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Abstract: Air-to-air combat tactical decisions for multiple
unmanned aerial vehicles (ACTDMU) are a key decision-making
step in beyond visual range combat. Complex influencing fac-
tors, strong antagonism and real-time requirements need to be
considered in the ACTDMU problem. In this paper, we propose a
multicriteria game approach to ACTDMU. This approach con-
sists of a multicriteria game model and a Pareto Nash equilib-
rium algorithm. In this model, we form the strategy profiles for
the integration of air-to-air combat tactics and weapon target
assignment strategies by considering the correlation between
them, and we design the vector payoff functions based on pre-
dominance factors. We propose a algorithm of Pareto Nash
equilibrium based on preference relations using threshold con-
straints (PNE-PRTC), and we prove that the solutions obtained
by this algorithm are refinements of Pareto Nash equilibrium
solutions. The numerical experiments indicate that PNE-PRTC
algorithm is considerably faster than the baseline algorithms and
the performance is better. Especially on large-scale instances,
the Pareto Nash equilibrium solutions can be calculated by PNE-
PRTC algorithm at the second level. The simulation experiments
show that the multicriteria game approach is more effective than
one-side decision approaches such as multiple-attribute deci-
sion-making and randomly chosen decisions.

Keywords: tactical decision, multicriteria game, preference rela-
tion, Pareto Nash equilibrium.
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1. Introduction

With the improvement of unmanned aerial vehicle (UAV)
detect ability and air-to-air missile performance, beyond
visual range (BVR) combat has become an increasingly
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important research field in recent years [1,2]. Many insti-
tutes, such as Defense Advanced Research Projects
Agency (DARPA), Aeronautics Institute of Technology
(ITA), are committed to studying the field [3—5].

This paper focuses on air-to-air combat tactical deci-
sions for multiple UAVs (ACTDMU), which is a key step
in BVR combat. The ACTDMU can be described as a
decision-making problem, the purpose of which is to
choose a reasonable tactic to ensure that UAVs complete
the attack tasks safely and efficiently. Executing a reason-
able tactic means occupying a dominant position. The
analysis of the overall predominance value and the threat
assessment of foe UAVs in the combat situation are the
premises of this problem. Moreover, the ACTDMU prob-
lem is a macrolevel and complex decision-making pro-
cess. This problem has characteristics such as complex
influencing factors, an antagonistic combat environment,
real-time requirements, and rapidly shifting predomi-
nance values [6]. In particular, air-to-air combat tactical
decisions and weapon target assignments (WTAs) are
strongly correlated. Both decisions are key steps in air-to-
air combat situations, and both require UAVs to coope-
rate with each other to maximize the overall advantage
over the foe’s UAVs. In addition, the time of decision-
making for the two decisions overlaps, and the attack
tasks for the two decisions are coupled with each other
[7]. These characteristics of the ACTDMU problem pose
a challenge for its solution.

In recent years, many approaches to solving the ACT-
DMU problem have been proposed by researchers, and
they are divided into two main categories: (i) Intelligent
decision-making approaches based on theories such as
multi-attribute decision-making (MADM) [8], rough sets
[9], and fuzzy sets [10]. In these approaches, the com-
plexity of the influencing factors is considered, and tac-
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tics can be calculated rapidly by fuzzy reasoning. How-
ever, these approaches tend to make decisions from the
perspective of one’s own side, and the impact of the deci-
sions of others on one’s own side is ignored. It is diffi-
cult to describe the interaction between the selected
strategies by using these approaches. (ii) The other deci-
sion-making approach is based on game theory [11,12].
In this approach, the strong antagonism of air combat can
be considered. The strategy profiles formed by all deci-
sion makers are analyzed first. Then, the payoffs for all
sides with a single objective are obtained according to the
characteristics of the problem. Finally, the solutions can
be calculated by constructing a Nash equilibrium [13].
Nevertheless, for this decision-making approach, it is dif-
ficult to fully represent the interaction relations between
multiple influencing factors, which often leads to losing
information. The multicriteria game
approach is an effective way to solve the ACTDMU
problem. Not only the interaction relation among the
complex influencing factors but also the interaction rela-
tion among all decision makers in choosing strategies is
considered in this approach.

The multicriteria game was first proposed by Black-
well in 1956 [14]. It is also termed a multiobjective game
or vector payoff game. Multiple objectives or lists of pay-
offs are considered in this game, and this game has the
ability to reflect multiple influencing factors. Unlike the
classical Nash equilibrium, the Pareto Nash equilibrium
(PNE) is usually constructed in the multicriteria game [15].
Furthermore, various kinds of equilibria can be con-
structed by improving or refining the PNE according to
the constraints of different multicriteria game problems.
A large number of studies have focused on the definition
of the equilibrium and proofs of the existence of its solu-
tions. The Pareto-optimal security strategy equilibrium is
constructed by using standard fuzzy orders to solve the
multicriteria game problem with fuzzy payoffs [16].
According to the attitude toward risk of the players in the
games, the G-goal security strategy equilibrium is con-
structed to solve the multicriteria game problem with the
desired goal [17]. By considering the rational choice
deviation of the decision makers, an ideal Nash equilib-
rium is constructed to refine the solution set of the PNE
[18,19]. The properly efficient Nash equilibrium is pro-
posed to extend and perfect the efficient Nash equilib-
rium, and its sufficient existence conditions are estab-
lished by using maximal elements [20,21].

PNE solutions play a central role in solving multicrite-
ria games. Nevertheless, it is a recognized difficult prob-
lem to select compromise PNE solutions, which attempt

some useful

to maximize all objectives, because this involves the con-
struction of dominance relations and tedious calculations
[22]. For multicriteria games, there are few studies on
easy-to-use PNE algorithms compared with the literature
on the definition of equilibrium. Some studies attempt to
calculate PNE solutions by linearly weighting the multi-
criteria game as a scalarized single-criterion game
[23,24]. However, the objectives of the decision makers
are conflicting and coupled in many cases. It is difficult
to calculate high-quality solution sets with a wide disper-
sion in this way.

In addition, combined with the concept of the PNE,
other approaches for solving multicriteria games can be
sorted into three categories. The first algorithm is based
on optimization theory and transforms the multicriteria
game problem into a linear programming problem, a
quadratic programming problem or another problem
[25—27]. This kind of algorithm can find PNE solutions
quickly, but it is usually suitable for biobjective games
with small sizes. Second, artificial intelligence-based
approaches are used to solve the multicriteria game. For
example, the fuzzy set-based algorithm can calculate
PNE solutions by constructing membership functions for
fuzzy goals [28,29], and the heuristic algorithm can solve
it by using a population evolution strategy [30,31]. How-
ever, these algorithms are usually used in problems with
low real-time requirements, and their application range is
always limited for the problem constraints. The third type
of algorithm is based on theories such as MADM and
fuzzy decision-making, and it finds PNE solutions by
establishing dominance relations [32,33]. This approach
is capable of solving non-zero-sum multicriteria game
problems, and the construction of preference relations is a
critical step that greatly affects the efficiency of the algo-
rithm and the quality of the solutions.

In the ACTDMU problem, with the increase in the
number of tactics and objectives, the degree of difficulty
of solving it increases sharply [22]. High-quality PNE
solutions obtained with existing approaches always take a
few seconds or even longer. It is difficult to meet the real-
time requirements of this problem. Otherwise, combined
with knowledge of air combat, it is necessary to build a
model considering the characteristics of the ACTDMU
problem. Thus, there is a gap in the usability of the
approaches for solving the ACTDMU problem. In this
paper, we propose a multicriteria game approach to the
ACTDMU problem. This approach consists of a multicri-
teria game model and a PNE algorithm. The main high-
lights of this work are as follows:

(1) Strategy profiles for the integration of air-to-air
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combat tactics and WTA strategies are constructed by
considering the correlation between them.

(i1) Vector payoff functions of multicriteria games are
designed based on predominance factors considering the
complexity of the influencing factors and strong antago-
nism in air-to-air combat.

(iii) A algorithm of PNE based on preference relations
using threshold constraints (PNE-PRTC) is proposed.

(iv) The equilibrium solution obtained by the PNE-
PRTC algorithm is proven to be a refinement of the PNE
solution.

The remainder of this paper is arranged as follows:
Section 2 briefly describes the ACTDMU problem. In
Section 3, a multicriteria game model for ACTDMU is
established. The PNE-PRTC algorithm for solving the
multicriteria game model is proposed in Section 4.
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Numerical experiments and simulation experiments are
given in Section 5. Section 6 concludes the paper.

2. Problem formulation

ACTDMU is a macroscopic decision-making problem in
beyond-visual-range combat. First, it is necessary to fully
analyze the predominance value in a combat situation and
evaluate the threat levels of foe UAVs. Then, tactics
affected by multiple-decision information are compared
and selected according to superiority. Finally, a reason-
able tactic is executed to maximize the overall ad-
vantage of our UAV swarm against the foe’s targets. The
characteristics of the ACTDMU problem require that
decisions be made as quickly as possible. Fig. 1 shows
that a selected tactic is executed in the ACTDMU prob-
lem.

WTA strategy of R

Executed tactic

N
¥

Expected position corresponding to

the selected tactic

Fig. 1 Executing the tactics in the ACTDMU problem

A set of tactics for our UAV formation R and a set of
tactics for the foe’s UAV formation B are recorded as
Rue ={rmbmey and By ={b,},cy, respectively. It is
assumed that R and B make decisions simultaneously at
the beginning of tactical decision-making and fly from
the starting position to the expected position correspond-
ing to the requirement of the tactics. The position and
state sets corresponding to the tactics selected by R and B

are denoted as Ry, ={p/, },cprpep aNd Bpos = {pZ }neN,qu’
respectively. The position and state of a single UAV in R
and B are recorded as p;, = (x,y,z,v,6,4),, and p; =
(x,y,z,v,0,¢)pz . x,y,z are the position coordinates, v is
the speed, and 6 and ¢ express the pitch angle and yaw
angle, respectively. The detailed parameter definitions of

this problem description are shown in Table 1.

Table 1 Parameter definitions of the ACTDMU problem

Variable Description
R Our UAV formation
B Foe UAV formation
T'm The mth tactic of R, me M
by The nth tactic of B, ne N
Riac A set of tactics for R
Biac A set of tactics for B
14 R’s UAV number p, pe P
q B’s UAV number ¢, g € O
p,‘.’m The position and state of p when r, is selected
PZ” The position and state of ¢ when b, is selected
Rpos  The position and state sets of R’s UAVs for the sets of tactics

The position and state sets of B’s UAVs for the sets of tactics




1450

3. Multicriteria game model

Considering the correlation between air-to-air combat
tactical decisions and WTAs, this paper integrates WTA
strategies into air-to-air combat tactics, and a multicrite-
ria game model is developed for the ACTDMU problem.
We describe a finite multicriteria two-person game model
by the tuple G = (P,O,F). P ={R, B} is the set of players,
where R and B are two players. O = R,. X B,,. denotes
the finite set of strategy profiles for the integration of air-
to-air combat tactics and WTA strategies. R,. and B,
are denoted as the sets of air-to-air combat tactics incor-
porating the WTA strategies of R and B, respectively.
F ={Fy, F3} indicates the vector payoff function, where
Fy is for R and Fjy; is for B.

3.1 Strategy profiles

First, the sets of air-to-air combat tactics incorporating
the WTA strategies of R and B are constructed, and then
the set of strategy profiles for integrating air-to-air com-
bat tactics and WTA strategies are formed.

(1) Sets of air-to-air combat tactics incorporating WTA
strategies

In this paper, air-to-air combat tactics and WTA strate-
gies are combined to construct air-to-air combat tactics
incorporating WTA strategies, which are denoted by r, ,,
for R. r,,, indicates that tactic r, is selected and WTA
strategy w, is implemented, where w, is the cth WTA
strategy of R. Similarly, b,,, denotes that tactic b, is
selected and WTA strategy v, is implemented, where v,
is the dth WTA strategy of B. A pair of strategy profiles
for air-to-air combat tactics incorporating WTA strate-
gies is recorded as o, ., = (V1. Do,v,)-

(ii) Sets of strategy profiles for integrating air-to-air
combat tactics and WTA strategies

Sets of air-to-air combat tactics incorporating WTA
strategies Ruc = {Fou hmesrcec @04 Bue = by, }yeyaep are
constructed. The number of air-to-air combat tactics
incorporating WTA strategies is expressed as |Rmc
|Re X Wy| and |Bm =|By. X V|, where Wy and V, are
the one-to-one attack relations of all UAVs for R to B
and B to R [34], where Wi = {w_ },..c and Vi = {v,}4ep. C
and D are the numbers of WTA strategies for R and B,
respectively.

On this basis, sets of strategy profiles for the integra-
tion of air-to-air combat tactics and WTA strategies
R, X B,,. = O are established. Notably, o, . € O.

3.2 Vector payoff functions

In the ACTDMU problem, the vector payoff functions
consist of two sets of objective functions according to the
validity of the fighting effect and the threat assessment of
foe UAVs. The two sets of objective functions are con-
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structed by using four predominance factors: speed pre-
dominance, angle predominance, altitude predominance,
and distance predominance. Each objective function in a
set is constructed by using one predominance factor. For
example, for speed predominance, R’s objective function
of the validity of the fighting effect is denoted as fz,. For
angle predominance, altitude predominance and distance
predominance, R’s objective functions of the validity of
the fighting effect are denoted as fz,, fzs and fr4, respec-
tively. Similarly, R’s objective functions of the threat
assessment of the foe UAVs in terms of speed predomi-
nance, angle predominance, altitude predominance and
distance predominance are denoted as fzs, frs, fz7 and
frs, respectively. R’s vector payoff function Fp=
(fris fror > fxs)' is composed of eight objective func-
tions. Similar to that of R, B’s vector payoff function
Fy = (f51, f5,+ fs)' s constructed.
The jth objective function of i is expressed as

1 .
—1 e’ j=123,4

ﬁj = 1 (1)
1+ e_((l_vifj)/(l_vlsfj)) > J= 57 6,7,8

where —i is the opponent of i. j denotes an objective,
j=1,2,---,8. V/ represents the validity of the fighting
effect of i for the jth objective, and 1— Vifj represents
the safety level, which is calculated by a threat assess-
ment of the foe UAVs. Moreover, V//V/, represents the
relative validity of the fighting effect of i for the jth
objective, and (1 A ) / (1 - V,.S'j) represents the safety
level of i for the jth objective. The sigmoid function is
used to map the ratio results from 0 to 1.

V/ (7 s bs,,) denotes the validity of the fighting effect
of i for the jth objective when a pair of strategy profiles
(Fyosbo,y,) is selected. V/(r, . ,b,,,) is calculated by the
multilevel information fusion method [35], and the calcu-
lation process is shown as follows:

V:jh (rrmw( > bbnw) = Vljclh @ Vizh ®---® Vljc,h’ (2)

Vii (rr,,(w‘. > bb,,l’d) = V;;; (rr,,,w( > bb,m:) ®---0 V/H (rrmm > bb,,vl,) , (3)

where @ is the fusion operator of evidence theory [36].
V2 (¥, w.»by,,) Tepresents the first-level fusion of the pre-
dominance value for jth objective of i in (2).
V/(Fysbsy,) Tepresents the second-level fusion of the
first-level fusion value for the jth objective of i in (3),
that is, the validity of the fighting effect of i.

Taking the example of calculating Vi (r,.,b,,) for
the first objective, an attack of multiple R UAVs
ki,ks,--+ ,k; on one of B’s UAVs h is regarded as an
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attack group. In terms of speed predominance for the first
objective, v, ,,v, . "> v, are the validities of the fight-
ing effect of k,,k,,---,k; on h in this attack group [37].
V2 (Frwsbyy,) is obtained by a first-level fusion of
Vi Vi s Vi, Then, the second-level is calculated for
the V/(r,,,,.,bs,,) value in each group to obtain R’s vali-
dity of the fighting effect for the first objective. Analo-

gously, the validities of the fighting effect for the other
objectives can also be calculated.

For the set of strategy profiles for integrating air-to-air
combat tactics and WTA strategies, the vector payoff
functions of R and B for every objective are constructed.
Then, the vector payoff matrices shown in (4) and (5) can
be calculated.

Fy

le (rnw, »bbn/,)
fRZ (rr,w1 ’bb|v,)

Srs (P> Do)
le (rrgwy bb|V1)
fRZ (rrzwpbbwl )

fRS (rrzwzsbhwl)

le (rerCa bh.m)
fRZ (rer(, ) bh,vl )

fRS (rer(, > bh, Vi )

fBl (rhW]’bhlVl)
fBZ (rrlwl vbhwl)

fB8 (rr1w1 9bb|v1)
fBl (rrzwz’bbwl)
fBZ (rrzwz?ble)

fBS (rrzwzybbw])

fBl (rr.wwubbm)

le (rrlwl 9bhzvz)
fRZ (rnm ) bbgvz)

fRS (rr1w'1 s bbz\’z)
fRI (rrzwz,bbgvz)
fRZ (rr;w;’bbzvz)

fRS (rrzwz ’ bbzvz)

fR| (rrMWC’bhzvz)
fR2 (rerC > bbzvz)

fRS (rerC s’ bl)zvz)

fBl (rth ’bthz)
fBZ (rn wy ?bhzl’g)

fBS (rr1w| 9bh|v,)
fBl (rrzwz’bbzvz)
fBZ (rrzwzvbszz)

fBS (rrzwzybbw])

fBl (rerL- ) bbzvz)

fBZ (rercv bbnu ) fBZ (rercv bbg]’z)
fBS (rervC9bb|m) fBS (rerC9bb2v2)

le (rh wi o bb,\rvn)
fR2 (rrl Wy bbr\r\’p)

fR8 (rm wis bbN"n)
fRI (rrzwz > bbN\’D)
fR2 (rr3w2 > bh,vvo)

fRS (rI‘ZWZ s bvaD)

le (rl‘MWC ’ bb[\r \/D)
fR2 (rer(v ) bvaD)

fRS (rI'MWC s bvaD)

fBl (rmw\ 5 th”D)
f32 (rr, Wi bl’w\’n)

fBS (rrl Wy bvaD)
fBl (rV:W: ’ bbNVD)
fBZ (rrng > bva,,)

fBS (r)'2w2 ) bva,,)

f B1 (r?‘,w wes bbNVD )
fBZ (rrMWc ’ bbNVn)

fBS (rr,wWC 4 bbNVn)

“

)

4. Algorithm design

It is necessary to study an algorithm to obtain the high-
quality PNE solutions at a fast speed because of the ACT-
DMU problem’s real-time requirements. The general
framework of the PNE-PRTC algorithm for the multicri-
teria game model is introduced in Subsection 4.1. Subsec-
tion 4.2 proves that the solution obtained by the PNE-
PRTC algorithm is a refinement of the PNE solution.

4.1 PNE-PRTC algorithm

There are conflicts, coupling and incommensurability
among the multiple objectives of the multicriteria game

model. It is difficult to accurately obtain the opponent’s
objective weight. To solve the multicriteria game model,
the PNE-PRTC is proposed in this paper. This algorithm
is inspired by the PNE algorithm proposed in [32], and it
can solve the PNE without weights. The preference rela-
tions are redefined in the PNE-PRTC algorithm. Further-
more, weak partial binary relation constraints and nega-
tive threshold constraints are added to construct a five-
level domination criterion. A decisive step toward the
optimal solution is provided for the PNE solution sets.
The general framework of the PNE-PRTC algorithm is
shown in Fig. 2.
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Input: vector payoff matrices
Fi=(froSro s Jrs) Fs=(fois Soom o Sos)'
O Step 1 Preference dispersion thresholds
o.1) 1) (081) (L0) (0,0.8] (L1 are calculated
(1,0 (0.6,0) (1,0.8) (1,0.6) [(1,0) 1(0,0.8)
MG= : : : s i ,
L0) = (1L0) (Ll (O8] ([08) (1) MO Oae) Mo O Ois)
(1,0.8) (0,0.8) (L1 (0,1) 0,0/§ (0,0.6) m (o, . 0. )
,? ; Move to the next position — -
0 0 i 0 i 1 0 0 |\ and calculate Step 2 Partial binary relations are defined
1 00, 1 0 1 \\
| |
MU=|: SR \
| |
0 =~ 170101 \
0 11010 1 ;
v'(o, . .o, o .
1% o Oee) S, 8. 8. S,
H'(o, . ) Step 4 Outranking relation is
e constructed M

Output: Step 5 Optimal tactics is selected based
on the set of PNE solutions

tep 3 Five-level domination
criterions are represented

Fig.2 General framework of the PNE-PRTC algorithm

First, the preference dispersion thresholds are calcu-
lated by extracting the discrete characteristics of the vec-
tor payoff matrices. Second, the partial binary relations
are defined. Then, a five-level domination criterion is
presented according to the combination of partial binary
relations. Next, the outranking relation is constructed by
the level of preferences restricted to the domination crite-
rion, and the preference relations, as outranking relations
corresponding to all strategy profiles, are represented by
the values 0, 1, etc. Finally, the set of equilibrium solu-
tions that are solved according to the strategies of each
player are the best responses, and the optimal tactics are
selected by a decision rule. The key steps in the PNE-
PRTC algorithm are designed as follows:

Step 1 The preference dispersion thresholds are cal-
culated by

(6)

where X;; represents the number of samples selected for
the jth objective function of i, i =R,B. 7 is defined as
the threshold scaling coefficient, which ranges from 0.5
to 1.5. By multiplying the standard deviation with the
threshold scaling coefficient, the dispersion degree chara-
cteristic of the vector payoff matrices is extracted as the
preference dispersion threshold, which is used to mea-
sure i’s sensitivity of the degree of outranking the vector
payoffs in each objective.

Step 2 In Table 2, the partial binary relations for
noncooperative situations are constructed. The partial
binary relations consist of P;, Q;; and I;, where
pij=2q;; and v;=3p; [38]. For simplicity, o, ., =
(TrwisD,0) > Oy = (Fr s B, )sa0d 07 o 07, r,, €O
Let m'(o,,.,,0x,.x,,) Tepresent the number of partial
binary relations for which o, ., P;0,,.,, . Similarly, let
iy (0+,.4,,>0x,,7,,) and mj (o, r,,0s,.-,,) represent the
numbers of partial binary relations for which
01,10 Dij01, 00y a0 0, o 10,0, , TESPECtiVEly.

Tt

Table 2 Partial binary relations of noncooperative situations

Partial binary relation Description

Constraint condition

OmeTnd P OTy 1 Tt v

OTycTha Qijorm; ST

OT e Tna Iijo'r/n![.l T

Oty 18 Strongly preferred to o
Ot,c1,q 18 Weakly preferred to or , 7, .

0oty 18 indifferent to o

m

Fis(Ornera) > i Onrrrrar )+ i
417 < Jij(Otnetna) = Fii (Onyrora ) < Pis

—qij < fij (Ormnd) - fij (or,,,,c, o d,) < qij

m'e' T’ d'

1! Tl g

Step 3 To establish an outranking relation, a five-
level domination criterion is constructed.

Definition 1 First-level domination criterion. If

Mp (Oryoryy»Or,r,) =0 and i (0r, 1z, 0n,7,) < 1+
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M} (0t Ot ) F M0 (Or,5 O ) F M (Ot Ot s
then this criterion is established and is represented by
Ot 9Ot -

Definition 2 Second-level domination criterion. If
My (0ry550rrs) = 0, My (010 Oryr) S LIS,
My (Ot Otirns) < Mip (015 Or,r,y) s AN 10 (01,1,
05y 2)) ¥ (0002003 05e)) < L+ (07, 21500y ) + miQ (01,2,
0ppeyy )tmL (04, 1,0, ., ), then this criterion is estab-
lished and is represented by o, . S0, ..., -

Definition 3 Third-level domination criterion. If
M (0g,yrpysOnyey) = 0, My (0r,y 105 0r,r,y) < 1+ T[4,
My (0ry 55 Orpirs) < Mp (0,200, ) @0 10 (01,
0rpr,) S 1+ m’Q (04,,2,5 0502, ) + 105 (02 2 0, ,-.,) then
this criterion is established and is represented by

Definition 4 Fourth-level domination criterion. If
My (0r, 1005 050,) = 1y 1 (05,0, 505,5,) < 1+J/2, and
negative threshold constraints f;;(0s,.z,,) > fij (0¢,.0.)+
v;; do not exist, then this criterion is established and is
represented by o,, .,S'0:,.7,, -

Definition 5 Fifth-level domination criterion. If
m, (OT;"UT;’J,OT”",M,) <2, my (OT"’,L,T”,J ,OTWM) >1+J/2, and
negative threshold constraints f;; (of;nc»,;,d,) 2 fii (00, 0.) Vi
do not exist, then this criterion is established and is repre-
sented by o, .,

In this paper, a five-level domination criterion is con-
structed by adding or reducing the constraints of partial
binary relations based on the classical multi-attribute
decision making theory [39]. Negative threshold con-
straints are added to the fourth-level and fifth-level domi-
nation criteria to prevent outranking relations with gaps
that are too large from being screened out.

Step 4 The outranking relation S’ includes five le-
vels of domination criterion S}, S¢, S}, , S and S},
S'={81,5..55,8%.5%}.  The
V' (04,4,,01,.5,,) Of the vector payoff matrices is con-
structed as follow:

i
SrOnena-

preference level

i
l ’ OTW( Tme QOTW’U Twrd
i
0' 8 ’ OTm( Tnd S COTW’U T d
0.6, o,

i .
0‘4’ OTW('THJS VOTm’r’ Tn'd

i
S b0t

Tnd

lﬁi (OTm( Tnd ? OT,,,’U Tn'd’ ) = (7)

i
0'2’ OT/rnt’Tmf S FOTm’(’ Tw'd

0, otherwise

In (8), a matrix of global information MG, which is
composed of the values 0, 0.2, 0.4, 0.6, 0.8, and 1, is
formed by gathering all the outranking relations corre-
sponding to the links between every pair of strategy pro-
files. Then, a matrix of useful information MU, which

consists of refined outranking relations, is constructed to
extract the noncooperative equilibrium (NCE) solution by
(9), according to the formula for searching for NCE solu-
tions in [32].

G(o,,,,(.rm, P O T )=

R B R B
(‘W 9(!/ ’ OTHu’TmIS OTW’UTU/J"OTWUTWIS OTm’L”TM’d’

B QR B
(09lv0 ’ OTHI(’TMS OTW'UTM"OTm(»TmS OTm'c'Tun//

s (®)
(#".0). 005,850, 0100 2.5 Onir
(0,0), otherwise
1, r e T Vrtwe ;bb,,v‘, = bb,gv;;
MGG, o028
MU, R e OF Iy = T3 by, # bb;,v[,§ )
MG{ o028
0, otherwise

where MG({, Y ) is a cell of MG which is the vec-
e Tnd T o Tt @t
tor payoffs corresponding to the intersection of the row

0r,.z., and the column Orrpizyn s and
D ] — D /] R D I B
G(or S B G MG
meTnd *OTyt o Tt @ Ot tg Oty o Tt Otmetna Oty ot Tt ot

Similarly, MU, is a cell of MU.

|
denotes that o, ., is preferred to
., 1S DOt
preferred to o,,,.,, by i. & is defined as the maximum
value of the preference level that is allowed,
£€{0.2,0.4,0.6,0.8,1} ; the larger the value of ¢ is, the
greater the number of NCE solutions, and to be conserva-
tive, we set £=0.6. When all elements of a column in MU
are equal to 0, the strategy profile corresponding to that
column is an NCE solution of the multicriteria game.
Step 5 If the number of NCE solutions calculated in
Step 4 is more than one, only one NCE solution will be
selected according to the maximum hypervolume rule:

H (01,7) = i1 Orypor )X 2 (0 )X X fi (0 ) -
(10)
On the basis of the definition of a hypervolume in mul-
tiobjective optimization theory, the H'(o,,..,,) value in
(10) reflects the solution quality, which includes the con-
vergence and diversity of solutions. Finally, a pair of
strategy profiles o,,..,, with the maximum value of
H(o.,..,,)=H*(0.,..,,)+H®(0.,..,,) is selected, and
the optimal tactics r, corresponding to the pair of stra-
tegy profiles are executed by R.
In summary, Step 1 to Step 4 demonstrate the process
of the PNE-PRTC algorithm. The role of Step 5 is to
make the final decision from the PNE solution sets, and

i
0Trm Tnd S OTm’z’ Twd

0 by i, while o, . S0, ,,.,, means that o,

Tt T/ d!

Tt
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this step can also be flexibly replaced by other decision
approaches based on the decision maker’s preferences.

4.2 Proof of the PNE solution

The equilibrium solutions obtained by the PNE-PRTC
algorithm are the NCE solutions in Subsection 4.1. In this
section, we need to prove that the NCE solutions are
refinements of the PNE solution. First, the definitions
involved are summarized [32,40].
Definition 6 For a,b eR”,
inequalities is defined as follows:

the notation of vector

a2b — a;2b;forallie{l,2,---,n}.
a>b < a,2b,anda # b.

a>b — a;>b;forallie{l,2,---,n}.

Definition 7 A pair of strategy profiles
(x*,y*) € XX Y is called a PNE solution for a multicrite-
ria game, and it needs to meet:

{i‘leX, Fi(xy)>F
Hye Y’ F2(-X*9y) >

where F;(x,y) = (fi1 (x,9), fo(x,3),-+, fin, (x,)))" denotes
vector payoff functions and N; is the number of objec-
tives, i = 1,2.

Definition 8 F;(x,y) > F;(x’,y’) denotes that a pair of
strategy profiles (x,y) € X XY dominates another pair of
strategy profiles (x',y’) € XxY for player P; (i=1,2).
Fi(x,y)> F;(x',y’) can also be represented as
(x,y)D'(x',y"). D' represents a dominance relation.

Definition 9 A pair of strategy profiles
(x*,y") € X x Y is called an NCE solution for a multicrite-
ria game, and it needs to meet

{ﬂxeX, (x,y) S (x",y")
Avey, (x,y)S7(x",y")

where S’ represents a binary relation.

Lemma 1 If D' C S, the set of NCE solutions for a
multicriteria game is included by the PNE solution sets
and can be expressed as NCECPNE.

This is proved in detail in [32].

Lemma 2 For the PNE-PRTC algorithm, D' C S’
(i=12).

Proof We proceed by contradiction. Assume that
there exist two pairs of strategy proﬁles 0,y =(x,y) and
0y =(x',y"), where o, }, ,€XXY, such that
“o.,D'o,, exists” and “0,,S'0, does not exist”.

Suppose that o,,D'o,,, we can infer that
Fi(0.,) > F;(0y,) from Definition 7 and Definition 8.
Thus, VjeN,, f;(o.,) 2 fij(or,), and Tj, € N; such that
fin (02y) > fij, (0r,) from Definition 6. We can also

CE)

11
F2(x*’y*) ( )

(12)
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deduce that Aj € N; such that f;;(o,,) < f;;(0.,), which
implies that m}, (0, ,0.,) =0 and mj, (0, y,0.,) = 0. The
details are discussed in different value ranges for f;;(o,,)
and fij (OX',y’)-

(i) 3jo € N; such that 0 < f;, (0.,) = fijo (0 ) < qij, » this
implies that m} (ox,y,ox,,y,)%, m; (oxiy,ox,,y,)zmj (02 y+0xy),
m, (ox,)., oX,,y,) =0. Thus,
mi(0yy,0.,) <1+m, (oxﬁy,ox,,y,), and it follows that
0.,S 00

(i) Jjo € N; such that g,;, < fij, (0x,) = fii, (0 ) < Pijy
this implies that m, (ox,y,ox,_y,) =1, m (ow,ox,,y,) =
mi(0y,,0.,) Thus,
my(0,y,0.,) < 1+mj (ow, ox,.y,) +m, (om, ox,,y,>, and it
follows that 0., S0, .

(iii) Jjo € N; such that f;; (0.,) > fij, (0ry)+4qij,, this
implies that mi, (o_x),ox v ) >1, m] (ox‘.,o ) =m; (ox, v
) 0. Thus, m} (0o, ,,0,,) <

)+mP (ox),ox,,y,), and it follows that o,

i —_
my, (oxﬁy,ox,,y,) =0 and

i —
>0 and ml, (ox,y,ox,,},/) =0.
<

0,,) 20 and m! (ow
mt (ow,
S0y -

(iv) Jjo € N; such that 0< fi; (0.,)— fiio (0vy) < qijs
and Jj, € N; such that g; < fij, (0.,) = fij, (00 ) < Piji

OX’J’) >1, ml( Oxys Oy y )>
M (045 04y)s m’Q (ox,y,ox/,y/) >1 and mP( 0550 ) =0.
Thus, mi(0y,,0,,) <1 +m’,( 01,0 )+m ( 0:y,0, ),
and it follows that 0,,S{,0., .

(v) Jjo € N; such that 0 < f;;, (0.,) — fij, (0x ) < qij, and
3ji € N; such that f;; (0.,) > fij, (0r,) + pij» this implies
that m! <0x,),,ox,’y,) =1, m (ox,y,ox,.y,) 2mi(0y,,0.,),
m, (ox,y,oX,,y,) >1 and "Q(ox 0, )=0. Thus,
My (04 y,0,y) < 1 +m} (0“,.,0 )+ my, (OX\,OX,J,>, and it
follows that 0,.,S )0

(vi) djo € N; such that g;;, < fi, (On) Jiio (or )) < Pij
and Jj, € N; such that f; (o.,)> fi (0v,)+pij,, this

)land

ml (Ox’,y’, x,y) =

)+mP<0U,ox » ), and it

this implies that m,(ow,

implies that m,,(om,ox » ) >1, m’Q(o”,
m (ox,y,o ) mi(0y,,0.,) 2 0. Thus,
1+m (ox,).,oX,,y,) +my (o ( 1y O
follows that 0,,,S {0 .

(vii) Jjo € N; such that 0 < f; (0.,) = fij, (00 ) < qijy»
dji €N; such that g <f, (o.,)= fi (0vy) < piy, and
3j, € N; such that f;;, (0.,) > fij, (0r,) + pij,, this implies
that  m} <0X,y,ox,yy,) =1, m (0“.,0},,),_,) =m0y y504y)s
m;(ow,om)> 1 and m"Q(oxv,o”)>l. Thus,
m (0,0 ”)<1+m,( 0.y,0 )+m ( ) )+mP( ”,ox,y,) ,
and it follows that o, SQox v

There exist S, C ', which implies that 0,,,S 0, . This
contradicts the fact that o, S0, , does not exist. O
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5. Experiments

To verify the generality and efficiency of the PNE-PRTC
algorithm, numerical experiments are carried out in Sub-
section 5.1. Simulation experiments are analyzed in Sub-
section 5.2 to verify the effectiveness and correctness of
the multicriteria game model. All experiments are run on
computers with an Intel i7-7700 3.60 GHz CPU and
32 GB RAM.

5.1 Numerical experiments

The parametric analysis of the PNE-PRTC algorithm is
performed first. Then, the performance metrics of the
PNE-PRTC algorithm considering the optimal parame-
ters are employed. Three different datasets represented by
Set 1, Set 2, and Set 3 are generated by the leading game
generator GAMUT [41]. Each dataset includes 15 diffe-
rent sizes of instances, and each size includes 20
instances of a multicriteria game, as shown in Table 3.
The vector-valued payoffs for the multicriteria games
range from 0 to 1. aXfBXy represents multicriteria
games with the same size. @ and 8 denote the numbers of
R’s strategies and B’s strategies. y represents the objec-
tive number for each side.

5.1.1 Performance metrics

Unlike matrix games, which evaluate the quality of Nash
equilibrium solutions by comparing payoffs with the
same dimension, it is difficult to measure the quality of
the solutions with a single performance metric for multi-
criteria games because of payoffs that are vector valued.
Similar to the performance metrics of multiobjective opti-
mization, in this paper, the quality of PNE solutions is
measured in three respects: convergence, uniformity and
spread. The performance metrics of the multicriteria
game are described as shown in (13), (14), and (15).

Definition 10 Average hypervolume for a multicrite-
ria game [42] can be expressed as

1 St Nene

S set

Why = hv (1pxg, Pene) (13)

Sset=1 npNEENpRE

where S, denotes vector payoff matrices with the same
size, S¢:=20. Npng represents the PNE solution set
obtained by the PNE-PRTC algorithm, and npyg is a PNE
solution, npyg € Npne. pene denotes a reference point. hv
indicates the hypervolume value enclosed by Npng and
pene- The quality of the PNE solution set in terms of the
convergence and diversity of the vector payoffs is evalu-
ated in (13). A larger value of Wyy means that the PNE

solution sets are more convergent and diverse.
Definition 11 Average spacing metric for the multi-
criteria game [43] can be expressed as

1 S set 1 [Nene| —0
Wer = S Z | Npnel Z (d;PNE _d) (14

i ZJ
1pNE ENpNETPNE £\ J=1

where d,, = min

denotes the

f‘j’erE _ j‘”PNE
Euclidean distance between the npygth PNE solutions.
- |Nenl

d= Z dy, . /INpxe| represents the average value of

npne=1
d, . f™ and f;"”F denote the payoffs of the npygth and

Tone I j
npeth PNE solutions for the jth objective, respectively.
J is the number of objectives. Wgp is used to measure the
degree of distribution of the PNE solution set. A lower
value of Wy, means that the distribution of the PNE solu-
tion set is more uniform.

Definition 12  Average diversity measure for the
multicriteria game [44] can be expressed as

2
|Vene| an: _ e TIPNE
S set J Z (nPNF 1 ’{:::PI f ) (l 5)

Sser=1

D

W, is used to measure the diagonal length of the
hypercube formed by the extreme objective values in a
PNE solution set. It is a basic indicator that can reflect the
diversity of a PNE solution set. Clearly, the higher the
value of W), is, the better the distribution of the PNE
solution set.

5.1.2 Parametric analysis

The threshold scaling coefficient r is a key parameter
that strongly affects the performance of the PNE-PRTC
algorithm, and parametric analyses must be carried out to
optimize its performance. We change n from 0.5 to 1.5
with a step size of 0.1. A total of 9900 parametric analy-
ses are conducted, with 20 multicriteria games conducted
for each n in different sizes of instances. The quality of
the PNE solution set is evaluated by three metrics: the
average hypervolume Wyy, average spacing metric Wsp
and average diversity measure Wp. Fig. 3 shows the
results of numerical experiments for the PNE-PRTC algo-
rithm with different n. Specifically, Fig. 3 (a), Fig. 3 (b),
and Fig. 3 (c) represent the evaluation of R’s vector pay-
offs corresponding to the PNE solutions for Set 1. Simi-
larly, Fig. 3(d), Fig. 3(e), Fig. 3(f) and Fig. 3(g),
Fig. 3(h), Fig. 3(i) represent the evaluation of R’s vector
payoffs corresponding to the PNE solutions for Set 2 and
Set 3, respectively.
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