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Abstract: This paper focuses on the adaptive detection of range
and Doppler dual-spread targets in non-homogeneous and non-
Gaussian sea clutter. The sea clutter from two polarimetric chan-
nels is modeled as a compound-Gaussian model with different
parameters, and the target is modeled as a subspace range-
spread target model. The persymmetric structure is used to
model the clutter covariance matrix, in order to reduce the
reliance on secondary data of the designed detectors. Three
adaptive polarimetric persymmetric detectors are designed
based on the generalized likelihood ratio test (GLRT), Rao test,
and Wald test. All the proposed detectors have constant false-
alarm rate property with respect to the clutter texture, the
speckle covariance matrix. Experimental results on simulated
and measured data show that three adaptive detectors outper-
form the competitors in different clutter environments, and the
proposed GLRT detector has the best detection performance
under different parameters.
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1. Introduction

Adaptive detection of radar targets based on characteris-
tics of sea clutter has been a research hotspot in the radar
field. The complexity of clutter and the concealment of
new-type targets are major factors affecting the perfor-
mance of the target detection. In order to improve the
ability of radar target detection in sea clutter, it is impor-
tant to understand the statistical property of sea clutter
and to design an effective detection method.

In the early years, the Gaussian model was proposed to
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describe the low-resolution radar sea clutter, according to
the central limit theorem [1,2]. For the high-resolution
radar, the number of scatters is reduced in a radar range
resolution cell. In this case, although the local backscat-
tering from each sea surface resolution cell still satisfies
the central limit theorem (CLT), the sea clutter presents
non-Gaussianity, which results from the spatial and tem-
poral texture modulations of the large-scale structure
(refer to as gravity waves) on the local Gaussian speckle
(refer to as capillary waves) [3]. Based on the scattering
mechanism of the sea surface, a two-component com-
pound-Gaussian (CG) model was proposed to describe
non-Gaussian sea clutter [4]. The commonly used CG
distributions of sea clutter contain the K distribution
[5—7], the generalized Pareto (GP) distribution [8],
the CG distribution with inverse Gaussian (CG-IG) [9],
and the CG distribution with generalized IG (CG-GIG)
[10].

Based on the sea clutter models, some ad-hoc detec-
tors have been proposed to detect radar targets [11].
These detection algorithms are designed to exploit the
radar echo data from only one single polarimetric chan-
nel. Therefore, they usually have poor performances to
detect weak targets due to the lack of multi-channel
polarimetric information. In order to solve this problem,
the polarimetric diversity technology has been widely
used to improve radar performance in recent years. Dif-
ferent polarimetric characteristics between sea clutter and
target signals provide a way to improve the detection per-
formance of radar targets. Kelly’s generalized likelihood
ratio test (GLRT) was extended to the multi-polarimetric
domain, and the polarimetric space-time generalized like-
lihood ratio (PST-GLR) detector was derived by using
one-step GLRT in Gaussian clutter [12]. A polarimetric
adaptive matched filter [13] was proposed to process the
information of two polarimetric channels based on two-
step GLRT, which requires less computation than PST-
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GLR detector. The detectors designed based on the Gaus-
sian clutter model will suffer severe performance degra-
dation in the heavy-tailed non-Gaussian sea clutter.
Therefore, a CG model [14] was introduced into the
design of the polarimetric adaptive detector and pro-
posed a texture-free GLRT (TF-GLRT), which uses radar
echoes of two polarimetric channels. The Wald and Rao
tests were proposed to design polarimetric detectors for
radar target detection [15].

The above detectors are designed for point-like targets,
which always only occupy a single range cell. When a
target is illuminated by high-resolution radar, it is usu-
ally divided into multiple scattering centers, its echoes are
distributed on multiple continuous range cells [16—18].
This kind of target is named as a “range-spread target”. In
addition, the high-resolution radar can also observe the
motion postures of different parts of a target, so the tar-
get echoes may have the Doppler spread behavior. There-
fore, it is more practical to model the target echo as a
multi-rank linear subspace range spread target. Many
researchers proposed some algorithms to detect the multi-
rank linear subspace range spread target. For example,
Guan et al. [16] proposed a subspace range-spread target
adaptive detection algorithm that utilized the GLRT in
CG clutter and radar echoes from a single polarimetric
channel. Alfano et al. [19] proposed a GLRT detector, a
Wald detector, and a detector without secondary data for
the rank-one range spread target by using multi-polari-
metric channels and the CG clutter model.

The performance of adaptive detectors can be affected
by the number of secondary cells. The Reed, Mallett, and
Brennan (RMB) criterion [20] shows that, when the num-
ber of secondary cells is more than twice the number of
accumulated pulses, the adaptive loss of the detection
algorithm compared with the theoretical optimal perfor-
mance can reach an acceptable range.

In practice, it is impossible to obtain enough se-
condary cells when the sea clutter distribution is hetero-
geneous. To solve this problem, a polarimetric covari-
ance matrix model was established by using polarimetric
prior information in [21], which reduces the dependence
on the secondary data. In addition, a detector using the
persymmetric property of the clutter covariance matrix
was proposed in [22], which effectively improves the
detection performance when the secondary data are insuf-
ficient.

The utilization of the polarimetric information can
improve the detection performance of radar targets in sea
clutter [23]. And, the use of the persymmetric property of
the covariance matrix can reduce the dependence on the
secondary data [24]. Therefore, in this paper, we address
the problem of adaptive polarimetric detection for radar

targets in non-Gaussian and non-homogeneous sea clut-
ter with an unknown covariance matrix. The main contri-
butions of this paper are summarized as follows.

(1) A complex model is used to model the radar target
and sea clutter in order to make the designed detector
more practical. The target is modeled as a multi-rank sub-
space model, and the clutter speckle covariance matrix is
modeled as a persymmetric matrix.

(i1) Three adaptive polarimetric detectors are proposed
based on the two-step GLRT test, Rao test, and Wald test.
Simulation results show that the three detectors have less
dependence on the secondary data and have the best
detection performance in different parameters.

(iii) The proposed three detectors have constant false
alarm rate (CFAR) property with respect to clutter the
texture distribution, and the approximate CFAR property
with the respect to speckle covariance matrix.

The remainder of this paper is organized as follows.
The target and sea clutter models are presented in Sec-
tion 2. Three polarimetric detectors are developed on the
basis of the two-step versions of the GLRT, Wald, and
Rao tests in Section 3. The performance analysis of the
proposed detectors is provided in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Detection problem description

Assuming that radar echoes are collected from N consecu-
tive coherent pulses by two polarimetric channels (HH
and HV) in a coherent processing interval (CPI). The
range spread target to be detected occupies H range cells,
which are called the cells under test (CUTs), and the data
in CUTs are named as primary data. There are K refe-
rence cells around CUTs and the data in the reference
cells are called as secondary data. The returns from two
polarimetric channels on the kth range cell can be denoted
by Nx1 dimensional complex vectors xyy; and Xpyy.
The echo signals of two polarimetric channels are
arranged as X, = (X, X}y,) - The range spread target
detection problem in sea clutter can be formulated in
terms of the following binary hypothesis test:
x;=c¢,i=12,---,H
Ho: { xo=eco k=H+1H+2- H+L D

X;=8;+¢;, i:1’27”"H
Hi: { Y=o k=H+1H+2,- H+L

where H, denotes the hypothesis that the target is absent,
and H; represents that the target is present. The reference
cells only contain sea clutter collected from the both sides
of CUTs, which are independent identically distributed
(IID) and have the same speckle covariance matrix as sea
clutter in CUTs.
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In a radar CPI, the sea clutter sequence can be mo-
deled as a spherical invariant random vector. The clutter
vectors cyy,; and cyy,; from the two polarimetric chan-
nels are given by

Cup,i = VTunWnm,i
b
Cuv,i = VTuv.illnv,

where uyy; and uyy,; denote speckle components and are
modeled as N-dimensional complex Gaussian random
vectors with zero mean, Tyy; and Tyy; denote texture
components and are non-negative random constants. The
clutter covariance matrix in the HH polarimetric channel is

i=1,2,---,H 2)

My, = E[cHHcEH] = THHE[uHHuEH] =tyuRun  (3)

where Ryy is the speckle covariance matrix, and ()™ rep-
resents the matrix conjugate transposition operation. The
covariance matrix of the radar echoes in the two polari-
metric channels can be given by M, =E[c;c] =T,RT;,

exp{j2nfii)

i

exp{j2nx Nfi,} exp{j2nxNf.,}

where fi;, represents the normalized Doppler fre-
quency of the kth scatterer at the ith range cell.

Equation (6) can be rewritten by taking the singular
value decomposition (SVD) of the steering matrix,
E; = UA,V,. Thus, the target signal can be rewritten by

Sipot = Uibjpo, 1=1,2,--- ,H;Pol=HHHV  (8)

where b;p, = A;Via;p,, U, is the N X N; dimensional uni-
tary matrix representing the left singular vector of E;,
called the mode matrix; the elements in b;p, =
[Dipat(1), (Bipo(2), -+, bipot(N;)]"  denotes  the  mode
weights. The target backscattered signal is located in the
linear subspace < U, > which is formed by the column
vector of U, and its position is determined by b;p,; the
number of scatters in the ith element determines the
dimension of the linear subspace < U, >.

For the linear array receiving signals or the pulse
sequence with the symmetric interval distribution, the
clutter covariance matrix is persymmetric [22]. Thus, the
covariance matrix R is a matrix with double symmetry
and can be transformed to a real symmetric matrix
R = WHRW by a transformation matrix:

1 IN/Z QN/2 ]
— . , , even
\5[ e —i0wp
W= 1 Iy 0 Owonp ©
v 0 V2 0 , odd
2l ilwene 0 =iQu-rp

exp{j2nfi,}
exp{i2nx2f,;} exp{j2nx2f,}

where R denotes the speckle’s covariance matrix,

_ | Tani 0
ri_[ 0 THv,i

} ®Iy. @)

The sea clutter in HH and HV channels is assumed to
be independent [25], and thus

Ry 0
R:[ 0 RHV]' Q)

The signal s; = (s}, 87;)" of range and Doppler dual-
spread target [16] can be expressed as

Sipol = Eiai,Pola i= 1,27’ o ’H’ Pol = HHaHV (6)

where  §;pot = [Sipoi(1), Sipoi(2),++ , sipo(IN)] denotes the
target echoes from HH or HV polarimetric channel, and
@ipor = [Gipoi(1), @ipoi(2), -+ ,aipa(N;)] represents the com-
plex amplitude of the N; scatters in the HH or HV polari-
metric channel at the ith CUT, the steering matrix E; is

exp{j2nfin,}
exp {2 X 2fi ) (7

exp{j2n X Nfin,}

NXN;

In this case, the radar echoes can be converted by the
matrix W, and the binary hypothesis test problem in (1)
and (2) can be rewritten as

X =¢ =Wpc;
Hy:< s (10)
X =& = Wpcy
ij=§i+5i=W0s,'+Woci
H11{~ ; Pol Pol , (1)
X, =& = Wpci
where Wy =LQW, i=12,---H k=H+1,H+2,---,
H+ L.

The joint probability density function (PDF) of
¥, %,,--- %y can be given by

H

(X, X, ,fH|THH,THV§Hy) = 1_[

i=1

1
TEZN(THHJ,THV,[')N |R|

eXp(—U'?(Xi —VP,'B,')H 'irl(ii —Vi)iBi)O'i)

(13)

where y =0,1 corresponds to H, and H,, respectiv-

ely. Then, o; = diag{ 1/ VTHH,ial/ VTHv,i} T, Tan = (Taw

Tan2, > Ta) Tay = (Tav,, Tavas > Tava), Pi = WeaL®

5 | Wxiun 0
U; and X;= 0 Wiy

matrix R = Wil RWy,, is a real symmetric matrix, the tar-
get mode weight matrix is denoted by

, the speckle covariance
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_ bi,HH 0
B,-—[ 0 b,-,Hv]' (14)

3. Design of polarimetric detectors for
subspace range-spread targets

In this section, the two-step GLRT, Wald, and Rao tests
are employed to design adaptive polarimetric detectors,
respectively. First, we assume that the linear subspace
< U, > and its dimension N; are known. In practical appli-
cations, based on the minimum description length crite-
rion [26] or other model order selection methods [27,28],
N, can be determined, and then < U; > can be estimated
by super-resolution spectrum estimation methods such as
multiple signal classification (MUSIC) and estimation of
signal parameters using rotation invariance techniques
(ESPRIT) [29].

3.1 Polarimetric detector based on the two-step
GLRT

Assuming that R is known, the GLRT of the binary
hypothesis test problem in (10) can be denoted as
S&, X, EylTan, Tav; Hy) -

- = 15
'7xH|THH’THV;H0) :077 (15)

max

B, B tun.Tay

max f(X,%,,-

TuH,THY

The maximum likelihood estimate of B; can be given
by [14] as follows:

B=(PRP) PR, (16)

The maximum likelihood estimation of texture under
two hypotheses [19] is defined as follows:

1 Re{%"(1,2)
T =<7, 1) 1+—{ |
© N R
i1 7022
a7
1 Re{?”(1,2)
T;{;J_:N 72.2)1+ { |
VPP DP2.2)

where ¥ = X*[R™' —yR™'P,(P'R™'P))"'P'R'1X..
Substitute (16) and (17) into (15), and the persymme-

tric subspace polarimetric detector of range-spread tar-

gets based on GLRT (PerSPolGLRT) can be obtained as

i PO DPO2.2) + Re(PO(1,2)
2 1PerSPOIGLRT -

APV DPO2,2) +Re(#(1,2) ™

(18)
3.2 Polarimetric detector based on the Rao test

First, we give some notations as follows:
(i) the covariance matrix R is known;
(i1) Tuu,Tav, and By, B,,---, By are unknown parame-

ters;

(iii) 6, = [6],.6),,--- .67, 1", where 6,; = [br 1. br 2.,
Drion»brinsbrins s brion 1%, brin and by, are the real and
the imaginary partsof b;,, (i = 1,2,--- ,H;n=1,2,--- ,2N,);

(iv) 0, =167,,67,,--- .67 ,1", where 0,; = [Ty, Tiv,]";

(v) 9=[6",07]" contains all unknown parameters.

Rao test for the problem of interest is given by

Olnf (% Forse X 1O 11y /a
06, oty [J (00)]0,.,0,.
1 ¥ Y oo ¥ 0 \
Olnf (%, %, ,Xm | 6) ;77 (19)
80, 0=8, Ho

where 90 is the maximum likelihood estimation of 6
under the H, hypothesis, f(%;,%1, -, Xy | 6) is the PDF
of ¥,,%,,---,%y under the H, hypothesis, J is the Fisher
information matrix, which can be partitioned as

Jo,.0.(0)  J56(0)
Jo.6.(0)  Jo.4(0)

where [J ()]0, = (Jo,0,(0) = Jo,0.(0)J ", (0)J 5..(0))".
After algebraic manipulations, the persymmetric sub-

space signal polarimetric detector of range-spread targets

based on the Rao test (PerSPolRAO) can be obtained as

J(©®) = [ (20)

~ -1 ~ H,

H
Z.}Z‘f{r;&k_li’i(ﬁ?k'lﬂ) P?R_IFZSX‘iEr]PerSPOIRAO
i=1 0

€2y

where I';y is the maximum likelihood estimation of I';
under the Hy hypothesis.

3.3 Polarimetric detector based on the Wald test

Similar to Rao test, we also suppose that R is known. The
Wald test for the problem of interest is the following
decision rule:

(17 @)],,) 02 22)

where 8, =1[67,6"]" and 6, =167, .67 ,, -

1> 0% 17 are
the maximum likelihood estimates of @ and 6, under H,
hypothesis, respectively.

After algebraic manipulations, the persymmetric sub-
space signal polarimetric detector of range-spread targets
based on the Wald test (PerSPolWALD) can be obtained
as follows:

H H,
(j?rzllk_]i)i(i)?ﬁ_]i)i)_] X p?R_IFE:ii)EUPerSMWALD
=1 0

' (23)
where I';; is the maximum likelihood estimation of I';
under the H; hypothesis.

Three detectors are proposed to process echoes from
HH and HV channels. The speckle components of the sea
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clutter received by the co-polarized channel (HH or VV)
and cross-polarized channel (HV or VH) are independent,
so the persymmetric property of the speckle covariance
matrix can be used in the design of the polarization detec-
tor. The proposed detector can also process the data from
HH and HV channels.

3.4 Adaptive detectors design

In order to make the derived detectors fully adaptive, we
replace the covariance matrix R in (18), (21), and (23)
with an estimate of R based on the secondary data. The
approximate maximum likelihood estimator (AMLE) [2]
is an iterative estimation method, and can balance the
estimation performance and the calculation amount. In
addition, it can guarantee the CFAR property with respect
to the texture component and the speckle covariance
matrix. Thus, the AMLE is adopted to estimate the
covariance matrix R given by
ﬁPo],AMLE(m +1)=
L & xPol,kxll;IoLk

= , Pol=HH,HV (24)

~ 1.n
N k=H+1 xPoLkRpoI,AMLE(m) xPol,k

where m > 1 is the number of iterations, the starting point
of iteration is usually set as the normalized sample
covariance matrix estimate, i.e., IAQPOLAMLE(O) = RPM,NSCME.
The estimate of the speckle covariance matrix of sea clut-
ter is transformed as

R= Re(RAMLE (X1, %, JZL}) =
Re<WPolkAMLE {x1,x2,-+ ,xL}W.I:{(,])~ (25)

The fully adaptive detectors can be obtained by substi-
tuting the estimated value R in (25) into (18), (21), and
(23).

In the design of the above three detectors, the clutter
texture is estimated by the radar echo data. Therefore, the
test statistics are not affected by the fluctuation of the
power level and are independent of the clutter texture dis-
tribution. Moreover, the explicit form of the probability
of false alarm (PFA) cannot be given, the CFAR prop-
erty of the three detectors with respect to the speckle
covariance matrix is analyzed through the following
Monte Carlo experiments.

The experimental parameters are set as: N=8, H=4,
L=64, Py, =107*, and the speckle covariance matrix of
each polarimetric channel is an exponential decay covari-
ance matrix [Ruuli; =[Ruv],; =p" " (1<i<j<N). In
Fig.1(a), the PFA curves of three detectors are plotted
with respect to the speckle covariance matrix. The detec-
tion threshold used in this experiment is obtained when

p =0. From Fig.1(a), it can be seen that the PFA remains
constant for different p. Fig. 1 (b) shows the PFA curves
of the three detectors against AMLE. It can be found that
the detectors are CFAR with respect to p.

102

107}

—6

02 03 04 05 06 07 08 09 1.0

p
(a) Real R
1072
107 |
Q10 < =
107 ¢
10*6 1 1 1 1 1 1 1
02 03 04 05 06 07 08 09 1.0
p
(b) AMLE

—o6—: PerSPolGLRT; —+—: PerSPolRAO; : PerSPolWALD.

Fig. 1 PFA versus p

4. Performance assessment

In this section, we evaluate the performance of three
detectors through the simulated and real radar data. The
sea clutter is modeled by a K distribution, and thus clut-
ter textures Tyy and Ty obey the two parameter Gamma
distribution,  i.e., Ty ~ Gamma(Ayy, Upn),  Tav ~
Gamma(Ayy,uyy). The PDF of Gamma distribution is
given by
A

p(T) = #WTHGXP(—g‘r) (26)
where u is the scale parameter, reflecting the average
clutter power, and A is the shape parameter describing the
non-Gaussian characteristics of sea clutter. We set the
clutter parameters of the two polarimetric channels as
A = Any, Mup = gy, and P =107*, where & is the
scale factor. The detection threshold is obtained by 10°

independent ~ Monte  Carlo  experiments.  The
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probability of detection (Pd) corresponding to different
average signal-to-clutter ratios (A-SCR) is calculated by
5000 independent experiments. The A-SCR in the experi-
ment is defined as follows:

H
Z (Ea)" (E:a)
i=1
ASCR= NH (s + puv) @7
In the experiment, the signal amplitude of different
scatters in each polarimetric channel is assumed to be the
same between pulses. Table 1 shows the used target sub-
space models, where M1 represents the range spread tar-
get of rank one, and M2 represents the range spread tar-
get of multiple ranks. The values in the table represent the
normalized Doppler frequencies of different scattering
centers .

Table 1  Distribution of scatters in Doppler dimension in each
range cell of the range-spread target

Target cell
Target model
1 2 3 4
Ml 0.1 0.1 0.1 0.1
M2 0.1,0.2 0.2 0.2,0.4 0.1,0.2,0.3,0.4

The traditional detectors for comparison in the experi-
ment include the range-spread target polarimetric detec-
tor PolGLRT [30] using the rank one target model and
the subspace range spread target detector ARDTD [16].
The test statistic form of PolGLRT is similar to PerSPol-
GLRT. The ARDTD is given by

x?Dixi H,
E —~ 2 1]ARDTD (28)
x,' Ho

where D, = R“U,(U}"R“U,—)“U,HR‘I, x; represents the
echo of a single polarimetric channel, R represents the
speckle covariance matrix of a single polarimetric chan-
nel. In the experiments, PoIGLRT and ARDTD will pro-
cess the radar echoes from the HV channel.

4.1 Performance assessment of simulation data

In Fig. 2, the detection performance of the proposed three
detectors and PolGLRT with the M1 target model is com-
pared under different numbers of the secondary cell. The
experimental parameters are set as Ayy = dyy = 3, Hupg =
1, p=09, £=0.5. £=0.5 indicates that the A-SCR in
the HV channel is about 3 dB higher than that in the HH
channel. It can be found from Fig. 2 (a) that when L=8,
the Pd of PolGLRT detector is only 0.04 when A-SCR is
10 dB. In contrast, the proposed PerSPolGLRT, PerSPol-
RAO, and PerSPolWALD have better performance.

When the SCR reaches 8 dB, the Pd is almost 1. Fig. 2 (b)
shows that when L=16, the performance of the PoIGLRT
detector has been greatly improved, but it is still not
beyond the three proposed detectors. When the Pd is 0.9,
the performance gain of PerSPolGLRT, and PerSPol-
RAO is about 3 dB in Fig. 2 (b). Fig. 2 (c) and Fig. 2 (d)
show that the curve of the PolGLRT detector approaches
three polarimetric detectors when L=32 and L=64, respec-
tively. For the different numbers of secondary data, the
Pds of PerSPolGLRT and PerSPolRAO are almost the
same and higher than that of PerSPolWALD.

Fig. 3 shows the detection performance of all detectors
using the M2 target model. It indicates that the perfor-
mance of PerSPolGLRT is the best, and the ARDTD per-
forms worst. When the number of secondary cells is 16
and the Pd is 0.9, compared with the ARDTD, the perfor-
mance gain of PerSPolGLRT is 8 dB higher than that of
ARDTD, and the performance gain of PerSPolRAO and
PerSPolWALD are 5 dB and 6 dB, respectively. More-
over, as the number of secondary cells increases, the per-
formance of ARDTD gradually approaches PerSPol-
WALD. The proposed three detectors are less dependent
on secondary data, and thus are more suitable for target
detection in non-homogeneous sea clutter.

1.0

0.8 |

0.6 |

Pd

04t

02}

A-SCR
(b) L=16
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(d) L=64
—o—: PerSPolGLRT; —<—: PerSPolRAO;
—o—: PerSPOIWALD; —e—: PolGLRT.

Fig. 2 Pd versus A-SCR plots of different number of secondary

cells under target M1 model
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(d) L=64
—o—: PerSPolGLRT; —<—: PerSPolRao;
—o—: PerSPolWald; —s—: ARDTD.

Fig. 3 Pd versus A-SCR plots of different number of secondary

cells under target M2 model

Fig. 4 analyzes the influence of shape parameters on
the Pd of the three detectors using the M1 target model.
Fig. 4 shows that the detection performance of three
detectors is the best in the case of A =1, and the detec-
tion performance decreases with the increase of shape
parameters. This result indicates that three polarimetric
adaptive detectors have better detection performance in

the non-Gaussian sea clutter background.

1.0

0.8 |

0.6

Pd

0.2+

O & 1

=20 -15 -10 =5 0 5
A-SCR

(a) PerSPolGLRT
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(b) PerSPolRAO

A-SCR
(c) PerSPolWALD

—e—: A=5; —e—: 1=20.

—e—: )=1;

Fig. 4 Pd versus A-SCR plots of different shape parameter

The difference of clutter power caused by different
polarimetric characteristics is also an important factor
in the Pd. Fig. 5 displays the influence of & on the
Pd of the three detectors under the M1 target model.
Fig. 5 (a) shows the situation at £ =0.01, which means
that the SCR in the HV channel is 20 dB higher than that
in the HH channel, and the echoes from the HV channel
obviously contribute more to the target detection. In
Fig. 5 (a), it can be found that the Pd of the PolGLRT
detector which processes the echoes from the HH
and HV channels exceeds that of PerSPolWALD, but
it is still slightly lower than that of PerSPolGLRT and
PerSPoIRAO, which have the strongest detection
capability. With the increase of &, the power difference
between the two channels becomes smaller, and the
advantages of the proposed polarimetric detectors
are still obvious. Furthermore, we can see from Fig. 5(d)
that the performance gain of PerSPolGLRT and PerSPol-
RAO is about 2 dB compared to PoIGLRT when Pd is
0.9.

Fig. 5
model
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Pd versus A-SCR plots of different & under target M1
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Fig. 6 shows the Pd curves of all detectors using the
M2 target model. It can be found that the performance
improvement of the proposed detector mainly comes
from the wuse of polarization information. Note
that from the experiment of M1, when the secondary data
is sufficient, the improvement brought by the persymmet-
ric structure is small. It should be noted here that £ = 0.01
is a limiting case assumed for performance analysis.

In addition to the above factors, the Pd is also affected
by the center Doppler frequency of the target. Due to this
reason, a more general “class M2” target model is defined
[17]. The M2 target model in Table 1 belongs to a spe-
cial case of this model. The distribution of the normal-
ized Doppler frequency of each scatterer of “class M2”
targets in the four CUTs is {fic—Afy, fuc)s faer
{faes fae + 20 fabs {fae = Afas faes Jae + Afas fao + 2A fa}, Where
fi represents the center Doppler frequency shared by all
range cells, Af; represents the spread of the target in the
Doppler dimension.

Because the normalized Doppler frequency is varied
within [—0.5,0.5], we set fi € [-0.4,0.3] in Fig. 7. The
A-SCR of the target to be detected is set as: A-SCR=
—7 dB. The true value of the covariance matrix is used in
the detection, and other parameter settings are the same
as those in Fig. 3.
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—o—: PerSPoIGLRT; —<—: PerSPolRAO;
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Fig. 6 Pd versus A-SCR plots of different £ under target M2
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Fig. 7 Pd versus target center Doppler frequency plots

Fig. 7 shows the influence of the target center Doppler
frequency on the Pd. It can be seen that the performance
of four detectors at zero frequency has been seriously
degraded. The reason is that the clutter energy is concen-
trated near the zero frequency. Therefore, the detection of
low-speed targets usually requires a higher SCR. With the
change of the central Doppler frequency, the Pds of Per-
SPolIGLRT and PerSPolRAO are higher than the
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ARDTD. However, in the central Doppler frequency
interval of [—0.4,0], the Pd of PerSPolWALD is lower
than ARDTD. In other intervals, the performance of the
two is similar. Because the true value of the speckle
covariance matrix is used in the experiment, so the upper
bound of the performance of PerSPolWALD is not higher
than ARDTD. With sufficient secondary data, the detec-
tion probabilities of the two are close, which is consistent
with the performance curve in Fig. 3(d).

4.2 Performance assessment on measured data

In order to further verify the performance of three detec-
tors, we adopt the measured radar data collected by the
IPIX radar of McMaster University in 1998 [31]. The
data file 19980212 195704 ANTSTEDP is selected, where
the range resolution is 15 m, the pulse repetition fre-
quency is 1000 Hz, and echoes of four polarimetric chan-
nels are included. We have processed the data of HH and
HV channels to verify the proposed detectors. Fig. 8
shows the fitting results of the measured data by using
different amplitude distributions. It can be seen that the K
distribution has a good fitting for the data.
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----: Empirical PDF; ——: K fitting PDF;
: Generailzied Pareto fitting PDF; : CG-IG fitting PDF;
——: Rayleigh fitting PDF; ——: CG-GIG fitting PDF.

Fig. 8 Amplitude probability density function fitting of measured
data 119980212_195704_ANTSTEP

In the experiments, we first remove the original target
echo data and then select four range cells to add the simu-
lated target signal. Fig. 9 shows the performance curves
of three detectors, the PoOlGLRT detector and the ARDTD
detectors using the M1 and M2 target models. It can be
seen from Fig. 9(a) that the performance of PerSPolRAO
and PerSPolGLRT is close and best, and is followed by
that of PerSPolWALD. The performance of PerSPol-
GLRT and PerSPolRAO is better than that of PolGLRT.
For multi-rank range-spread targets, the advantages of the
three proposed detectors are more obvious. We can also
find from Fig. 9(b) that the performance of PerSPol-

GLRT is the best, and is followed by PerSPolWALD,
then PerSPolRAO. In addition, the Pd of the three detec-
tors is much higher than that of ARDTD. When the Pd is
0.9, the performance gain of PerSPolGLRT is about 10 dB
compared with ARDTD.
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Fig. 9 Pd versus A-SCR plots of different target model under mea-
sured data

5. Conclusions

In this paper, the problem of the detection of range and
Doppler dual-spread targets in the non-homogeneous and
non-Gaussian sea clutter is considered. Three adaptive
polarimetric adaptive detectors are proposed by using the
GLRT, the Wald test, and the Rao test, respectively. The
proposed detectors have the CFAR property with respect
to texture distribution, and the speckle covariance matrix.
Experiment results based on simulated and measured data
show that the performance of the proposed PerSPol-
GLRT, PerSPolRAO, and PerSPolWALD is better than
that of the traditional detectors. All the proposed detec-
tors rely less on secondary data and are suitable for target
detection in non-homogeneous and non-Gaussian envi-
ronments.
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