of deep learning
algorithms. In order to prove the effectiveness of the
method, we use the dataset provided by Yerima et al.
[13], which is based on the Drebin [14] and Malgenome
[15] datasets to optimize the original data. Through
experiments, we can observe some application progra-
ming interface (API) attributes frequently used by mal-
ware. The fusion of deep learning methods can effec-
tively improve the classification accuracy of the model.
The contributions of this article are the followings:

(i) We analyze and explore the attributes of the mal-
ware dataset. Due to the existing decision-making results,
the security analyst cannot provide sufficient effective
information to explain the malicious behavior of the sam-
ple. Therefore, we use the chi-square test feature selec-
tion algorithm to rank the static attributes of the malware
dataset, explore the proportion of the features with the
highest ranking in the malware samples, and classify the
software threat level. According to the ranking results,
the top 20% of the attributes are classified as high risk A,
20% to 40% are classified as risk B, 40% to 60% are clas-
sified as mild risk, and 60% to 80% are classified as
grade D normal, the remaining features are classified as E-
level security. The experimental results show that the API
call signature category features used by high-risk soft-
ware account for a relatively high proportion, while the
API call signature category features used by ordinary soft-
ware account for a low proportion, and the Manifest Per-
mission category feature accounts for a high proportion.

(i) A new classifier fusion classification mechanism
based on deep learning is proposed. This mechanism first
performs data preprocessing on the original data, removes
some redundant data, converts the one-dimensional data
into a two-dimensional gray image, and uses the convolu-
tional neural network (CNN) algorithm [16] to train the
gray image to generate model 1. At the same time, diffe-
rent levels of deep neural networks (DNN) [17] are used
to train one-dimensional data to generate model 2 and
model 3. Then use the ensemble learning method based
on the majority voting mechanism to fuse all the models
to get the final classifier.

(iii) Applying DCEL to Android malware detection,
the model does not need a large number of samples or
require actual application running with static detection.
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The model has high detection accuracy and recall rate,
and low computational cost. Compared with traditional
machine learning fusion models, this model eliminates
the time and computational costs of designing the feature
selection method, and can quickly analyze thousands of
Android software daily. It perfectly solves the three major
challenges of high detection rate, low runtime cost, and
small number of labeled samples required.

The rest of this article is organized as follows: Section 2
briefly discusses related work. Section 3 introduces the
DCEL mechanism. Section 4 presents experimental setup
and result analysis. Section 5 provides conclusions and
future work.

2. Related work

In recent years, the rapid development of mobile mal-
ware detection technology has quickly become a hot issue
in the academic software security field, and a large num-
ber of excellent related research results have been pub-
lished in international conferences and journals. In this
part, we divide these methods into three categories
according to the different feature extraction methods:
static analysis, dynamic analysis, and hybrid analysis.

Firstly, static analysis disassembles the source code of
Android application software and then analyzes the
source code to identify whether the application is mali-
cious software. The static analysis mainly includes signa-
ture-based, permission-based, and Dalvik virtual machine
bytecode detection methods. Signature-based detection
methods [18] extract specific semantic modules from the
malware dataset and then generate the signature for mal-
ware detection. The signatures of all the extracted mal-
ware are stored to generate a malware signature database.
However, this signature-based detection method is easily
limited by code obfuscation, encryption, etc. It can only
detect discovered malware, but not new variants of mal-
ware or 0-day malware, and it requires long-term and
timely updates to the malware dataset to maintain detec-
tion accuracy. Zheng et al. [19] proposed Droid Analy-
tics, which extracts information and generates signatures
from three different code granularities of the software.
However, many functional methods are used not only by
malware but also by benign methods, which leads to a
relatively high false alarm rate.

The permission-based detection method [20] is based
on the analysis of the AndroidManifest.xml file. Sato et
al. [21] proposed a lightweight malware detection mecha-
nism. It only needs to analyze the AndroidManifest.xml
file, and extract the permission application, classification,
priority, process name and other information to analyze
whether an Android application has malicious behavior.
However, their detection accuracy is low, the false alarm
rate is high, and it takes a lot of time and expense to cal-
culate the judgment threshold.

The bytecode detection method based on the Dalvik

virtual machine [22] is to detect dangerous operations
performed by malware by analyzing the bytecode control
flow and data flow. Zhang et al. [23] proposed a graph-
based Dalvik bytecode analysis method, using graph theo-
ry and information theory to implement a lightweight
Android malware detection framework. This method
extracts the features of malware by topological feature
extraction and the disadvantage is that it takes a lot of
time to generate the topological graph. The topological
feature update of malicious samples is the biggest bottle-
neck of this method, which requires high-performance
support.

Secondly, dynamic analysis is the detection of soft-
ware during software execution for code obfuscation and
malicious software after code encryption. Dynamic analy-
sis is mainly based on abnormal dynamic detection.
Anomaly-based dynamic analysis detection is a com-
monly used detection technique in Android malware
detection. Burguera et al. [24] proposed a method called
CrowDroid to dynamically detect the behavior of
Android software. CrowDroid records the system call
information generated by the Android application soft-
ware, and generates a log file, then sends it to the server.
Finally, the server classifies the detected software accord-
ing to log files. However, since this method requires the
in-depth analysis of the software, a lot of resource sup-
port is needed. At the same time, when benign software
generates too many system calls, this method is easy to
misjudge the software as malicious software.

Thirdly, due to the strong recognition and classifica-
tion capabilities of machine learning, researchers often
combine static and dynamic analysis and machine lear-
ning for Android malware detection. Singh et al. [25]
used a potential semantic indexing technology to con-
struct a low-dimensional representation of the opcode
while retaining the semantic knowledge originally con-
tained in the operator, thereby building a lightweight
detection system. Roy et al. [26] performed static analy-
sis to map each API to certain functions and then aggre-
gated these functions to find out the frequency of each
function. This method has better robustness, scalability,
and higher receiver operating characteristic (ROC)-area
under curve (AUC) value. The model proposed by Unver
et al. [27] is based on converting some files in the
Android application source into grayscale images. The
method extracts feature from the images, and is used to
train multiple machine learning classifiers. The method
has a high classification accuracy of 98.75% and a typi-
cal computation time of no more than 0.018 s per sample.
Copty et al. [28] achieved high accuracy by exploring the
path in the system that only approximated behavior in the
real system, aggregating features from multiple paths, and
using a funnel-like machine learning classifier configura-
tion. However, since tens of thousands of samples are
processed every day, and each percentage point is very
important, it takes a lot of time for model training and
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high computational overhead. Machiry et al. [29] pro-
posed a model LoopMC. The model locates loops in the
application without the need for source code, extracts a
set of tags for each loop, and then treats each unique
combination of these tags as different features to con-
struct a feature space and perform classification. How-
ever, the system cannot use bytecode encryption or
dynamic code loading and is easily evaded by simple
malware without loops. Kim et al. [30] used various func-
tions to reflect the attributes of Android applications from
various aspects, used similarity-based feature extraction
methods to refine these features, and proposed a multi-
modal deep learning method as a malware detection
model. However, this method designs multiple models
and outputs the results, which leads to high model com-
plexity and large computational overhead.

3. Detection mechanism

Android malware detection methods are mainly divided
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into static detection and dynamic detection. In practical
applications, there are many applications on the Android
application market every day. The dynamic detection
technology has a large cost in time and resource con-
sumption, and the extracted feature information is unsta-
ble. The dynamic analysis of the application is compli-
cated. The malware program on the platform was
detected in a short time. The static detection technology
balances efficiency and cost well, and obtains a higher
detection accuracy at the cost of lower time and re-
sources, which is suitable for the needs of the Android app-
lication market. Therefore, this article finally chooses static
detection technology for Android malware detection.

3.1 DCEL architecture

Aiming at the problem of simply using sensitive API fea-
tures to cause normal software to be falsely detected, we
propose DCEL based on deep learning. Fig. 1 is a frame-
work diagram of DCEL.
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DCEL mainly includes the following two stages:

In the preprocessing stage, the APK file (Android
application package) is first decompiled through the dis-
assembly tool to obtain the static characteristics of the
malware we need. If it is included in our pre-defined sta-
tic feature set, we will use the static feature correspond-
ing to the sample. The feature is recorded as 1, otherwise,
it is recorded as 0. After analyzing a large number of
APKs, we can get an initial malware static characteristic
dataset, and mark the label of malware as 0 and the label
of benign software as 1. Then there are four steps includ-
ing data cleaning, data mapping and dataset segmenta-
tion, feature selection, and feature map construction.

In the classification stage, we use a deep learning
fusion mechanism to classify malware. First, the pro-
cessed dataset is directly trained using different levels of
DNN to obtain two DNN models. On the other hand, it is
converted into a two-dimensional gray image to con-
struct an API feature map, and then a CNN classification
model is used to train the API feature map. Finally, using
the ensemble learning method, each classifier votes for a
certain category, and the category with the majority of
votes is used as the overall output of the ensemble model.

The next two parts will respectively elaborate on the
specific scheme of data preprocessing and the classifica-
tion model of the classification stage.

3.2 Data preprocessing

3.2.1 Raw data acquisition

The raw data acquisition is the first step in the analysis of
the Android application software APK file. By decom-
pressing the APK, you can get the AndroidManifest.xml
file and the classes.dex file, and decode, decompile and
disassemble the two types of files respectively. Convert it
into a file type that is more readable and easier to under-
stand. Here we use APKTool to decode the AndroidMan-
ifest.xml file and decompile the classes.dex file. Feature
extraction from the converted file includes four types of
feature information, including permission feature, method
API feature, intention component feature, and Android
system signature instruction feature, as shown in Table 1.
These features are existential variables, either exist or do
not exist, and you can intuitively confirm whether they
appear in the Android application software. Then we
combine these discrete features into the original data fea-
ture vector set we need.

Table 1 Some static characteristics after APK file characteristics

Static characteristics

Category

SEND_SMS
READ PHONE STATE
Ljava.net. URLDecoder
Android.content.pm.Signature
Android.intent.action. PACKAGE_REPLACED
Android.intent.action.SEND _MULTIPLE
remount

/system/app

Manifest permission
Manifest permission
API call signature
API call signature
Intent
Intent
Commands signature

Commands signature

3.2.2 Data cleaning

Generally speaking, data cleaning is the process of
streamlining the database to remove duplicate records and
converting the remaining part into a standard acceptable
format. The data cleaning standard model is to input data
to the data cleaning processor, “clean up” the data thro-
ugh a series of steps and then output the cleaned data in
the desired format. Data cleaning deals with data loss, out-
of-bounds value, inconsistent code, duplicate data and
other issues from the aspects of data accuracy, complete-
ness, consistency, uniqueness, timeliness, and wvali-
dity.

Data cleaning is generally for specific applications, so

it is difficult to summarize unified methods and steps, but
corresponding data cleaning methods can be given
according to different data.

(1) Methods to solve incomplete data (i.e., missing va-
lues)

In most cases, missing values must be filled in manua-
lly (i.e., manually cleaned up). Of course, some missing
values can be derived from this data source or other data
sources, which can replace missing values with average,
maximum, minimum or more complex probability esti-
mates to achieve the purpose of cleaning up.

(i1) Error value detection and solutions

Use statistical analysis methods to identify possible



168 Journal of Systems Engineering and Electronics Vol. 35, No. 1, February 2024

error values or outliers, such as deviation analysis, iden-
tify values that do not comply with distribution or regres-
sion equations, or use simple rule libraries (common
sense rules, business specific rules, etc.) to check data
values, or use constraints between different attributes,
external data to detect and clean up data.

(iii) Methods of detecting and eliminating duplicate
records

Records with the same attribute value in the data-
base are considered to be duplicate records. The re-
cords are checked for equality by judging whether the
attribute values between the records are equal. The equal
records are merged into one record (i.e., merge/clear).
Combining/clearing is the basic method to eliminate
weight.

3.2.3 Data mapping and dataset segmentation

After the above steps, the data in the standard format is
obtained. Since the label column in the sample data is
composed of letters, in order to eliminate its influence on
the algorithm, we need to convert the letters into numeri-
cal values. The class tag consists of two types of data,
namely S and B, where B stands for Benign and S stands
for Malware. We use 0 and 1 for replacement, which
makes these unavailable features available. Finally, we
randomly divide the data into the training set and test set
according to 0.8:0.2, and then randomly use 0.2 ratio of
data in the training set as the verification set.

3.2.4 Feature selection

Feature selection is an important process in data prepro-
cessing, which refers to the process of selecting relevant
features from a given dataset. By screening important fea-
ture subsets, data dimensions are reduced, the time for
classifier modeling is reduced, and the accuracy of intru-
sion detection is improved. In fact, when the number of
features exceeds a certain limit, the results of data model-
ing will deteriorate. Some features in the dataset do not
contain or contain very little information, which has little
impact on modeling.

Chi-square test is a commonly used hypothesis testing
method based on y? distribution. Its null hypothesis H is:
there is no difference between the observed frequency
and the expected frequency. The basic idea of the test is:
first assume that H, is established, and calculate the x?
value based on this premise, which represents the degree
of deviation between the observed value and the theoreti-
cal value. According to the y? distribution and the degree
of freedom, the probability P of obtaining the current

statistics and more extreme cases can be determined
when the H, hypothesis is established. If the current
statistic is greater than the P value, it indicates that the
observed value deviates too much from the theoretical
value. The invalid hypothesis should be rejected, indicat-
ing that there is a significant difference between the com-
parative data; otherwise, the invalid hypothesis cannot be
rejected, and the actual situation represented by the sam-
ple cannot be considered as the theoretical assumptions
are different.

The idea of chi-square test is to judge the correct rate
of the theoretical value through the deviation between the
observed value and the theoretical value. The basic for-
mula of the chi-square test, which is the calculation for-
mula of x?, is the deviation between the observed value
and the theoretical value:

k

(A-E) (A—E) < (Ai—np)
XZ:ZTzz E; :; np; (1)

i=1

where A4 represents the observation frequency (observa-
tion value), E represents the expected frequency (theoreti-
cal value) calculated based on Hy, and & is the number of
observation values. A4; is the observation frequency at
level i, E;is the expected frequency at level 7, n is the total
frequency, and p; is the expected frequency at level i. The
expected frequency E; of level i is equal to np;, k is the
number of cells, i=1, 2, 3, ---, k.

When the chi-square test is applied to feature selection,
we do not need to know the degrees of freedom, do not
know the chi-square distribution, we just need to sort
according to the calculated xy?. When the degree of free-
dom is 1, the larger the chi-square value and the smaller
the probability, the more meaningful the corresponding
feature, so the chi-square test is used for feature extrac-
tion. Generally, in a four-grid table, if the value in the
first row and the first column is expressed as a, the value
in the second row and the second column is expressed as
b, the value in the third row and the third column is
expressed as ¢, and the value in the fourth row
and the fourth column is expressed as d. The chi-
square test formula in the four-grid table can be trans-
formed into

, W (A-EY n(ad — be)?
X=), E T @ibaiobracry P

In the classification algorithm for malware detection,
features are usually preceded by a lot of redundancy and
high correlation. These features will not only slow down
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the classification process and increase the computational
overhead, but also prevent the classifier from making
accurate decisions. This method fully considers the corre-
lation between features and classes in Android malware
data, as well as each feature. It can quickly remove a
large number of irrelevant features, and the selected fea-
tures will greatly reduce the dimensions of the data with-
out affecting the classification accuracy.

At the same time, we use the features that are most re-
levant to the classification of malware to classify soft-
ware security threat levels. According to the ranking
results, the top 20% of the attributes are classified as high
risk A, 20% to 40% are classified as risk B, 40% to 60%
are classified as risk C, and 60% to 80% are classified as
risk D, the remaining features are classified as risk E, as
shown in Table 2.

Table 2 Malware threat level table

Malware threat level ~— Threat level

Related attribute

High risk A Transact,onServiceConnected,bindService, SEND SMS,READ PHONE STATE,:--
Danger B WRITE_HISTORY_ BOOKMARKS,TelephonyManager.getSubscriberld, WRITE _SYNC_SETTINGS,:--
Slight danger C READ_CALL_LOG,Android.intent.action. PACKAGE_ADDED,ACCESS NETWORK STATE,:--
Ordinary D TelephonyManager.getNetworkOperator,Android.intent.action. SENDTO,SET _ALARM,---
Safety E ACCESS_SURFACE_FLINGER,Android.intent.action.ACTION_POWER_CONNECTED, -

3.2.5 Feature map structure

The convolutional neural network has unique advantages
in speech recognition and image processing with its
special structure of sharing local weights. It can directly
use image data as input, not only without manual
image preprocessing and additional feature extraction and
other complex operations, and with its unique fine-
grained feature extraction method, the processing of the
image has reached almost the level of manpower. The
feature that images of multi-dimensional input vectors
can also be directly input to the network avoids the com-
plexity of data reconstruction in the process of feature
extraction and classification. Therefore, we convert the
one-dimensional static attribute data into a binary gray
image, that is, a black and white image: each pixel has
only two possible 0 and 1, where O represents black,
1 represents white, and the data type is usually 1 binary
bit.

We use the feature selection based on chi-square test to
obtain 196 static attributes from the defined 215 static
attributes, and then use tensor deformation operation to
convert them into binary grayscale images with a width
of 14 and a height of 14. The tensor here is the genera-
lization of the matrix to any dimension, and tensor defor-
mation refers to changing the rows and columns of the
tensor to get the desired shape. The total number of ele-
ments of the deformed tensor is the same as the initial
tensor. That is, the 1x196 matrix is converted into a

14x14 binary image.
3.3 Classification model

In recent years, CNN and DNN structures have been
widely used in various fields. On the basis of ob-
taining complete software information to be detected and
a large number of features through static analysis, using
the deep structural features of the nonlinear mapping
between DNN and CNN and the corresponding learning
algorithm can automatically mine high-relevance deep
features, avoiding large the dilemma of manually screen-
ing the behavioral characteristics of big data in the data
environment, while improving the accuracy of applica-
tion software detection. Then, the integrated learning
fusion technology is used to effectively integrate multi-
ple models, so that the model can simultaneously use
multiple different types of static features to describe the
various attributes of the Android application software in
an all-round way. Besides, the special network structure
can make the features more effective. Here we use
ensemble learning to integrate several models. Fig. 2 is a
diagram of the DCEL classification architecture.

CNN is composed of neurons with learnable weights
and biases, including three parts: convolutional layer,
pooling layer, and fully connected layer. CNN-based mal-
ware detection is shown in Fig. 3. Usually, there are mul-
tiple convolutional layers in a neural network, and multi-
ple convolutional layers sequentially perform convolu-
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tion operations on the image to extract information such
as the edge and shape of the image. The pooling layer is
responsible for down-sampling the data generated by the
convolutional layer (that is, reducing the spatial resolu-
tion of the input layer) to reduce processing time and
enable computing resources to handle larger data scales.
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The fully connected layer classifies the output generated
by the convolutional layer and the pooling layer. Each
neuron in this layer is connected to each neuron in the
previous layer. The fully connected layer can integrate
the local information that is distinguished by categories in
the convolutional layer or the pooling layer.
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Fig. 2 DCEL classification module
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Fig. 3 Malware detection model based on CNN

In CNN, the weight update is based on the backpropa-
gation algorithm. CNN is essentially an input-to-output
mapping. It can learn a large number of mapping relation-
ships between input and output without requiring any pre-
cise mathematical expressions between input and output.
As long as the convolutional network is trained with the
known pattern, the network has the ability to map
between input and output pairs. The convolutional net-
work performs supervised training, so its sample set is
composed of vector pairs of the form: input vector and

ideal output vector. All these vector pairs should be
derived from the actual “running” structure of the net-
work to simulate the system, and they can be col-
lected from the actual running system. Before starting
training, all weights should be initialized with some dif-
ferent random numbers. “Small random number” is used
to ensure that the network will not enter a saturated state
due to excessive weights, resulting in training failure;
“different” is used to ensure that the network can learn
normally.
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DNN can be understood as a neural network with many
hidden layers. Divided by the location of different layers
from DNN, the neural network layer inside DNN can be
divided into three categories, input layer, hidden layer,
and output layer [31], as shown in Fig. 4. Generally
speaking, the first layer is the input layer, and the last
layer is the output. Layers and the number of layers in the
middle are all hidden layers. The layers are fully con-
nected, that is, any neuron in the ith layer must be con-
nected to any neuron in the (i+1)th layer. A linear rela-
tionship is learned between the output and the input, and

the intermediate output result z = Zw,-xi +b is obtained
. . . sl .
where w; is the linear relationship coefficient, b is the off-

set .Then we need to find the appropriate linear coeffi-
cient matrix w and offset vector b corresponding to all
hidden layers and output layers, so that the output results
calculated by all input training samples are as close to or
as close as possible to the sample output. Use a suitable
loss function to measure the output loss of the training
sample, and then optimize the loss function to find the
minimized extreme value, a series of linear coefficient
matrix W, offset vector b, which is our result. In DNN,
the most common process of optimizing the extremum of
the loss function is generally completed step by step
through the gradient descent method, and it can also be
other iterative methods such as the Newton method and
the quasi-Newton method. Since the gradient descent
method has three variants, batch, mini-Batch, and ran-
dom, the difference is only in the selection of training
samples during iteration.

Hidden
layer 1

Hidden
layer 2

Hidden

Input
P layer 3

layer

Fig. 4 Detection model based on DNN

The pseudo-code of the DCEL algorithm is like Algo-
rithm 1, where N, is the number of convolutional
blocks, and Ny, is the number of hidden layers of the
neural network. Table 3 shows the detailed parameters of
the CNN model used.

Algorithm1 DCEL
Input: x rows of malware samples, each row has k

columns of attributes
Output: Category of each sample
1: b=x;
2: a=x.reshape()//Convert to binary image

3: for i =1; i<=N,,,; i++ do

4: a=Conv2D(a)

5: a=Relu(a)

6: a=maxpooling(a)

7: resultl=fullyconnected(a)

8: end for

9: for i = 1; i<=Ny,,; i++ do

10:  b1=Dense(b)

11: b1=Relu(dl)

12: result2=fullyconnected(bl)

13: end for

14: for i = 1; i<=N,,,; i++ do

15:  cl1=Dense(d)

16: cl1=Relu(bl)

17:  result3=fullyconnected(c1)

18: end for

19: result=MajorityVoteClassifier(resultl,result2,

result3)
Return result

Table 3 Network parameters of CNN

Layer(type) Output shape Parameter
Conv2d_3(Conv2D) (None, 12, 12, 32) 320
Max_pooling2d _3(MaxPooling2D)  (None, 6, 6, 32) 0
Conv2d_4(Conv2D) (None, 4, 4, 64) 18496
Max_pooling2d 4(MaxPooling2D)  (None, 2, 2, 64) 0
Flatten 2(Flatten) (None, 256) 0
Dense_3(Dense) (None, 512) 131584
Dense_4(Dense) (None, 1) 513

The first convolution layer C1 performs a convolution
operation and has 32 kernels of size 3x3. The result of the
C1 layer is 32 feature maps with a size of 12x12. After
the C1 layer, there is a 2x2 max pool operation, and the
result is 32 feature maps with a size of 6x6. The kernel
size of the second convolutional layer C2 is also 3x3, but
there are 64 channels. The result is 64 feature maps of
size 4x4. After the second 2x2 max pool layer P2, 64 fea-
ture maps with a size of 2x2 are generated. The last two
layers are fully connected layers, the result sizes are 512
and 1, respectively, and the overall number of trainable
parameters is 150 913. The activation layer uses the Relu
function and the sigmoid function to output the category.
In the DNN in DCEL, DNN model 1 consists of two
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intermediate fully connected layers, each with 16 hidden
units, using Relu as the activation function, and Dropout
to alleviate the occurrence of overfitting. DNN model 2
consists of four intermediate fully connected layers, each
with 32 hidden units, and also uses Relu as the activation
function and Dropout to alleviate the occurrence of over-
fitting.

4. Experiment
4.1 Experimental environment
The experimental environment and configuration of this

article are shown in Table 4.

Table 4 Experimental software and hardware environment

Software environment
OS Windows 10
Python 3.6.4
Pytorch 1.4.0
Sklearn 0.19.1
Pandas 0.22.0
Numpy 1.14.2

Hardware environment

CPU 2.11GHz Intel Core i5
GPU NVIDIA GeForce MX250
RAM 16GB 2667Mhz DDR4

4.2 Dataset

Malware detection is inseparable from the support of
effective malicious sample sets. The malicious sample
sharing website provides a large number of malicious
samples for analysis and use by researchers, which has
greatly promoted the development of malware detection
technology. The malware dataset can be directly used for
malware detection and family identification. We use the
dataset provided by Yerima et al. [13], which is based on
the Drebin [14] and Malgenome [16] datasets.

The Drebin and Malgenome datasets consist of four
types of features: Manifest Permission, API call signa-
ture, Intent, and Commands signature. Table 5 shows the
relevant information for each dataset.

Table 5 Malware dataset

Parameter Malgenome-215 Drebin-215
Number of malware 1260 5560
Number of benign 2539 9476
Total number 3799 15036
Number of features 215 215

Malgenome was built by the Zhou and Jiang team for
over a year. It contains 49 families, of which 2539 are
benign and 1260 are malware samples from the Android
Malware Genome Project. The team has spent a lot of
manpower and material resources on it. The samples in
the dataset are analyzed in detail, and the results of the
analysis show: (i) 86% of malware is produced by
repackaging, that is, the producer selects popular applica-
tions for decompilation, implants malicious loading code,
and then repacks it. Compile and upload to the market to
attract users to download for free; (ii) 36.7% of malware
uses known platform vulnerabilities to increase privi-
leges; (iii) 93% of malware uses HTTP-based protocols
to receive control commands from C&C servers. This
data integration is a collection of reference malware sam-
ples widely used by the malware research community.
Drebin is developed by Arp et al. based on Malgenome.
The Drebin dataset analyzes the detection results of 10
anti-virus engines in VirusTotal. If more than two engine
results indicate that they are malicious, they are added to
the dataset and the tags returned by the engines are used
as their family information. VirusTotal is a system web-
site that integrates 53 anti-virus engines. The dataset con-
tains 179 families, a total of 5560 malware. The Drebin
sample is also public and widely used in the research
community. Table 6 shows the relevant characteristics of
the Drebin and Malgenome datasets.

Table 6 Drebin and Malgenome dataset description

Type and number of features

Feature

Manifest Permission(113)
API call signature(73)

Intent(23)

Commands signature(6)

SEND SMS, READ SMS, RECEIVE_SMS, READ PHONE STATE, WRITE _SMS, ---
Transact, onServiceConnected, bindService, attachInterface, Ljava.lang.Class.getField, -+

Android.intent.action.BOOT_COMPLETED, Android.intent.action.SEND MULTIPLE, ---

Remount, chown, /system/bin, /system/app, -

4.3 Evaluation index

In this section, we will introduce and discuss experi-

ments for evaluating DCEL performance. The same con-

figuration is used in the Drebin-215 and Malgenome-215
experiments to maintain consistency. The training set is
used to construct the DCEL model through the hierarchi-
cal tenfold cross-validation method. In order to facilitate
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subsequent performance comparison, the following indi-
cators are predefined. The performance of the proposed
DCEL classification mechanism is evaluated by calculat-
ing performance metrics such as accuracy, error rate,
recall rate, precision, F-measure, and AUC value. In (3)
to (7), TP represents the number of true positives, TN
represents the number of true negatives, FP represents the
number of false positives, and FN represents the number
of false negatives.

(i) Accuracy: the proportion of correctly classified
instances in the total sample

TP+TN
TP+TN+FP+FN

Accuracy = (3)
(i1) Error rate: the percentage of misclassified instances
in the total sample

FP+FN
Error rate = 4)
TP+TN +FP+FN

(iii) Recall rate/detection rate: the proportion of mali-
cious instances that are correctly detected as malicious

TP

Recall = m

)
(iv) Precision: the proportion of malicious instances
that are correctly detected as malicious

TP

P .. __ v
recision TP+FP

(6)
(v) F-measure: the harmonic average of precision rate
and recall rate

2 X Precision X Recall
F-measure = — 7
Precision + Recall

(vi) AUC value: the size of the area under the ROC
curve.

(vii) Detection time: the time it takes to test the model.
This is the time (in seconds) to test the built model from
the test set.

4.4 Experimental results and analysis

In this section, we evaluate the performance of the pro-
posed model. The experiment in this article is mainly car-
ried out on the Drebin dataset. In order to verify the ver-
satility of DCEL, we verify it on the Malgenome dataset.
Fig. 5 and Fig. 6 show the loss and accuracy of DCEL on
the Drebin training dataset and validation dataset. It
shows that the loss value of the model gradually
decreases, the accuracy rate increases and the model does
not overfit.

Loss
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Fig.5 Loss value of DCEL in training and validation datasets
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Fig. 6 Accuracy of DCEL in training and validation datasets

We design four experiments to test DCEL:

Experiment 1: On the Drebin dataset, a variety of
machine learning classification algorithms are used for
experimental comparison with the proposed DCEL
model. Table 7 compares classification algorithms such
as K-means, naive Bayes (NB), support vector machine
(SVM), logistic regression (LR), decision tree (DT), ran-
dom forest (RF), DroidFusion [13] and DCEL. From the
performance of the model on indicators, we can see that
the accuracy rate, precision rate, recall rate, and F' value
of the DECL classification algorithm are better than other
algorithms, but the time spent testing the model is rela-
tively high. Compared with other ensemble learning
methods, the computational cost is lower. For the mal-
ware dataset Drebin, the DCEL algorithm is superior to
other traditional machine learning algorithms in indica-
tors such as accuracy and recall. Because this method will
first use the original data DNN to generate a model, then
convert the original data into a gray image using a CNN
to generate the model, and finally use the ensemble lear-
ning method to get the final classifier. The feature engi-
neering of deep learning is fully automated, learning all
features at one time, without manual design, avoiding the
inaccuracy of the feature selection algorithm in selecting
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sample attributes, and improving the accuracy of classifi-
cation. The ensemble learning can combine the advan-
tages of these classifiers to make up for their shortco-
mings and provide better solutions. However, compared
with other algorithms, ensemble learning takes a longer

Journal of Systems Engineering and Electronics Vol. 35, No. 1, February 2024

time because of the integration of multiple models.
Experimental results prove that using ensemble learning
combined with deep learning algorithms can effectively
improve the classification performance of malware detec-
tion models.

Table 7 Comparison between DCEL and traditional machine learning algorithms in terms of accuracy, AUC value and other indicators

Algorithm Accuracy Error rate Recall rate Precision F-measure AUC Time/s
K-means 0.716994 0.283 006 0915674 0.568259 0.701299 0.759768 0.06
DT 0.979381 0.020619 0.983820 0.983820 0.983820 0.977703 0.03
LR 0.979 049 0.020951 0.985908 0.981299 0.983598 0.976455 0.02
SVM 0.977719 0.022281 0.983299 0.981761 0.982529 0.975 609 0.03
Gaussian NB 0.708015 0.291985 0.552192 0.981447 0.706747 0.766930 0.1
AdaBoost 0.963 086 0.036914 0.977557 0.964967 0.971221 0.957615 0.23
RF 0.983705 0.016295 0.971586 0.983302 0.977409 0.981096 0.31
DroidFusion[13] 0.984 0.016 0.984 0.992 0.988 None None
DCEL 0.990772 0.009228 0.991127 0.989578 0.990352 0.995831 0.15

Experiment 2: Experiment 2 is conducted based on the
Drebin dataset to compare the classification performance
of individual CNN, DNNI1, DNN2, and DCEL. DNNI1
contains two intermediate fully connected layers, each of
which has 16 hidden units, uses Relu as the activation
function, and Dropout alleviates the occurrence of over-
fitting; DNN2 contains four intermediate fully connected
layers, each with 32 hidden units, using Relu as the acti-
vation function and Dropout to mitigate the occurrence of
overfitting. Table 8 shows the performance comparison

of DCEL with CNN and DNN. The performance of
DCEL is better than other algorithms. As can be seen
from Fig. 7 to Fig. 11, DCEL is better than single CNN
and DNN in terms of Accuracy, F value, and AUC. The
reason for this result is that each classifier of DCEL is
trained on different subsets with different errors, and
combining the three classifiers gives the best classifica-
tion boundaries. This helps us to find a global solution
that can reduce the false positive rate and improve detec-
tion accuracy.

Table 8 Comparison of DCEL and a single model in terms of accuracy and other indicators

Algorithm Accuracy Error rate Recall rate Precision F-measure AUC
DNN1 0.987695 0.012305 0.989562 0.988530 0.989045 0.984 698
DNN2 0.982042 0.017958 0.984 821 0.967 544 0.976 106 0.986398
CNN 0.984037 0.015963 0.973 660 0.982585 0.978102 0.992325
DECL 0.990772 0.009228 0.991127 0.989578 0.990352 0.995831
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Algorithm Algorithm

Fig. 7 Comparison of accuracy between DCEL and other neural
network algorithms

Fig. 8
network algorithms

Comparison of the recall rate of DCEL and other neural
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ral network algorithms
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Experiment 3: The classification performance
of the DCEL model is verified by using the Mal-
genome dataset to prove that the method has a
certain universality and can be used in actual mal-
ware detection systems. The results of Table 9 and
Fig. 12 show that the DCEL algorithm has a high
accuracy rate and high detection accuracy. It can
be seen that the detection mechanism for Android mal-
ware proposed in this article has high practicability
and effectiveness for the detection of massive Android
malware.

Table 9 Performance comparison between DCEL and other models on the Malgenome dataset

Algorithm Accuracy Error rate Recall rate Precision F-measure AUC Time/s
DNNI1 0.990789 0.009211 0.991379 0.978723 0.985011 0.999 004 0.005
DNN2 0.989474 0.010526 0.984 127 0.984 127 0.984 127 0.988126 0.011
CNN 0.988 158 0.011842 0.978448 0.982 684 0.980562 0.999339 0.028
DCEL 0.994737 0.005263 0.991379 0.991379 0.991379 0.999371 0.051
1,000 correlation feature technology to find the most relevant
0.998 features, and classify the threat level of malware through
0.996 the correlation of features. As can be seen from Table 10,
T among the characteristics of Type A threats, API call sig-
l:f 09941 nature accounts for 42.5%, and Manifest Permission
= 0992 accounts for 9.7%. Among the characteristics of Type B
0.990 threats, API call signature accounts for 23.3%, and Mani-
0.988 fest Permission accounts for 15%. Among the characte-
0.986 " < " < ristics of E-type threats, API call signature accounts for
o < O W . ..
e ?@w\\ Y@c\s\ 'z R 4%, and Manifest Permission accounts for 29.2%. Here
Algorithm we can conclude that high-risk software uses more API
Fig. 12 Classification performance of DCEL on the Malgenome call signature and Intent, and less Manifest Permission.

dataset

Experiment 4: Compare the categories of characteris-
tics of different malware threat levels and find the cate-
gories of common characteristics of malware. We use

The security software uses less API call signature and
Intent, and more Manifest Permission. We believe that
for malware detection, the more API call signature a soft-
ware uses, the greater the threat of the software, and the
greater the probability that the software is malware.
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Table 10 Categories of samples with different threat levels

Malware threat level =~ Number of Manifest Permission

Number of API call signature

Number of Intent ~ Number of commands signature

A 11
B 17
C 25
D 27
E 33

31 1 0
17 3 2
12 4 2
10 5 2
3 10 0

5. Conclusion and future work
5.1 Conclusion

In this article, we propose DCEL based on neural net-
works, which uses model fusion methods to improve the
predictive ability of deep learning algorithms. In order to
prove the effectiveness of the method, we conduct a large
number of experiments on the Drebin and Malgenome
datasets processed by the feature selection method. We
observe the interesting properties of malware and the
advantages of model fusion, and propose correlations
based on features to find the category of the attributes
most used by malware. This mechanism DCEL can effec-
tively combine deep learning algorithms to improve the
accuracy of detection. This method will first use the orig-
inal data DNN to generate a model, then convert the orig-
inal data into a gray image using a CNN to generate the
model, and use the ensemble learning method to get the
final classifier. Through experiments, the effectiveness of
the mechanism is proved, and the experimental results of
the model compared with it are given. At the same time,
we also discuss the types of features in different malware
threat levels, and find that the more API call signature a
software uses, the greater the threat of the software, and
the greater the probability that the software is malware.

5.2 Future work

There are three limitations regarding our work and related
future work. First of all, the main purpose of this article is
to use representation deep learning methods to prove the
effectiveness of malware classification, so we do not
study the parameter tuning of algorithms such as CNN
and DNN. In practical applications, the size and number
of classes of malware data are not fixed, and the genera-
lization ability of our method needs further verification.
Secondly, the dynamic malware detection method uses
classic machine learning methods and uses many time-
series features to prove their high efficiency. Our method
only uses static characteristics and completely ignores
time characteristics. We will study how to incorporate
these temporal features in future work, such as using
recurrent neural networks. Finally, the work of this arti-

cle only classifies known malware. The ability to iden-
tify unknown malware is also very important to protect
the safety of users. How to further study how to increase
the ability of unknown malware in future work.
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