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Abstract: Aiming at the triangular fuzzy (TF) multi-attribute deci-
sion making (MADM) problem with a preference for the distribu-
tion density of attribute (DDA), a decision making method with
TF number two-dimensional density (TFTD) operator is pro-
posed based on the density operator theory for the decision
maker (DM). Firstly, a simple TF vector clustering method is pro-
posed, which considers the feature of TF number and the geo-
metric distance of vectors. Secondly, the least deviation sum of
squares method is used in the program model to obtain the den-
sity weight vector. Then, two TFTD operators are defined, and
the MADM method based on the TFTD operator is proposed.
Finally, a numerical example is given to illustrate the superiority
of this method, which can not only solve the TF MADM problem
with a preference for the DDA but also help the DM make an
overall comparison.
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multi-attribute decision making (MADM).
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1. Introduction

Many decision problems can be formulated as multi-crite-
ria problems [1], and multi-attribute decision making
(MADM) for incomplete information systems is an
important part of modern decision science. With the
development of society, research problems become com-
plex, the decision making information is difficult to be
accurate, the simple decision making theory cannot meet
the practical needs, the fuzzy processing method is used
to define the business function [2]. Due to more uncer-
tainty in the decision making process, the decision ma-
king basis and decision making index system are com-
plex and diverse [3]. Therefore, how to make scientific
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and effective decision for the decision maker (DM) under
the uncertain and incomplete situations has become an
important research topic and attracted wide attention [4].
For the fuzzy MADM problem, various methods have
been concerned, i.e., ordered weighted averaging (OWA)
aggregation operator [5,6], probabilistic approach [7],
fuzzy multi-criteria group decision making (FMCGDM)
method [8,9], technique for order preference by simila-
rity to ideal solution (TOPSIS) method [10-12], extended
compromise ratio method [13], Bonferroni mean opera-
tor [14,15], multi-objective optimization by ratio analysis
plus the full multiplicative form (MULTIMOORA)
method [16,17], Tomada de deciso interativa multicrite-
rio (TODIM) method [18,19], vlsekriterijumska opti-
mizacija [ kompromisno resenje (VIKOR) method
[20-22], triangular fuzzy number -certitude degree
(TFNCD) operator method [23], similarity programming
model [24] and best-worst (BW) method [25], the superi-
ority and inferiority ranking (SIR) method [26], and the
hesitant fuzzy grey relational analysis (GRA) method
[27]. However, the foregoing studies mostly focus on
how to develop advanced MADM method without pay-
ing much attention to the density degree of attribute infor-
mation distribution. Yi et al. presented the density inter-
mediate operator while considering the degree of infor-
mation consistency in the data group [28]. Thereafter, Liu
et al. extended the density operator to the form of triangu-
lar intuitionistic fuzzy numbers [29], and Lin et al. pro-
posed the intuitionistic fuzzy number density operator
[30]. Zhang et al. developed the two-dimensional density
operator and applied it to the group evaluation [31]. Clus-
tering is a key step in the application of density operator.
Li et al. pointed out most clustering algorithms cannot
solve the clustering problem of uncertain informa-
tion samples, and gave a clustering algorithm contai-
ning multiple triangular fuzzy (TF) normal random vari-



LIN Youliang et al.: Method for triangular fuzzy multiple attribute decision making based on two-dimensional density ... 179

ables [32].

Despite the fact that the existing researches have made
important contribution to MADM studies, some insuffi-
ciencies still exist. Firstly, the two-dimensional density
operator is different from the one-dimensional density
operator in calculating, there is still no special research
on TF number two-dimensional density (TFTD) operator.
Secondly, the key problem on the application of TFTD
operator is how to cluster the vector sets, but the cluster-
ing algorithm on multiple TF normal random variables
are hard to deal with. Thirdly, the properties of the TFTD
operator are seldom discussed. Therefore, the systematic
study on the TFTD operator is valuable.

Given the above, a novel method for TF MADM based
on two-dimensional density operator is developed. The
main contributions are as follows.

(i) TFTD operator is proposed to solve the MADM
problem in some circumstance.

(i1) A clustering algorithm on multiple TF normal ran-
dom variables is presented.

(iii) The properties of the TFTD operator are given.

This paper is organized as follows. In Section 2, some
definitions are formulated. In Section 3, the MADM
based on TFTD operator is given. Section 4 presents an
application example. Finally, the conclusions are summa-
rized in Section 5.

2. Preliminaries
Definition 1 [§]
A= {< x,us(x) > |x € X} (D

A fuzzy set of 4 in X is called the TF set, in which the
membership degree of 4 is defined as u,(x), which sa-
tisfies the condition 0<ag;<a,<a,<1, a, a, stand for the
lower and upper value, and a,, for the modal value of the
support of A4 respectively.

Let X be a non-empty set.

(x_ al)/(a'm _a'l)s a; Sx< (e
(a'u - -x) / (a,u - a’m)s (o™ SX< a, (2)

0, others

us(x) =

where 0 < @;<a,,<a,<I.
a=(o;, a,, a,) is called a TF number, as shown in
Fig. 1.

A u,(x)

0 o o«

m

Fig.1 Membership function of the TF number a

Definition 2 [33] For the TF numbers d=(o;, a,,, @),
0=(o,, 0,,, 0,) and crisp number k, the following operation
rules are defined:

a+o=(a,+o0, a,+0, a,+0,), 3)
a-0= (01, Ay 0, @, 0,), )
k-a=(k-a,k-a,k-a,), (6)
1/a={/a, l/a,, 1/a). 6)

Definition 3 [33] d(d, o) is defined as the distance
between the TF numbers ¢ and o,

d(a, 0) = (la; - o)l + 2|ay, — 0| +la, —0.D/4  (7)

where |a; —o)| represents the absolute value of the differ-
ence between «; and o,.

d; is used to represent the closeness of the TF number
d, which is relative to the TF number 6=(0,0,0) and the
TF number é=(1,1,1),

d, =d(a,0)/d(e,0). ®)

The larger d;, the larger a.

Let A={d,, d,,**, d,} be a set consisting of n TF num-
bers, and A,=(d,, d,,"**,d,) is called the TF vector.

For A,=(a,, a,, ", d,), A,=(6,, 0,,"**, 0,) and the crisp
number k, the operation rules are defined:

Aa+Ao:(&l+6laa2+62)"'a&n"'an)a (9)

k'Aa:(k'&lak'&Zﬂ o

Definition 4 d(A,,A,) is the dissimilarity degree
between two TF vectors A, and A4,,

L k-ay). (10)

d(A,A,) = \/d(&] ,01) +d(8y,0,)" +++-+d(a,,0,)" (11)
where d(d, 6) is the distance measure in Definition 3.
3. MADM based on TFTD operator
3.1 Clustering method

Suppose A={A,, Ap, ", Ay} is a set composed of
[ TF vectors, each TF vector is composed of n TF num-
bers, and the dissimilarity degree between two TF vec-
tors can be measured. A clustering method is planned as
follows:

Step 1 Calculate the dissimilarity degree of the TF
vectors, i.e, the dissimilarity degree between the TF vec-
tor A,, and the TF vector A4, is expressed as d;;.

Step 2 Construct the distance matrix D(d,).

0 d12 o dll
d21 O e d21

D(dy) = (dyj),, = S
dll dlz e O
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Step 3 Draw the tree diagram with the minimum dis-
similarity degree. Let A, (i= 1 , [) represent the
position of each point, and then paint the vertex con-
nected graph G=(A.;, d;), d; indicates the dissimilarity
degree between A, and A,;. Then, in the graph G(A,,
d;) , erase the largest edge in any loop to form a tree until
the closed loop no longer exists.

Step 4 Cluster the vector sets. Select a threshold 6
and compare it with each edge in the tree graph. When
d;> O, the denoted edges by d; are removed. Let there
exist m subsets, then the TF vector set A is divided into
m-group vector sets.

The clustering method has the following characteris-
tics compared with others:

(i) It can cluster TF vectors based on the dissimilarity
degree.

(i1) It is more objective because it is not necessary to
determine the classification number in advance.

(iii) It is simple and easy to understand.

3.2 Density weighted vector

Suppose there is a vector set A composed of / TF vectors
(each vector consists of n spatial elements in the form of
TF numbers). Using clustering method in Subsection 3.1,
it can be divided into m TF vector subsets, which are
sorted, to form a sequential TF vector set.

Assume that k; is the number of vector groups con-
tained in the sequential vector set, and k,=k,=- - 2=k,
A={A,, A,,~,A,} is the set of TF vectors sorted in
decrease turn, &, represents the density weight of the vec-
tor set A, thereis &, &,, -+, &,.

Definition 5 2 is the density preference measure cor-
responding to the density weight &, &,, -*+, &,,.

»~=2(:z:;’a-> @

When &=¢="=¢£,, 1=0.5. When &,<&,<°<€,,

<0.5. When £,<€,.,<-<§&,, 0.5<A. The magni-
tude of 1 reflects the DM’s preference as shown in
Table 1.

Table 1 Scale table of density preference measure

% Feature of &; Definition
Complete preference for low
0 En=1 . . . .
information density attributes
Prefer attributes with low
0,05 &g,

information density

0.5 S=b&==6n

(0551) §)11<§m71<"'<§1

Equal preference for each attribute
Prefer attributes with high

information density
Complete preference for high

information density attributes

1 &=l

When the density preference measure /1 is greater than
0.5, the DM prefers to “subject information”, and the
larger the preference measure, the larger the DM prefers
to “subject information”. Conversely, when the density
preference measure 4 is less than 0.5, the DM prefers to
“individual information”, and the smaller the preference
measure, the larger the DM prefers to “individual infor-
mation”.

It is not yet possible to calculate each density weight
directly according to the density preference measures
defined by the DM, then, the least-squares-of-deviation
method is used to calculate each density weight.

Definition 6 S is the sum of deviation squares of den-

SIty Weights é:l: §29 T é:m

m 1 2
S = Z(f— ;1) (13)

Once the density preference measure 4 is known, the
following model is constructed to calculate the diffe-
rence between different density weights, and the density
weight of each vector can be calculated. The smaller the
difference among the density weights corresponding to
each vector, the more consistent the information distribu-
tion, the smaller the S. Therefore, the objective function
can be constructed as follows:

1= (m—rf)
- i\m—1""
s.t. Z§,= . (14)
r=1
0<é,<1
r=1,2,--

Formula (14) is a conditionally constrained nonlinear
programming problem. Let A be a known number, it is
not difficult to calculate (£,,&,, -*,&,,) for the problem by
computer tools. When there exists the equal number in
these quential vector set, such as k;=k;.;, it is necessary to
adjust each value of & and &,,. After adjusting,
§}=§}+1 = (gj"_é:jﬂ)/z-

Example 1 Let A={A A, A3}, A, = {A.,,An,
Ast, Ay = {Au,As},As={Awk,Aun}, then, k=3, k=k=
2, m=3. If 1 is a known number as /=0.3, we can calcu-
late £,=0.1333, £,=0.3333, £,=0.5333 by (14), after
adjusting £,=0.133 3, &/=£,=0.4333.

3.3 TFTD operator

Definition 7 For the sequential TF vector set A={A,,
A,-+,A,}, suppose TFTDWA:R,—R, then
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A)= ) EyA). (19

r=1
TFTDWA is called the TF numbers two-dimensional
density arithmetic weighted average operator, in (15)
T
y(Ar):(ylr’er’ cee aynr) )

TFTDWAg (Al’ Az, DY

r(s)
rar

Yir = § Wal]»

J=1

A, ={aglr=1,2,-

m

Z r(s)=1,

r=1

o j=1,2,0,r(s) ),

@; represents the ith TF number of the jth vector in the
rth vector group. &, represents the density weight of the
m

vector set, 0 <&, < I,Zfr =1,0<r<1, w) represents

r=1
the importance weight of the jth vector in the rth vector
set, and each weight satisfies the following conditions:
r(s)

w1,y wi=1.
j=1

Example 2 A, =(d,;, d1n)'s Aw =( Gy, dn) s Aus =
(Gy1.G)'s d1=d= (0.1,0.2,0.3), dy=d5,=(0.1,0.3,0.4),
dy= dyp= (0.1,0.4,07), w'=0.2, w*=0.4, wi=0.4, then,
0.2(0.1,0.2,0.3)+0.4(0.1,0.3,0.4)+0.4(0.1,
0.4,07)=(0.1,0.32,0.5), Then y(A,)=((0.1,0.32,0.5), (0.1,
0.32,0.5))".

Example 3  y(A,)=((0.1,0.32,0.5), (0.1,0.32,0.5))".
y(A,)=((0.1,0.1,0.1), (0.1,0.3,0.5))". y(A;)=((0.1,0.2,0.3),
(0.1,0.3,0.5))". £,=0.1333, £,=£,=0.433 3, then,

TFTDWA(A},A,,,A,) =

0.1 032 05
0.1 032 05

0.1 0.1 0.1
0.1 03 05

0.1 02 0.1)_
0.1 03 05 )"

0.1726 0.1533 )

0.133 3(

0.433 3( +

0.433 3(

0.1
0.1
Definition 8 For the sequential set of TF vectors

A={A,,A,,,A,}, supposc TFTDWGA: R,—R, then

Ad=[]y@ar. e
r=1

0.3026 0.5

TFTDWGA, (A}, A,,- -

TFTDWGA is called the TF number two-dimensional
density geometric averaging operator. In (16), y(A,)=

r(s)
T
(ylr’er’ e 9ynr) 5

§ ol —
Yir = W ij> Ar_
m

j=1,2,"',r(S)},Z”(S)—l, a;; represents the i TF num-

r=1

{&;j|r:1929.”3m5

ber of the jth vector in the rth vector group. &, represents
the density weight of the rth vector group, and

m
0<é.< I,Z & =1, 0<r<1, w) represents the impor-

r=1
tance weight of the jth vector in the rth vector group.

Each weight satisfies the following conditions:

3.4 Property of TFTD operator

Property 1 Permutation invariance. Let A’'=
(A},AS, A]) be a permutation of A= (A,A,,",A,),
TFTDWAg{A/ Al Al)  =TFTDWA4A, A, A,),
TFTDWGALA|,A’, - A,) =TFTDWGALA,,A;,, A,,).

Property 2 Idempotency. Let A= (A,,A,,A;) be
a TF vector set, then TFTDWA{A,,A,,, A,)=A,, TFT-
DWGALA,A;, A )=A,.

3.5 Method’s steps onTFTD operator

Step 1

Step 2

Step 3

Step 4
cluster.

Step 5 Calculate the density-weighted vectors & of
each cluster.

Step 6 Use the TFTD operator to calculate the inte-
grated value.

Step 7 Rank order.

Collect the original data of each attribute value.
Standardize and fuzzify the attribute values.
Cluster partition on the attributes.

Calculate the TF comprehensive value of each

4. Numerical example and analysis
4.1 Numerical example

Let’s suppose a venture capital company wants to invest a
project among three enterprises (E1, E2, E3). Experts
evaluate enterprises based on the 21 attributes (F1, F2,
F3, F4, F5, F6, S1, S2, S3, S4, S5, T1, T2, T3, T4, TS,
P1, P2, P3, P4, P5). Among them, F4 is of cost type, and
the others are of benefit type. The importance of the
attribute (very low, low, medium, high, very high) is
expressed as the TF number ((0,0,0.3), (0,0.3,0.5),
(0.3,0.5,0.7), (0.5,0.7,1), (0.7,1,1)). After gathering
experts’ opinion, the final weight of each attribute is
obtained below:

W1 = Wey= Wz = Wey= Wgs=(0.5,0.725,0.925), Wes=
(0.4, 0.6, 0.85), Wg, = Wg,= (0.5, 0.725, 0.925), W=
Ws= (0.4, 0.6, 0.85), W= (0.4, 0.6, 0.85), W, = (0.275,
0.5, 0.725), W,= (0.4, 0.6, 0.85), Ws=W.,= (0.5, 0.7, 1),
W:s=(0.4, 0.6, 0.85), Wp= (0.5, 0.725, 0.925), Wp,= (0.6,
0.85, 1), Wp= Wp= Wps= (0.6, 0.85, 1).

By Step 1, the raw attribute values are collected in five
periods (see Table 2).
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Table2 Company’s raw attribute values
Attribute £l E2 —

2nd 3rd 4th 5th Ist 2nd 3rd 4th Sth Ist 2nd 3rd 4th Sth
Fl1 27.84 26.69 2547 23.67 19.13 41.86 39.68 3422 47.79 40091 60.05 57.10 56.87 5436 5533
F2 66.52 1.05 5026 4470 35.57 62.10 81.79 97.61 115.87 129.04 201.70 203.33 218.06 68.04 73.31
F3 19.63 18.57 1690 1547 1244 2501 26.72 2534 33.84 31.06 4627 4458 4511 3022 31.53
F4 4291 48.19 49.00 4834 45.61 51.27 4532 4030 47.38 43.64 39.65 3999 41.60 5794 52.85
F5 133.05 107.51 104.07 106.87 119.25 95.04 120.64 148.15 111.06 129.14 152.20 150.05 140.38 72.60 89.21
F6 238.92 228.73 197.32 188.85 18591 14834 206.15 285.22 242.46 31547 335.88 356.11 383.43 125.16 132.49
S1 104.02 94.65 118.86 128.23 196.13 336.43 333.38 342.18 221.46 213.69 130.00 12548 12423 172.43 194.11
S2 96.05 039 11479 121.62 189.50 314.37 315.62 317.21 207.74 202.04 121.73 119.20 117.86 166.62 185.76
S3 9.54 1458 4492 4285 6.70 21.05 22.12  17.79 1422 19.55 15.89  20.57 23.69 16.61 33.85
S4 9.93 13.85 5339 5495 13.15 70.82  73.75 60.88 31.50 41.78 20.66  25.81 29.43 28.65 65.70
S5 3.86 -5.65 15.87 22.01 49.01 70.28 70.00 70.78 54.85 53.20 23.08 2031 19.50 42.00 4848
T1 1.83 0.89 0.95 0.79 0.98 3.10 2.68 2.63 1.54 1.66 1.84 1.55 1.43 1.22 1.96
T2 0.94 1.03 1.00 1.09 1.40 2.58 2.19 1.63 1.72 2.22 3.00 322 3.68 3.41 3.65
T3 88.96 87.26 86.84 98.08 12147 147.68 128.87 125.12 11.81 13278 7696 7898 71.82 97.71 96.57
T4 14.14 12.07 11.28 1199 12.64 30.13 2796 2556 28.12 30.61 27.89 27.06 23.85 2234 25.19
T5 2477 2329 2212 2321 2324 61.82 51.13 4282 5343 5431 46.21 45.10 40.85 53.12 53.43
P1 3.58 8.00 11.23 1459 25.28 12.40  9.62 5.43 12.02 1395 10.09  6.46 5.86 14.06 14.10
P2 -3.19  -0.90 3.92 8.13 19.28 9.80 6.06 2.92 9.59 10.89 6.36 0.83 1.36 1047 11.14
P3 17.42 2252 23.88 2844 4519 18.12 1337 1250 14.61 18.16 17.16  9.00 1337 1399 20.39
P4 17.05 18.67 2142 2643 3821 13.92 10.80 9.73 12.77  13.69 14.81 8.61 12.13  11.73  17.28
P5 241 2.25 242 3.17 4.83 4.19 3.02 2.49 3.59 4.19 4.13 2.33 2.89 2.62 4.35

By Step 2, the standardized attribute values are shown in Table 3.

Table 3 Standardized attribute values

Attribute El E2 E3
F1 (0.268,0.330,0.358) (0.481,0.550,0.628) (0.714,0.764,0.800)
2 (0.206,0.265,0.316) (0.281,0.541,0.846) (0.480,0.732,0.912)
F3 (0.271,0.318,0.350) (0.445,0.555,0.706) (0.630,0.755,0.829)
F4 (0.509,0.565,0.604) (0.494,0.582,0.620) (0.504,0.578,0.639)
F5 (0.454,0.554,0.627) (0.425,0.585,0.655) (0.426,0.571,0.681)
F6 (0.382,0.492,0.569) (0.339,0.574,0.810) (0.340,0.596,0.767)
Sl (0.257,0.364,0.562) (0.612,0.805,0.905) (0.324,0.425,0.559)
) (0.259,0.368,0.568) (0.606,0.801,0.904) (0.330,0.429,0.569)
S3 (0.169,0.534,0.891) (0.296,0.506,0.751) (0.345,0.564,0.854)
sS4 (0.133,0.377,0.790) (0.453,0.714,0.951) (0.278,0.438,0.832)
S5 (~0.077,0.211,0.563) (0.611,0.843,0.958) (0.260,0.397,0.579)
T1 (0.276,0.352,0.453) (0.604,0.753,0.837) (0.455,0.536,0.713)
T2 (0.231,0.263,0.311) (0.393,0.500,0.634) (0.738,0.819,0.887)
T3 (0.471,0.527,0.595) (0.628,0.708,0.782) (0.408,0.462,0.549)
T4 (0.296,0.310,0.326) (0.686,0.711,0.743) (0.590,0.630,0.664)
TS (0.292,0.313,0.350) (0.678,0.702,0.763) (0.570,0.637,0.674)
PI (0.219,0.602,0.815) (0.394,0.556,0.757) (0.425,0.507,0.616)
P2 (~0.263,0.328,0.778) (0.439,0.678,0.980) (0.134,0.403,0.640)
P3 (0.572,0.770,0.856) (0.344,0.451,0.595) (0.325,0.424,0.564)
P4 (0.643,0.792,0.866) (0.310,0.414,0.525) (0.371,0.430,0.558)
P5 (0.379,0.526,0.625) (0.542,0.618,0.682) (0.480,0.572,0.650)
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By Step 3, after a threshold value 6=0.3 is set, 10
sorted vector sets can be formed: A, = {F4, F5, F6, S3,
P1, P5}, A, = {Fl1, F2, F3}, A;={P2, P3, P4}, A, ={S],
S2}, As ={T4, TS}, As={S4}, A,={S5}, As={Tl},
Ay={T2}, A;={T3}.

By Step 4, the closeness is calculated by normalization.
For example, after normalizing the magnitude of close-
ness we can get dp,;=0.7574 when Wy, = (0.5, 0.725, 0.925).

Therefore, intra-group importance weights for A, A,,
A;, -+, Ay of each group can be calculated as follows:

w(A)={0.1714, 0.1714, 0.1431, 0.1431, 0.1714,
0.1996}, w(A,)={0.3333, 0.3333, 0.3333}, w(A;3)=
{0.3333, 0.3333, 0.3333}, w(Ay)= {0.5,0.5}, w(As)=
{0.5473,0.452 7}, w(Ag =w( A7 )=w(Ag=w(Ag)=w(A )=
{1}.

The attribute values of each group is shown in Table 4.

Table 4 Attribute values after group aggregation

Group El E2 E3
A (0.357,0.547,0.684) (0.424,0.573,0.708) (0.426,0.564,0.694)
Ay (0.248,0.304,0.341) (0.402,0.549,0.727) (0.608,0.75,0.847)
A3 (0.317,0.63,0.833) (0. 364,0.514,0.7) (0.277,0.419, 0.587)
Ay (0.258,0.366,0.565) (0.609,0.803,0.905) (0.327,0.427,0.564)
As (0.294,0.311,0.337) (0.682,0.707,0.752) (0.581,0.633,0.669)
Ag (0.133,0.377,0.79) (0.453,0.714,0.951) (0.278,0.438,0.832)
Aq (=0.077,0.211,0.563) (0.611,0.843,0.958) (0.26,0.397,0.579)
Ag (0.276,0.352,0.453) (0.604,0.753,0.837) (0.455,0.536,0.713)
Agy (0.231,0.263,0.311) (0. 393,0.5,0.634) (0.738,0.819,0.887)
A (0.471,0.527,0.595) (0.628,0.708,0.782) (0.408,0.462,0.549)

By Step 5, the density weight &; for each classification
A; can be calculated. Let 1=0.7, which means the
attributes with high information density is preferred, and
the following results are obtained: &=0.1982, &=&=
0.16545, £,=£5=0.1218, &=E&=63=69=E10=0.04546.

By Step 6, the integrated values based on the TFT-
DWA operator can be got, which is shown in Table 5.

Table 5 Integrated values

Enterprise Value
El (0.279,0.424,0.563)
E2 (0.49,0.633,0.767)
E3 (0.452,0.564,0.69)

By Step 7, the closeness of the comprehensive value
relative to the TF number (0,0,0) and (1,1,1) is calculated,
there is d,=0.422 5, dg,=0.631 1, dg3=0.5677. The greater
the closeness is, the better the scheme is. The final rank-
ing is obtained as follows: E2> E3> E1.

4.2 Comparison and analysis

Compared with one-dimensional density operator, a two-
dimensional density operator needs less clustering fre-
quency and simplified operation steps, therefore, the two-
dimensional density operator is superior to the one-
dimensional density operators in calculating.

As shown in Table 6, when the value of the density

preference measure A changes as 0.9, 0.7, 0.5, 0.3, 0.1,
the calculated density-weighted vector ¢ changes too.

Table 6 Density weight under different preferences

£
A
& &H=6 €4=&s Eo=&7=E3=E9=¢10
0.9 0.43 0.2 0.035 0
0.7 0.1982 0.16545 0.1218 0.04546
0.5 0.1 0.1 0.1 0.1
0.3 0.02 0.03445 0.078 15 0.15456
0.1 0 0 0 0.2

Using the TFTDWA operator to aggregate the data, we
can obtain the integrated values under different density
preferences, as shown in Table 7.

Table 7 Integrated values under various preference

2 El E2 E3

0.9 (0.286,0.446,0.561) (0.381,0.512,0.648) (0.442,0.549,0.642)
0.7 (0.279,0.424,0.563)  (0.49,0.633,0.767)  (0.452,0.564,0.69)
0.5 (0.251,0.389,0.547) (0.517,0.666,0.795) (0.436,0.545,0.692)
03 (0.23,0.363,0.544)  (0.551,0.71,0.836)  (0.427,0.535,0.706)
0.1 (0.207,0.346,0.542) (0.538,0.704,0.832)  (0.428,0.53,0.712)

When 4=0.9, the ranking of the options is E3>E2>El,
which is inconsistent with the results by the method in
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[8]. When 4=0.7, 0.5, 0.3, 0.1, the ranking of the options
is E2> E3> El. In the case of complete preference for
high information density attributes, the attribute with
higher relevance is strengthened in the information aggre-
gation process, the sorted result is inconsistent with oth-
ers, which can help the DM to obtain richer results and
make the right choice based on the different purposes.

5. Conclusions

In this paper, a TF MADM method based on TFTD oper-
ator method is proposed to handle the TF MADM prob-
lem, in which a preference for the distribution density of
attribute (DDA) is necessary to take into account. The
main advantages of the method include:

First, the proposed method which cares about the char-
acteristics of DDA, can solve the TF MADM problem
according to the DM’s density preference.

Second, the method is useful in making an overall
comparison because the result may vary with different
density preferences, which can help the DM broaden his
evaluation vision.

Last, the two-dimensional density operator is superior
than the one-dimensional density operator in calculating,
and the clustering method of TF vectors is easy to under-
stand and apply.

In future research, we will extend the developed
method by taking more fuzzy attribute values into consi-
deration, such as intuitionistic fuzzy number, and hesi-
tant fuzzy information. We will discuss the application of
other high-dimensional density operators for the TF
MADM problems too.
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