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Abstract: Adaptive detection of range-spread targets is consi-
dered in the presence of subspace interference plus Gaussian
clutter with unknown covariance matrix. The target signal and
interference are supposed to lie in two linearly independent sub-
spaces with deterministic but unknown coordinates. Relying on
the two-step criteria, two adaptive detectors based on Gradient
tests are proposed, in homogeneous and partially homoge-
neous clutter plus subspace interference, respectively. Both of
the proposed detectors exhibit theoretically constant false alarm
rate property against unknown clutter covariance matrix as well
as the power level. Numerical results show that, the proposed
detectors have better performance than their existing counter-
parts, especially for mismatches in the signal steering vectors.
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1. Introduction

Adaptive detection of wideband radar target has garnered
increasing attention in radar signal processing field for
recent decades [1—3]. The range-spread target resulted
from the spread of wideband radar target energy into the
adjacent range cells are therefore more concerned [4—6].
Moreover, many adaptive detectors have been proposed
for multichannel adaptive target detection in Gaussian
clutter with unknown covariance matrix in the open lite-
rature [7,8], such as the generalized likelihood ratio test
(GLRT), Rao test, and Wald test. Liu et al. mainly dis-
cussed the case of homogeneous environment (HE) [7],
while De Maio et al. discussed the case of partially HE
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(PHE) [8]. Note that the test data have the identical clut-
ter covariance matrix with the training data in HE [9-11],
but the clutter covariance matrix of test data coincides
with that of training data only up to a scaling factor in
PHE [12-14].

It is noteworthy that none of the aforementioned works
have taken the interference into account. However, due to
the existence of natural or man-made interference
sources, such as electronic countermeasures or civil
broadcasting systems, it may be necessary to consider
interference in the design procedure of detector. The
interference is usually assumed to lie in a subspace to
describe the uncertainties of interference pointing and/or
Doppler frequency in many realistic scenarios [15—19]. In
the presence of subspace interference and Gaussian clut-
ter, the detectors are derived for range-spread targets in
both HE and PHE, based on GLRT in [20] and Rao test in
[21], respectively. More precisely, for HE, the one-step
detectors are denoted as 1S-GLRT-HE and 1S-Rao-HE,
while the two-step detectors are denoted as 2S-GLRT-HE
and 2S-Rao-HE [20,21]. Similarly, the detectors for PHE
are named as 1S-GLRT-PHE, 1S-Rao-PHE, 2S-GLRT-
PHE, and 2S-Rao-PHE [20,21]. In [22], the Wald test has
been designed, but for point-like target detection. In addi-
tion, according to the Gradient test criterion, two adap-
tive detectors (Gradient-HE and Gradient-PHE) are
devised in HE and PHE, respectively, without consider-
ing interference [23].

In many practical scenarios, mismatches in signal
steering vectors often occur, due to wavefront distortions,
array calibration errors, etc. [24]. For example, in radar
search mode, the detectors are expected to be robust to
the mismatches in signal steering vectors [25,26]. For
rank-one signals, the target steering vector is a fixed and
fully known, which is unable to cope with the above mis-
matches. A feasible means to tolerate the mismatches is
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using a subspace model [6—8], where the target signal lies
in a multi-rank subspace and its coordinate is unknown.

As the parameters including clutter covariance matrix,
subspace coordinates of target signal and interference are
unknown, there is no uniformly most powerful detector
for the problem of detecting range-spread targets in sub-
space interference plus Gaussian clutter [27—29]. It is rea-
sonable to investigate new test techniques different from
the GLRT, Rao, and Wald tests. In this work, relying on
the two-step criteria, two adaptive detectors based on
Gradient tests (named as 2S-Gradient-HE and 2S-Gradi-
ent-PHE) are proposed for range-spread targets modeled
as subspace signals, in HE and PHE plus subspace inter-
ference, respectively. Both of the proposed detectors are
proved to possess the constant false alarm rate (CFAR)
properties under the design assumptions. In addition, the
numerical results show that, compared with the existing
competitors, the proposed two-step Gradient tests have
better performance, especially when the mismatch occurs
in the signal steering vectors.

The rest of this paper is organized as follows. Section 2
presents the target detection problem to be solved. Sec-
tion 3 derives the Gradient tests for range-spread targets
in HE and PHE. Section 4 provides CFAR property ana-
lyses for the proposed detectors theoretically. The perfor-
mance assessment and comparison are provided in Sec-
tion 5. Finally, Section 6 concludes the paper.

2. Problem formulation

Assume that a radar system collects data from N chan-
nels (spatial and/or temporal). The data returns from the
cells under test are properly sampled and organized to
form N-dimensional vectors. Moreover, assume that the
data recorded from adjacent K range cells under test can
be organized as Z € CVX, where C™" denote an mxn
complex-value space. And the range migration is
neglected. In addition, a set of target-free training data
denoted by collected from R range cells is assumed to be
available to estimate unknown clutter covariance matrix.
We need to decide between the null hypotheses H, and
the valid hypotheses H,, where the hypothesis H, or H,
supposes that a range-spread target is present or absent in
the received data. Hence, the detection problem at hand
can be formulated as the following binary hypothesis test:

. ZINCN(Jqla’yM)’ t=152"”7K (1)
"\ ~CN@O.M), t=1,2,--. R
[z ~CNHp,+JqyM), 1=12,--- K @
"y ~CNO,M), 1=1,2,--,R

(i) The symbol “~” means “is distributed as ”;

CN (r, M) implies a circularly symmetric, complex Gaus-
sian distribution with mean vector r and covariance
matrix M.

(ii) z, € C"! is the tth column of test data Z, which
denotes the returns from the th range cell under test.

(iii) y, € C™! is the tth column of training data ¥,
which denotes the returns from the tth training range cell.

(iv) H € C"” and J € C™ denote the known full-co-
lumn-rank unitary matrixes for target signals and interfer-
ence signals, respectively. H and J are supposed to be li-
nearly independent, and let B =[H J] be a full-column-
rank augmented matrix such that p+¢g < N.

(v) p.eC and ¢q,€C?™ imply determinate but
unknown complex coordinate vectors for target signals
and interference signals in the tth range cell under test,
respectively.

(vi) M denotes the unknown Hermitian positive defi-
nite covariance matrix of training data, and y>0 is a
scaling factor accounting for unknown power mismatch
between the test data and training data. Note that y =1 in
HE while y # 1 in PHE.

3. Detector design

In this section, the two-step criterion is adopted to design
Gradient tests for the detection problem in (1) and (2).
First, it is assumed that the clutter covariance matrix M is
known, and derive a Gradient test statistic by utilizing
test data. Next, we obtain the maximum likelihood (ML)
estimate of M by only using the training data, which is
then employed to replace the true clutter covariance
matrix in the detection statistic derived before. The spe-
cific implementation steps are as follows.

In the first step, it is easy to obtain the probability den-
sity function (PDF) of Z =[z,,2,, - ,2x] under hypothe-
sis H, [30] as follows:

exp{-u[M(Z-10)Z-10)"|/)
ﬂNk,yNK|M|K

Jo(Z) = SN E)

And the PDF under hypothesis H; can also be
expressed as

exp{-tr[M"'(Z- BD)(Z - BD)" |/}

n—NK,le(l M|K
where D=[P' Q']' with P=[p,,ps»-.px] and Q=
(91,92, .qk]; || and tr(*) imply the determinant and
trace of a square matrix, respectively. Moreover, let
0 =[07,07]" € Crk+ak+Dxl with @, = vec(P) € CP*! and
O, = [y,vec(Q)]" € C“¥+Dx "where vec(-) represents the
vectorization of a matrix.

Then the Gradient test for complex-valued signals [31]
is given by

fo(Z) =

“4)
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where A, and T, denote the detection statistic and thresh-
old, respectively; 0, is the ML estimate of @ under
hypothesis Hy; @y is the value of @, under hypothesis H,
@rl is the ML estimation of @, under hypothesis H,. We
can directly obtain @,, =0 because the target is absent
under hypothesis H,,.

Taking the derivative of the logarithm of (4) with

respect to @, results in

dln fi(Z) _1 IANE - I TVT
T _y[vec(((Z JO) M'H))HI'. (6)

0=06,

Performing the derivative of (3) with respect to @, and
then setting the result to be zero, it yields the ML esti-
mate of Q under hypothesis H:

00 =J" N J"Z (7)
where J = M~'?J, Z = M~'?Z. Then (6) can be rewrit-
ten as

dln fi(Z) 1 S
a—w oo, = ;[Vec((l P;H) ) (®)
where P; =1Iy—J(J"J)"'J" with I, implying an mxm
identity matrix, H = M~'*H.

To obtain the detection statistic, it is necessary to

acquire 0, in (5). According to (4), the ML estimate of
D under hypothesis H, can be obtained [21] as follows:

D, =(B"B)'B"Z 9)
where B = M~'2B. Note that the ML estimate of P under
hypothesis H,, denoted by P,, is the first p columns of

D,. In the sequel, we try to obtain P, from (9). It is
straightforward to confirm

S H'H H"]
H = - - - -

BB_[ HEEY } (10)

For convenience, the inverse of B"B is denoted by
Cl] C|2

C= 11

[ ¢, Cy ] (b

where C,, =[H'H-H"JJ"J))"'J'H]"' and C,, =

—~C H"J(J"J)™', which can be obtained by the matrix
inversion lemma [22]. Hence, we have

P =C\H'Z+C,J"Z = (H"P}H) H'P}Z. (12)
Accordingly, we have
6, = vec(P,) = vec(H"P+H)'H" P+Z). (13)

Note that @, =0. Substituting (8) and (13) into (5),
after some algebra and simplification, we obtain Gradi-
ent test for given y as

L (oin o\
A= —te(Z"PpyZ) 2T, (14)
Y T H

where Pp.g = P;FI(FI“P}I_{)”I_{”P}.

In the second step, replacing the true covariance matrix
M with its ML estimate based on the training data only,
ie.,

S=yy" (15)

into (14), we can obtain the 2S-Gradient for given y as
1 /5 ~\ Hi
Aos Gradient = — 1T (Z “p pial ) Z Ts Gradient (16)
Y H,

where Pp.jy = P;f{(f{“P}fI)“fI“PJ% with  P;=1Iy—
JUJU)'JY and J=8"J; Z=S"°Z, H=S""H;
Aos_Gradient ANA Tos_gragien: d€note the detection statistic and
threshold after substitution, respectively.

Furthermore, we can obtain two-step Gradient test in
HE by letting y = 1 in (16) as follows:

~ ~\ Hi
AZS—Gradiem—HE =1 (ZH PP;HZ) E TZS—Gradienl—HE (1 7)

0

where Ass_gradien—ue ANA Tas_cragien—ue denote the detection
statistic and detection after substitution in HE, respec-
tively. Note that the detection statistic of 2S-Gradient-HE
is just consistent with the 2S-GLRT-HE in [20].

In the following, our focus is to seek the ML estimate
of v under hypothesis H,, i.e., ¥y, to obtain the final test
statistic in PHE. The ML estimate ¥, is the unique posi-
tive solution of the following equation [13]:

K

A NK
Pt (18)
e Ak’o+§ K+R

where ¢ denotes the unknown, s=min(¥,X), and 4, is the
kth non-zero eigenvalue of Z"P;Z.

According to (18), substituting ¥, for y into (16)
results in the two-step Gradient test in PHE:

1 ~ _\H
AoS—Gradient—PHE = I (Z PP%FIZ) Z Tos_Grdien—pne~ (19)
7’0 7 Ho

where Ass_rdien—pue a0d Tas_gradgiem—pue denote the detec-
tion statistic and threshold after substitution in PHE,
respectively. It is worth mentioning that, both of the pro-
posed detectors possess the CFAR properties under the
design assumptions, which will be proved in the next sec-
tion.

4. CFAR behaviors

In this section, a deep discussion is given on the depen-
dence of the proposed detectors on clutter parameters
under the design assumptions. To prove the CFAR pro-
perties of the 2S-Gradient-HE and 2S-Gradient-PHE, we
first rewrite the quantities ZHPP; #Z in (16) as
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Z,= Z”PP;,;,Z =
Z"FHH"FH) 'H"FZ (20)
where F=8"1-S'J(JUS'))'JUS '€ CMV Define
J, = j(jHj)_l/z € C", and then we have J|'J,=1I,.
There exists an orthogonal matrix U= [J,J,.] € C"¥
with JTJJ_ = IN—q and JTJH = O(N—q)xq; where Oan
denotes an m X n zero matrix, and the semi-unitary matrix

J. € CY™™9 can be obtained by the singular value
decomposition (SVD) of J. Let

Z=U"M""Z, e C*¥

H=U"M"""H ¢ C""

J=U"M""J e C" Q1)
;v:UHMl/2FM1/2U c CNXN

§=UHM—1/2SM—1/2U € OV
= Z/+Jy. Then, (20) can be recast as

~H~ ~ ~H~ ~

Z,=yZ FHH FH)'H FZ. (22)

where Z,

~HA~ ~

Under hypothesis Hy, one can verify that, after whiten-
ing, each column of Z is distributed as a zero-mean com-
plex circular Gaussian random vector, with covariance
matrix Iy, i.e., Z ~ CN(Oyxz,Iy). Meanwhile, from (15)
and (21), after whitening, g obeys a complex central
Wishart distribution with R degrees of freedom and scale
matrix Iy, ie., S ~CW(R,Iy).

Herein, according to (22), let

1 ~H~ ~ ~H~ ~
Z =-Z,=7Z FHH FH) 1H FZ (23)
Y
Next, we define the inverse of g by
-1

< Wl] W]2
S = 24
[ Wa Wa ] @4
where W, € C™4, W,, € Co¥ W, e C¥9% and

~—1
W, € CV-9XN-9) are the submatrix of S defined for
convenience of the following representation. From (21)
and (24), we can rewrite F as

;' — UHMI/Z[S—] _S—IJ(JHs—lJ)—IJHs—l]MI/ZU —
~-1 ~-1~ ~H~-1~ ~H~-1
S—SJ(JSJ)IJS=

~—1 -1 -1

S -S E/(E'S E) IEiS =

0, 0, n-
[ 9%q qﬁ(iV 9) ] (25)
O(N*!I)Xﬂi Szz
Wlth El = [Iq,OqX<N_q)]T and S22 = (W22 - W21W1_1] le)_l

which is just the submatrix composed of last N—¢ rows

and last N—¢g columns of g, by the matrix inversion
lemma [22]. We also use ,}:E.(J“M"J)”2 in the
derivation of (25). Substituting the above result into (23),
we can obtain

~Ha-l ~ [ ~H~-1 ~ \7' ZH~-1~
Z,=2, SzzHZ(Hz SzzHZ) H,S,Z, (26)

where I}z and 22 are the last N—g rows of ITI and 2 s
respectively. It is straightforward to verify that, under
hypothesis Hy, due to the orthogonal matrix U and the
whltemng matrix M™%, Z, and M, are distributed as

~ CN(Ow-gxz>Iy-,) and S22 ~CW(R,Iy-,),
tlvely.

respec-

In what follows, using the matrix H,, we can con-

struct a unitary matrix in the form as V = [HzH,HL] S
~H ~ ~H ~
C(N_q)X<N_q) with HZH H2” =1, and H2l HZH = 0(N—[7—(1)><p;

~ ~ [~H~ \7}2 ~
where  H,, =H2(H H2) eCWVor  and H, €
COVmx¥=r=0 is a semi-unitary matrix, which can be
obtained by SVD of H,. Denote Zz =VH Z2,

My, = VMoV, Ey =104, | Then (26) can be

(N=p—g)xp
rewritten as

~H ~ -1

Z, =2, M, EZ(E“MZZ E)'EiM, Z,,  (27)

~-1 ~

~H ~
with VHH2 = E,(H, H,)"* used. Under hypothesw Ho,
thanks to the unitary transformation of V, sz and Mzzv
are distributed as

{Z 2, ~CN (O(N—q)xR N N—q)

~ (28)
My, ~CW(R,Iy_,)

Combining (27) and (28), we therefore conclude that
the statistical property of Z’, does not depend on M and y
under hypothesis H,. Then, it is straightforward to con-
clude that the 2S-Gradient-HE is CFAR against M, for
v =1, according to (17), (20), and (23).

Next, suppose A;; is the kth non-zero eigenvalue of
ZHP;Z/)/. By comparing ZHP;Z with ZHP;Z/% it is
easy to find that A, o = yA;;. Therefore, if & is the solu-
tion of the following equation:

i NK
YL @
P /lk$1+§ K+R

then y&, will also be the solution of (18), i.e., ¥, = v<o.

Note that & depends neither on M nor on y under
hypothesis H,, thanks to the independence of ZHP;Z [y
on M and v, which can be proved in the following man-
ner:
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~H ~ ~
7H ” 4 _ H _ _
Z'PiZ/y=2"FZ|y=Z FZ=
~H ~ -1 ~ ~H ~ -1 ~

Zz Mzzzz = szMzzvzzv- (30)

Then, substituting 9, = ¥$, into (18) results in

1 H
’
/lZS—Gradicnt—PHE = §' tr <Z7)]§ TZS—Gradicnt—PHE~ (3 1)
0 0

Hence, the 2S-Gradient-PHE possesses the CFAR
property with respect to unknown clutter covariance
matrix M and the scaling factor 7.

5. Numerical results

In this section, several numerical results are conducted by
Monte Carlo simulations, to investigate the performance
of the proposed 2S-Gradient-HE and 2S-Gradient-PHE.
To alleviate computation complexity, we set Pfa:10_3. P
and Q are randomly generated as non-zero matrices. The
(ij)th element of clutter covariance matrix is set as
[M];; =p" (i, j=1,2,---,N), where p is the clutter one-
lag correlation coefficient. The signal to clutter ratio
(SCR) and the interference to clutter ratio (ICR) are
respectively defined as

SCR = Ltr(PHH”M‘IHP) (32)
Ky
and
ICR = itr(QHJHM-lJQ). (33)
Ky

Set ¥y =2 in PHE, if not specified. In addition, four
typical models of multiple dominant scatterers (MDS) are
discussed, as shown in Table 1 [32], where only 4, out of
K range cells have target signals components.

Table 1 Target energy distribution of h, range cells for different
MDS models

Range cell number

Model number

1 2 hy
Model 1 1/hy 1/hy 1/hy
Model 2 0.5 0.5/(hy—1) 0.5/(hy—1)
Model 3 0.9 0.1/(hy—1) 0.1/(hy—1)
Model 4 1 0 0

For simplification, in subsequence, the abbreviation 2S-
Gradient is indiscriminately used to indicate the pro-
posed detector in HE or PHE, unless otherwise stated.

5.1 CFAR assessment

In order to verify the CFAR properties of the 2S-Gradi-
ent, the curves of probability of false alarm P, versus
detection threshold for different clutter parameters

involving p and y is shown in Fig. 1. Obviously, all
curves with different parameters overlap each other. This
means that the proposed detectors both possess the CFAR
properties under the design assumptions, which is consis-
tent with the theoretical analyses in Section 4.

10°
10*] L
e
10 2+
. . . . . . .
10 0 2 4 6 8 10 12 14
Threshold
— 1 p=0; ——-:p=0.1; 1 p=0.5; --—- 1 p=0.9.
(a) 2S-Gradient-HE
10°
10 1k
s
]0*2 L
107 - ) * y Lo
0 5 10 15 20 25 30
Threshold
— . p=0.1,y=1; ——- :p=0.1, y=2;
:p=0.9,y=1; ——- :p=0.9, y=2.
(b) 2S-Gradient-PHE
Fig. 1 P, versus threshold of S-Gradient in HE or PHE for N=8,

K=15, R=16, p=3, ¢=2, p=0,0.1,0.5,0.9, h,=3, ICR=15 dB, y=1,2

5.2 Influence of target parameters

In Fig. 2, we assess the effect of four typical MDS mo-
dels on the 2S-Gradient (i.e., probability of detection P,
versus SCR curve). It is obvious that the 2S-Gradient
tests perform the same for different MDS models in
Table 1, which implies that the proposed detectors can
avoid the “collapsing loss” [33] usually resulting from an
unresolved point-like target, in both HE and PHE. More-
over, Fig. 3 depicts the curves of P, versus SCR for
hy=3,7,10,12. It is shown that the 2S-Gradient tests have
almost the same detection performance for different va-
lues of 4, which also indicates the robustness of pro-
posed detectors to different MDS models.
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(a) 2S-Gradient-HE
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0.1 ¢
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2 4 6 8 10 12 14

SCR/dB
(b) 2S-Gradient-PHE
—— :Model 1; —--:Model 2; - :Model 3; ---- : Model 4.
Fig. 2 P, versus SCR of 2S-Gradient tests in HE and PHE with
Model 1-Model 4 for N=8, K=15, R=16, p=3, ¢=2, Pfa=1073, p=0.9,
h=3, =2, ICR=15 dB

In addition, the detection performance of 2S-Gradient
is shown for various orders of target subspace (p=2,
3,4,5). Refer to Fig. 4, it can be seen that the perfor-
mance is degraded with increasing p for both Gradient-
based detectors, which may be explained as that increas-
ing p leads to an increase in the number of estimated
parameters of unknown P.
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(a) 2S-Gradient-HE
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2 4 6 8 10 12 14
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(b) 2S-Gradient-PHE

— 1 h&3; ==t h=T < th=10; ——- T h=12.

Fig. 3 P, versus SCR of 2S-Gradient tests in HE and PHE for N=8,
K=15, R=16, p=3, g2, P,a=1073, h=3,7,10,12, p=0.9, y=2, ICR=15 dB
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08} /
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(a) 2S-Gradient-HE

0 2 6 8 10 12 14 16
SCR/dB
(b) 2S-Gradient-PHE
— P72 - p=3
Fig. 4 P, versus SCR of 2S-Gradient tests in HE and PHE for N=8,
K=15, R=16, p=2,3,4,5, ¢—2, P,-,=1073, h=3, p=0.9, =2, ICR=15 dB

ip=4; ———- p=5.

5.3 Influence of interference and clutter parameters

Fig. 5 depicts the curves of P, against SCR with ICR=
5 dB, 10 dB, 15 dB, 20 dB. It highlights that the 2S-Gra-
dient tests can effectively reject interference due to the
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results that four curves coincide with each other for dif-
ferent ICRs in both HE and PHE. Fig. 6 analyses detec-
tion performance for different clutter one-lag correlation
coefficients. The numerical results imply that the pro-
posed detectors are robust to variations of the clutter cor-
relation.
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Fig. 5 P, versus SCR of 2S-Gradient tests in HE and PHE for N=8,
K=15, R=16, p=3, ¢~=2, P,=10", h=3, p=0.9, =2,ICR=5,10,15,20 dB
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Fig. 6 P, versus SCR of 2S-Gradient tests in HE and PHE for
N=8, K=15, R=16, p=3, q=2, P,=10", h=3, p=0, 0.1, 0.5, 0.9, 7=2,
ICR=15dB

Fig. 7 explores the influence of N and R on the detec-
tion performance of the 2S-Gradient. On the one hand,
when R is constant, the detection probability decreases
with the increase of N. One possible explanation is that an
increase in N means an increase in the dimension of the
estimated M, which further leads to the decline in estima-
tion accuracy of unknown M. On the other hand, the
results shows that the detection performance improves as
R increases in either HE or PHE for a fixed &, due to the
fact that larger R leads to a more accurate estimate of
unknown M.

Fig. 8 plots the curves of P, against SCR with diffe-
rent orders of interference subspace (¢=2,3,4,5). Analo-
gous to Fig. 4, the performance degenerates with increas-
ing g, which may come from the fact that increasing ¢
leads to an increasing number of estimated parameters of

unknown Q.

SCR/dB
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Fig. 7 P, versus SCR of 2S-Gradient tests in HE and PHE for
N=6,8,10, K=15, R=12,16,20, p=3, ¢=2, P,=10"", h=3, p=0.9, y=2,
ICR=15 dB
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Fig. 8 P, versus SCR of 2S-Gradient tests in HE and PHE for N=8,
K=15, R=16, p=3, ¢=2,34,5, P,=10", h=3, p=0.9, =2,ICR=15 dB

5.4 Performance comparison in HE

In this subsection, we assess the proposed 2S-Gradient-
HE, by comparison with the existing subspace detectors

for the detection problem in HE indicated as (1) and (2),
including 1S-GLRT-HE [20], 1S-Rao-HE [21], 2S-Rao-
HE [21], 1S-Wald-HE [22], and Gradient-HE [23]. Note
that the 1S-Wald-HE are designed for point-like targets
and the Gradient-HE has not taken the interference into
account.

Additionally, there are a number of potential reasons
why the nominal signal subspace matrix H deviates from
the actual one H,, including wavefront distortions and
array calibration errors [24—26]. Therefore, we also take
the mismatched case into account in the following perfor-
mance comparisons, and use the squared cosine of the
mismatch angle ¢ between the actual subspace H, and
the nominal value H in the whitening space to measure

the degree of mismatch, i.e.,

|er (H, M HD|
w(HM-"H,) v (H"M-'H)'

cos’¢p = (34)

Note that the SCR in the mismatched case is expressed
for HE as SCR’ = tr(P"HYM'H,P)/K.

Fig. 9 shows P, of different detectors versus SCR in
HE for the matched case. It highlights that under the
assumed circumstances, the 2S-Gradient-HE have the
similar detection performance with the 2S-Rao-HE and
performs better than the other detectors. Fig. 10 shows P
of different detectors versus SCR’ in HE for a typical
mismatched case (cosz¢=0.3). It can be seen that the pro-
posed 2S-Gradient-HE performs the best when the mis-

match occurs.
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Fig. 9 P, versus SCR of different detectors in HE for N=8, K=15,
R=24, p=3, =2, P,=10"", h,=3, p=0.9, ICR=15 dB
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Furthermore, to evaluate mismatch performance,
Fig.11 shows P, versus cos2¢ for a given SCR'. It can be
seen that the Gradient test proposed in HE possesses
strong robustness against the steering vector mismatches,
and performs better than the other detectors under diffe-
rent degrees of mismatch. In addition, Fig.12 shows mesa
plots of constant detection probability in the mismatched
cases. To avoid curves overcrowding in Fig.12, only 2S-
Gradient-HE, 1S-GLRT-HE and 2S-Rao-HE are shown,
because the three detectors perform better in the previous
comparisons. It can be found that, as the mismatch degree
increases, all detectors need increasing the values of SCR’
to maintain the same value of P,;. However, the increased
values of SCR’ for 2S-Gradient-HE is the least among
them, and is almost limited within 2 dB, which also
exhibits the best robustness of 2S-Gradient-HE to differ-
ent mismatched cases.
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R=16, p=3, ¢=2, P,=10"", h,=3, p=0.9, ICR=15 dB, SCR =11 dB
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2S-Rao-HE.

5.5 Performance comparison in PHE

Herein, we compare the proposed 2S-Gradient-PHE with
the existing detectors designed for PHE including 1S-
GLRT-PHE [20], 2S-GLRT-PHE [20], 1S-Rao-PHE
[21], 2S-Rao-PHE [21], 1S-Wald-PHE [22], and Gradient-
PHE [23]. Note that the 1S-Wald-PHE are derived for
point-like targets and the Gradient-PHE does not con-
sider interference. In addition, the signal-to-clutter ratio
in the mismatched case is expressed for PHE as
SCR’ = tr(P"HM'H,P)/(KYy).

Similarly, Fig. 13 and Fig. 14 show P, of different
PHE detectors versus SCR for matched case and versus
SCR’ for mismatched case, respectively. It can be seen
that under the assumed circumstances, for either matched
or mismatched case, the 2S-Gradient-PHE performs bet-
ter than the other detectors.
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Fig. 13 P, versus SCR of different detectors in PHE for N=8,
K=15, R=24, p=3, ¢=2, P,=10"", h=3, p=0.9, =2, ICR=15 dB
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Fig. 15 further shows P, versus cos2¢ for a given SCR".
It implies that the 2S-Gradient-PHE performs robustly to
the steering vector mismatches, and outperforms the other
PHE detectors for different mismatched cases. Further-
more, for concise display, Fig.16 only shows mesa plots
of constant detection probability in different mismatched
cases for representative PHE detectors, including the 2S-
Gradient-PHE, 1S-GLRT-PHE, 2S-GLRT-PHE and 2S-
Rao-PHE. We can see that all detectors require addi-
tional SCR' to achieve the same detection probability for
different mismatch degrees, but the variations of SCR' for
2S-Gradient-HE is the smallest and always less than
6 dB. These results indicate the strong robustness of 2S-
Gradient-PHE to different cases of steering vector mis-
match.
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6. Conclusions

The problem of adaptively detecting range-spread targets
in subspace interference plus Gaussian clutter with
unknown covariance matrix is considered for both homo-
geneous and partially homogeneous environments in this
paper. Assume that the target signal and interference sig-
nal are modeled as deterministic signals lying in two li-
nearly independent subspaces with unknown coordinates,
respectively. According to the two-step Gradient test cri-
teria, for subspace detection of range-spread targets, the
2S-Gradient-HE and 2S-Gradient-PHE are derived in HE
and PHE plus structured interference, respectively. Both
of the proposed detectors possess CFAR properties
respect to unknown clutter covariance matrix as well as
the power level. Moreover, two proposed detectors can
effectively reject the interference with varying power le-
vels. In addition, the 2S-Gradient tests both performs bet-
ter than the counterparts under the assumed circum-
stances, especially in mismatched cases of signal steering
vector.
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