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Abstract: This  paper  concerns  minimum-energy  leader-follow-
ing formation design and analysis problems of distributed multi-
agent systems (DMASs) subjected to randomly switching topolo-
gies and aperiodic communication pauses. The critical feature of
this  paper  is  that  the  energy  consumption  during  the  formation
control  process  is  restricted  by  the  minimum-energy  constraint
in the sense of the linear matrix inequality. Firstly, the leader-fol-
lowing formation control protocol is proposed based on the rela-
tive  state  information  of  neighboring  agents,  where  the  total
energy  consumption  is  considered.  Then,  minimum-energy
leader-following  formation  design  and  analysis  criteria  are  pre-
sented in  the  form of  the  linear  matrix  inequality,  which  can be
checked  by  the  generalized  eigenvalue  method.  Especially,  the
value of  the minimum-energy constraint  is  determined. An illus-
trative  simulation  is  provided  to  show  the  effectiveness  of  the
main results.
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 1. Introduction
Formation  control  of  distributed  multi-agent  systems
(DMASs)  has  shown  an  increased  research  interest  in
communities  of  control  systems  in  recent  years,  which
has a broad range of applications in various areas, such as
multiple mobile robots [1,2], distributed sensor networks
[3,4], unmanned aerial vehicles [5,6], and satellite groups
[7−9].  Now,  many  approaches  have  been  developed  for
formation  control  problems,  such  as  virtual-structure-
based  strategy  [10],  behavior-based  strategy  [11,12],
leader-follower-based strategy [13], and consensus-based

strategy [14,15], and so on. In [16], it was proved that the
former three strategies are the special cases of the consen-
sus-based formation strategy.

The cooperative formation can carry out various com-
plex  tasks  with  remarkable  efficiency,  wide  coverage,
strong fault tolerance, and high-level security, which is an
important  research  direction  of  DMASs.  Generally,
according to the topology structure of DMAS, the coope-
rative  formation  can  be  categorized  into  two  cases:  the
leaderless  formation  and  the  leader-following  formation.
Different from the leaderless formation control, the leader-
following  formation  control  tries  to  guide  the  DMAS
tracking a desired trajectory by using just a singular agent
(or  a  subset  of  agents)  that  is  called  the  leader(s),  and
other  agents  that  are  referred  to  as  followers,  which  are
driven  with  a  time-varying  (or  time-invariant)  geometric
structure to track the leader(s). In [17], it was verified that
the leader-following configuration can enhance the com-
munication  and  orientation  of  the  flock,  and  is  also  an
energy  saving  mechanism  in  many  biological  systems.
Leader-following formation problems of first-order multi-
robots  with  a  virtual  leader  were  studied  in  [18],  where
the  desired  trajectory  was  determined  by  the  virtual
leader.  Brinon-Arranz  et  al.  [19]  investigated  the  elastic
formation  tracking  problems  for  nonlinear  multi-agent
systems,  where  all  the  agents  can  converge  to  a  circular
motion with the center tracking a time-varying reference.
In [20], the leader-following networked mobile robot for-
mation problem with unknown slippage effects for colli-
sion  avoidance  was  investigated.  Yan  et  al.  [21]
addressed the observer-based time-varying leader-follow-
ing  formation  problem  for  DMASs  with  the  one-sided
Lipschitz  nonlinear  and  quadratic  inner-boundedness
nonlinear  dynamics,  which  can  guarantee  less  conser-
vatism  and  more  generality  with  large  Lipschitz  con-
stants.

The whole interactions among the DMAS play critical
roles for the formation achievement.  When DMASs per-
form  complex  tasks,  the  interaction  topology  may  be
switched as required, which leads to interaction channels
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among agents to be on or off for an indefinite time inter-
val. All the possible interaction topologies form a switch-
ing set for the DMAS to choose. In addition, due to sen-
sor  failure,  electronic  interference,  data  packet  loss  etc.,
or to avoid enemy monitoring, there may be no any infor-
mation  transmission  among  all  the  agents  in  aperiodic
time  intervals,  which  are  time  stages  of  communication
pauses.  Generally  speaking,  it  is  of  great  significance  to
study communication constraints of the co-existence ran-
domly  switching  topologies  and  aperiodic  communica-
tion  pauses  for  some  specific  applications.  In  [22],  the
time-varying formation control problem of singular mul-
tiagent  systems  with  switching  topologies  was  investi-
gated  based  on  the  outputs  of  systems.  Xi  et  al.  [23]
addressed  the  time-varying  DMAS  formation  problems
with  the  given  energy  constraint  under  the  situation  of
switching  topologies.  In  [24],  a  solution  for  the  time-
invariant  formation  control  problem  of  a  single-master-
multislave bilateral teleoperator system in the presence of
communication pauses was provided. Chai et al. [25] ve-
rified that the computation cost is greatly reduced for the
fixed-time  event-triggered  time-varying  formation  track-
ing  of  leader-following  DMASs  with  communication
pauses than that with continuous time.

To reduce the energy consumption during the coopera-
tive control process, a design index function of the energy
consumption is usually constructed to be optimized. It  is
required  that  the  index  to  be  bounded  for  collaborative
tasks, where the guaranteed-cost strategy is a typical one.
Based  on  the  linear  quadratic  regulator,  Cao  et  al.  [26]
proposed two global  cost  functions  for  multivehicle  sys-
tems:  interaction-free  and  interaction-related  cost  func-
tions.  In  [27],  based  on  the  linear  matrix  inequality
method,  guaranteed-cost  consensus  control  criteria  for
general  high-order  DMASs  with  sampled-data  informa-
tion  were  given,  and  the  corresponding  guaranteed-cost
values  was obtained.  Wang et  al.  [28]  proposed scalable
guaranteed-cost  consensus  design  and  analyzed  criteria
for  general  high-order  multi-agent  systems  with  time
delays,  and  corresponding  formulations  of  the  upper
bound of guaranteed-cost functions were derived. In [29],
robust H∞ guaranteed-cost  time-varying  DMAS  forma-
tion problems with time-varying delays and external dis-
turbances were investigated, and sufficient conditions with
H∞ disturbance  attenuation  performance  were  derived.
However, the bounds derived in [26−29] may not be mi-
nimal.  In  general,  it  is  a  way  to  minimize  energy  con-
sumption  by  designing  reasonable  energy  constraints  to
restrict  the  upper  bound  value  of  guaranteed  cost.  Com-
bining  with  above  introductions  of  the  formation,  com-
munication  constraints,  and  guaranteed-cost  strategy  of
DMASs, to the best of our knowledge, there are few liter-
atures  reported  on  the  study  of  the  minimum-energy
leader-following  formation  with  communication  con-

straints  of  randomly  switching  topologies  and  aperiodic
communication pauses.

In  this  paper,  minimum-energy  leader-following  for-
mation  control  problems  for  DMASs  are  investigated,
which are subjected to communication constraints of ran-
domly  switching  topologies  and  aperiodic  communica-
tion  pauses.  By  considering  the  local  information  from
neighboring  agents  of  the  whole  system,  a  distributed
control  protocol  is  proposed  with  the  total  energy  con-
sumption of all the agents being involved. With the state
space  decomposition  method,  the  closed-loop  system  is
divided  into  two  subsystems,  which  correspond  to  the
macroscopically  whole  motion  of  the  DMAS  and  the
microcosmically  relative  motion  of  followers,  where  the
macroscopically whole motion can be regarded to be dic-
tated  by  the  leader.  To  minimize  the  total  energy  con-
sumption during the formation process, minimum-energy
criteria are presented to restrict the total energy consump-
tion of the whole DMAS. By the criteria, it can not only
guarantee the formation achievement  but  also ensure the
energy consumption during the formation control process
to be minimal in the sense of the linear matrix inequality.

The  novelties  and  primary  contributions  of  this  paper
are  listed  as  follows.  (i)  Problems  of  minimum-energy
consumption for leader-following formation are studied，
while  the  guaranteed-cost  strategy  proposed  in  [26−29]
cannot  ensure  the  total  energy  consumption  during  the
cooperative  control  to  be  minimal.  By  the  constructed
constraint  for  restricting  the  energy  consumption  to  be
minimal,  an  additional  linear  matrix  is  derived  as  an
important  term  of  minimum-energy  formation  criteria.
The  criteria  can  be  checked  by  the  generalized  eigen-
value  method.  (ii)  Communication  constraints  of  the  co-
existence  of  randomly  switching  topology  and  aperiodic
communication  pauses  are  dealt  with,  while  DMAS for-
mation  problems  in  the  case  of  either  switching  topolo-
gies or communication pauses are studied in [22−25,30].
In this study, the whole time is modeled as time intervals
by time intervals, where each interval contains two subin-
tervals,  and  the  convergent  quantity  of  the  constructed
Lyapunov  function  candidate  in  the  switching  topology
subinterval  is  required  to  be  greater  than  the  divergent
quantity in the communication pause subinterval  in each
interval. Thus, the global convergence can be ensured and
the leader-follow formation is achievable.

The rest arrangement of this paper is structured as fol-
lows.  Section  2  introduces  some  preliminaries  and  the
problem  description.  Design  and  analysis  criteria  of  the
minimum-energy  leader-following  formation  are  pro-
posed in Section 3. In Section 4, a numerical example is
given to show the effectiveness of the theoretical results.
Section 5 summarizes the whole work of this paper.
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Q̂ > 0
Q̂ < 0 Q̂

Q̂T Q̂
Q̂T = Q̂ Q̂ ×

Throughout this  paper,  the following notations are the
main  symbols  applied. N denotes  the  set  of  nonnegative
integer numbers, R, Rd, and Rd×m denote sets of real num-
bers, d-dimensional real column vectors and d×m-dimen-
sional  real  matrices,  respectively. 1N denotes an N×1 co-
lumn  vector  of  all  elements  being  1,  and IN denotes  an
N-dimensional  identity  matrix.  0  is  zero  number,  and 0
denotes zero vector or zero matrix respectively.  or

 denotes  that  is  positive  or  negative  definite
matrix,  and  denotes  the  transpose  of  matrix .

 denotes  that  is  a  symmetric  matrix, 
denotes Kronecker product.

 2. Preliminaries and problem description
 2.1    Graph theory

n

G = (V,E,W) V = {vi| i = 1,2, · · · ,n}
vi i E ⊆ {(vi,vk) : vi,vk ∈ V}

(i, k = 1,2, · · · ,n) (vi,vk)
k i

W = [wik] ∈ Rn×n

wik ⩾ 0
vi

vk wik > 0 wik = 0 (i , k)
wii = 0

(i ∈ {1,2, · · · ,n}). Ni = {vk ∈ V|(vk,vi) ∈ E}
vi L =D−W

D = diag{ d1,d2, · · · ,dn}

di =

n∑
k=1

wik (i = 1,2, · · · ,n)

vi v j

(vi,vθ1) (vθ1,vθ2)
(vθq,v j)

vi

vi

For  a  DMAS  with  agents,  the  interacted  information
flow among agents is incorporated into a topology graph

,  where  is  the  node
set  with  denoting  agent , 

  is  the  edge  set  with  represent-
ing the  communication channel  from agent  to  agent ,
and  indicates  a  weighted  adjacency
matrix  with  denoting  the  interaction  weight.  If
and  only  if  there  is  a  connected  channel  between  and

, then ; otherwise,  .  Each agent is
assumed  to  contain  no  self-loop;  that  is, 

  represents  the
neighboring  set  of .  The  Laplacian  matrix 
is  utilized  to  describe  the  algebraic  feature  of  the  topo-
logy  graph,  where  with

  being  the  in-degree  diagonal

matrix of  the  graph.  A  directed  path  between  two  non-
neighboring agents  and  is a finite ordered sequence
of  distinct  edges  with  the  form , ,···,

. In the topology graph, if there is a directed path
from  to  every  other  node,  then  a  spanning  tree  exists
and  is called the root node. More details can refer to [31].

 2.2    Communication constraints

[tp, tp+1) (p ∈ N)

tmax =max{tp+1− tp :
p ∈ N} tmin =min {tp+1− tp : p ∈ N},

[tp, tp+1) (p ∈ N)
[tp, t̃p)

[t̃p, tp+1)
ωp = (tp+1− t̃p)

/
(tp+1− tp) ω̂

To facilitate research, a mathematical model for commu-
nication constraints of randomly switching topologies and
aperiodic communication pauses is  described as follows.
Let   denote  an  infinite  sequence  of  non-
overlapping time intervals,  and the maximum time inter-
val and the minimum time interval are 

 and   respectively.
Each interval   contains a switching topo-
logy subinterval  and a  communication pause sub-
interval .  The  corresponding  communication
pause rate is , and  is set as the

0 ⩽ ωp ⩽ ω̂ < 1 (p ∈ N).
[tp, t̃p) (p ∈ N)

χ ∈ {l|l = 1,2, · · · , s},
σ(t) : [0,+∞)→ χ

σ(t)
[t̃p, tp+1) (p ∈ N)

L = 0

maximum communication pause rate of all the time inter-
vals; that is,   In the switching to-
pology  subinterval  ,  the  index  set  of  the
switching topology is represented by  
and  the  switching  signal  is ,  which
implies that the topologies switch in accordance with the
signal .  In  the  communication  pause  subinterval

 ,  there  are  not  any  interconnected  chan-
nels  among  all  the  agents,  which  means  that  the  Lapla-
cian matrix .

This  paper  investigates  the  leader-following  DMAS
formation  problem  with  randomly  switching  topologies
and  aperiodic  communication  pauses.  In  the  leader-fo-
llowing  DMAS,  the  interconnected  channels  among  fo-
llowers  are  bidirectional  with  the  same  weight,  but  they
are  unidirectional  from  the  leader  to  followers,  which
imply  that  the  leader  can  send  information  to  followers
but  does  not  receive  information  from followers.  There-
fore,  the  Laplacian matrix  of  the  topology of  the  leader-
following DMAS is asymmetric. Moreover, it is assumed
that  there  is  at  least  one  spanning  tree  in  each  topology
graph of the switching set, where the leader is assigned as
the root node in the topology graph.

 2.3    Problem description

N
i

(i = 2,3, · · · ,N)
i (i = 2,3, · · · ,N)

Consider a leader-following DMAS with  agents, where
agent  1  is  assigned  as  the  leader  and  agent 

 are followers. The dynamics of leader and
agent   are described asẋ1(t) = Ax1(t)

ẋi(t) = Axi(t)+Bui(t)
(1)

A ∈ Rd×d B ∈ Rd×m

ui(t) ∈ Rm

i x1(t) ∈ Rd xi(t) ∈ Rd

i

where  is the system matrix,  is the con-
trol  input  matrix,  is  the  control  input  variable
of agent , and  and  are the state vari-
ables of leader and agent , respectively.

f (t) = [ f T
1 (t), f T

2 (t), · · · ,
f T

N (t)]T f1(t) ≡ 0

[tp, tp+1)

Let  the  time-varying  function  
 with  represent  the  desired  time-varying

formation of the leader-following DMAS, then the forma-
tion  control  protocol  in  the  interval  is  proposed
as follows:

ui(t) = ui1(t)+uik(t), t ∈ [
tp, t̃p

)
ui1(t) = wi1

σ(t)K (x1(t)− xi(t)+ fi(t))

uik(t) = K
∑

k∈N i
σ(t)

wik
σ(t) (xk(t)− xi(t)− fk(t)+ fi(t))

ui(t) = 0, t ∈ [
t̃p, tp+1

)
E =

N∑
i=2

w +∞
0

uT
i (t)Q̂ui(t)dt

(2)

i = 2,3, · · · ,N, p ∈ N, fi(t) ∈ Rdwhere    is a piecewise con-
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K ∈ Rm×d

wik
σ(t) uik(t) (k = 1,2, · · · ,N)

k
i Q̂ ∈ Rm×m Q̂ = Q̂T > 0

N i
σ(t)

i E > 0

E

tinuous differentiable formation function,  is the
gain matrix,  and   are the inter-
action  weight  and  the  control  input  from  the  agent  to
agent ,  respectively,  with  is  the
weighted  matrix,  and  is  the  neighboring  set  of  fol-
lower .  The  symbol  represents  the  total  energy
consumption of the leader-following DMAS. The defini-
tion of the leader-following DMAS formation achievable
with the total energy consumption  being minimum.

xi(0)− fi(0) (i = 1,2, · · · ,N)

K lim
t→+∞

(xi(t)− fi(t)− x1(t)) = 0
E ⩽ Emin, Emin

Definition  1　 For  any  bounded  disagreement  initial
conditions  ,  DMAS  (1)  with
control protocol (2) is said to be minimum-energy leader-
following  formation  achievable  if  there  exists  a  gain
matrix  such  that  and

 where  is the minimum-energy constraint.

K

K

The main objective of this paper focuses on two prob-
lems  as  follows:  (i)  Determine  the  gain  matrix  such
that leader-following DMAS (1) with control protocol (2)
can achieve the minimum-energy time-varying formation.
(ii) Propose sufficient conditions of the minimum-energy
leader-following  formation  achievement  when  the  gain
matrix  is given in advance. Main difficulties lie in how
to determine the minimum-energy constraint of the leader-
following DMAS with communication constraints of ran-
domly  switching  topologies  and  aperiodic  communica-
tion pauses.

E
K

Remark 1　Less energy consumption is  of  great  sig-
nificance  in  practical  engineer  applications.  The  guaran-
teed-cost  strategy  aims  to  determine  the  upper  bound  of
performance  index,  but  it  cannot  ensure  the  energy  con-
sumption during the formation control process to be mini-
mum,  while  the  minimum-energy  formation  strategy  is
proposed to minimize the energy consumption by design-
ing  some  optimization  procedure.  The  formation  control
protocol  (2)  gives  the  formula  of  the  total  energy  con-
sumption, which is the sum of the quadratic integral func-
tion  of  energy  consumptions  of  all  followers.  Thus,  the
relationship between the total energy consumption  and
the control  gain matrix  is  established.  In addition,  the
control input of each agent is analyzed by interval, where
each interval is divided into two subintervals; that is, the
switching  topology  subinterval  and  the  communication
pause subinterval.  In the switching topology subinterval,
the control input of each follower comes from neighbor-
ing  followers  and  the  leader.  In  the  communication
pauses, no control input exists because there is no interac-
tion channel among all the agents.

 3. Minimum-energy  leader-following  forma-
tion design and analysis criteria

In this section, minimum-energy leader-following forma-

tion  problems  of  the  DMAS  are  studied,  which  is  sub-
jected  to  randomly  switching  topologies  and  aperiodic
communication  pauses.  Firstly,  the  formation  achievable
problem is transformed into an asymptotic stability prob-
lem.  Then,  leader-following  formation  design  criteria
with  the  minimum-energy  constraint  are  proposed  in
terms  of  the  linear  matrix  inequality  tool,  which  can  be
checked by the generalized eigenvalue approach.

x̄i(t) = xi(t)− fi(t) (i ∈ {1,2, · · · ,N})
i

Let  be  the  forma-
tion  tracking  error  vector  function  of  agent ,  then  the
compact form of the whole dynamics of leader-following
DMAS (1) with control protocol (2) can be written as fol-
lows:

˙̄x(t) = (IN ⊗ A) (x̄(t)− f (t))−(
Lσ(t)⊗BK

)
x̄(t)− ḟ (t), t ∈ [

tp, t̃p
)

˙̄x(t) = (IN ⊗ A) (x̄(t)− f (t))− ḟ (t), t ∈ [
t̃p, tp+1

) (3)

p ∈ N, f (t) = [ f T
1 (t), f T

2 (t), · · · , f T
N (t)]T f1(t) ≡

0, x̄(t) = [xT
1 (t), x̄T

2 (t), · · · , x̄T
N(t)]T Lσ(t)

ḟi(t) = A fi(t)
(i = 2,3, · · · ,N)

where   with 
 ,  and  is  the  Lapla-

cian  matrix  of  the  switching  topology.  If 
, then it can be derived that

ḟ (t) = (IN ⊗ A) f (t). (4)

Substituting (4) into (3) results in the following closed-
loop system: ˙̄x(t) =

(
IN ⊗ A− Lσ(t)⊗BK

)
x̄(t), t ∈ [

tp, t̃p
)

˙̄x(t) = (IN ⊗ A) x̄(t), t ∈ [
t̃p, tp+1

) . (5)

Lfl
σ(t) = diag{ w21

σ(t),w
31
σ(t), · · · ,wN1

σ(t)} lfl
σ(t) =

[w21
σ(t),w

31
σ(t), · · · ,wN1

σ(t)]
T Lσ(t)

[tp, t̃p) (p ∈ N)

Let  and 
,  then  the  Laplacian  matrix  of

the  leader-following  DMAS  topology  in  the  switching
subinterval   can be depicted as follows:

Lσ(t) =

[
0 0
−lfl
σ(t) Lffσ(t)+ Lfl

σ(t)

]
(6)

Lffσ(t) ∈ R(N−1)×(N−1)

Lffσ(t)

Lσ(t),

U =
[

1 0
1N−1 IN−1

]
U−1 =

[
1 0
−1N−1 IN−1

]
lfl
σ(t) = Lfl

σ(t)1N−1

where  is  the  Laplacian  matrix  of  fol-
lowers  without  considering  interactions  from  the  leader.
Note that the Laplacian matrix  is symmetric because
channels  between  any  two  interconnected  followers  are
bidirectional with the same weight. To well deal with the
impact of the asymmetry of the Laplacian matrix  a

nonsingular  matrix   with

 is  introduced.  Due  to

, it can be shown that

L̂σ(t) = U−1Lσ(t)U =
[

0
Lffσ(t)+ Lfl

σ(t)

]
(7)

Lσ(t) L̂σ(t)

which  has  the  same  eigenvalues  as  the  similar  matrix
.  Because the matrix  is  symmetric and positive

definite,  there  is  at  least  one  zero  eigenvalue,  then  the
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Lσ(t)

0 = λσ(t),1 ⩽ λσ(t),2 ⩽ λσ(t),3 ⩽ · · · ⩽ λσ(t),N .

Ū−1
σ(t) = ŪT

σ(t)

eigenvalues of the Laplacian matrix  can be depicted
by  Furthermore, it
can  be  found  that  there  exists  an  orthogonal  matrix

 such that

ŪT
σ(t)

(
Lffσ(t)+ Lfl

σ(t)

)
Ūσ(t) = diag

{
λσ(t),2,λσ(t),3, · · · ,λσ(t),N

}
.
(8)

Lσ(t)

λmin =min
{
λσ(t),2,σ(t) ∈ χ} λmax =max{ λσ(t),N ,

σ(t) ∈ χ},

In  the  switching set,  the  minimum nonzero  and maxi-
mum  eigenvalues  of  the  Laplacian  matrix  are

 and 
 respectively. Let
⌢
x(t) =

(
U−1⊗ Id

) [
xT

1 (t), x̄T
2 (t), · · · , x̄T

N(t)
]T
=[

xT
1 (t), x̄T

2 (t)− xT
1 (t), · · · , x̄T

N(t)− xT
1 (t)

]T
(9)

⌢
x(t) =

[
xT

1 (t),
⌢
x

T

2 (t), · · · ,⌢x
T

N(t)
]T

⌢
xi(t) = x̄i(t)−

x1(t) (i = 2,3, · · · ,N)

where  and  
 . Let

ÛT
σ(t) =

[
1

ŪT
σ(t)

]
(10)

and [
x̂T

2 (t), x̂T
3 (t), · · · , x̂T

N(t)
]T
=(

U
T

σ(t)⊗ Id

) [
⌢
x

T

2 (t),
⌢
x

T

3 (t), · · · ,⌢x
T

N(t)
]T

, (11)

then it can be deduced by (9) that[
xT

1 (t), x̂T
2 (t), x̂T

3 (t), · · · , x̂T
N(t)

]T
=(

ÛT
σ(t)⊗ Id

) [
xT

1 (t),
⌢
x

T

2 (t),
⌢
x

T

3 (t), · · · ,⌢x
T

N(t)
]T

=(
ÛT
σ(t)U

−1⊗ Id

) [
xT

1 (t), x̄T
2 (t), · · · , x̄T

N(t)
]T
. (12)

Substituting  (12)  into  (5),  it  can  be  found  that  the
whole DMAS can be described by subsystems as follows:

ẋ1(t) = Ax1(t), t ∈ [
tp, tp+1

)
, (13) ˙̂xi(t) =

(
A−λσ(t),iBK

)
x̂i(t), t ∈ [

tp, t̃p
)

˙̂xi(t) = Ax̂i(t), t ∈ [
t̃p, tp+1

) , (14)

i = 2,3, · · · ,N p ∈ N.where  and 
Define

Vz(t) ≜
(
UÛσ(t)⊗ Id

) [
xT

1 (t),0, · · · ,0
]T
, (15)

Vz̄(t) ≜
(
UÛσ(t)⊗ Id

) [
0, x̂T

2 (t), · · · , x̂T
N(t)

]T
, (16)

UÛσ(t)where  is  the  decomposition  matrix,  it  can  be
shown by (12) that

x̄(t) = Vz(t)+Vz̄(t) (17)

Vz(t)
Vz̄(t) UÛσ(t)

which means that  the closed-loop system is  decomposed
into  two  subsystems  that  are  determined  by  and

, respectively. Since  is nonsingular, it can be

Vz(t) Vz̄(t)

UÛσ(t)e1 = 1N

found  from  (15)−(17)  that  and  are  linearly
independent,  which  means  that  closed-loop  system  (5)
can  be  decomposed  into  two  subsystems.  Due  to

, it can be shown from (15) that

Vz(t) =
(
UÛσ(t)

)
e1⊗ x1(t) = 1N ⊗ x1(t). (18)

By (16), it can be found that

Vz̄(t) =
N∑

i=2

(
UÛσ(t)

)
ei⊗ x̂i(t) (19)

ei N
i

Vz(t)

where  is  the -dimensional  column  vector  with  the
th  element  being  1  and  the  other  elements  0.  By  the

structures of , it can be ensured that

lim
t→+∞

(x̄i(t)− x1(t)) = 0, (20)

lim
t→+∞

x̂i(t) = 0 (i = 2,3, · · · ,N)
x̄i(t) = xi(t)− fi(t)

if  and  only  if  .  In  this  sce-
nario, due to , it can be obtained that

lim
t→+∞

(xi(t)− fi(t)− x1(t)) = 0. (21)

Thus, it means that the leader-following DMAS is for-
mation  achievable  according  to  Definition  1.  From  the
above  analysis,  it  can  be  found  that  the  macroscopically
whole  motion  of  all  the  followers  is  determined  by  sub-
system  (13);  that  is,  the  dynamics  of  the  leader.  The
microcosmically  relative motion of  followers  is  depicted
by subsystem (14).  Based on the aforementioned deriva-
tion,  it  can  be  found  that  leader-following  DMAS  (1)
with  control  protocol  (2)  is  formation  achievable  if  and
only  if  subsystem  (14)  is  asymptotically  stable,  which
implies that the leader-following formation control prob-
lem is converted into an asymptotic stability problem.

U =
[

1 0
1N−1 IN−1

]

Lσ(t) [
0

Lffσ(t)+ Lfl
σ(t)

]
ÛT
σ(t) =

[
1

U
T

σ(t)

]
U

T

σ(t)

Lffσ(t)+ Lfl
σ(t)

Remark  2　 The  Laplacian  matrix  of  the  topology
graph  of  the  leader-following  DMAS  is  asymmetric,
which leads to some difficulties in the design and analy-
sis of the formation problem with minimum-energy con-
straint.  In  this  case,  a  constant  nonsingular  matrix

 with  the  special  structure  is  intro-

duced, which is used to transform the asymmetric Lapla-
cian  matrix  of  the  leader-following  topology  into  a

symmetric  matrix .  Then,  the  time-

varying  matrix  is established,  where

 is  the orthogonal matrix  that  can  transform  the
matrix  into the diagonal matrix. Based on the
above two-step transformation, the close-loop system can
be  decomposed  into  two  subsystems  to  analyze  the
achievablity of the desired leader-following formation.

In  the  following,  minimum-energy  leader-following
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formation design criteria of DMAS (1) with control pro-
tocol (2) is proposed in terms of the linear matrix inequa-
lity tool.

ḟi(t) = A fi(t) (i = 2,3, · · · ,N) α(1− ω̂) > βω̂eβω̂tmax

α > 0 β > 0 ĤT = Ĥ > 0

ℓ

Theorem  1　DMAS  (1)  with  control  protocol  (2)  is
minimum-energy  leader-following  formation  achievable
if  ,  with

 and ,  then  there  exists  such  that
the  following  minimization  problem  has  a  minimum-
energy optimal parameter :

min ℓ

s.t.


ℜ̂1 = AĤ+ ĤAT−βĤ < 0

ℜ̂2 =

[
℘ λ−1

minλmax BQ̂
∗ −Q̂

]
< 0

ℜ̂3 = Id − ℓĤ < 0

℘ = AĤ+ ĤAT−2BBT+αĤ ∗

K = λ−1
minBTĤ−1

where ,  denotes the sym-
metric  term  of  the  symmetric  matrix.  In  this  case,

 and the minimum-energy constraint

Emin = x̄T(0)
([

N −1 −1T
N−1

−1N−1 IN−1

]
⊗ ℓId

)
x̄(0).

Proof　Take  common  Lyapunov  function  candidates
for subsystems (14) as

Vi(t) = x̂T
i (t)Ĥ−1 x̂i(t), i = 2,3, · · · ,N (22)

ĤT = Ĥ > 0.
[tp, t̃p) (p ∈ N) Vi(t)

t

where  In the switching topology subinterval
 , taking the derivative of  with respect

to , by (14) and (22) it can be obtained that

V̇i(t) = x̂T
i (t)

(
AT Ĥ−1+ Ĥ−1 A

)
x̂i(t)−

x̂T
i (t)

(
λσ(t),iKTBT Ĥ−1+λσ(t),iĤ−1BK

)
x̂i(t). (23)

K = λ−1
minBTĤ−1Let  the  gain  matrix ,  then  it  immedi-

ately follows from (23) that

V̇i(t) = x̂T
i (t)Ĥ−1

(
AĤ+ ĤAT

)
Ĥ−1 x̂i(t)−

2λσ(t),iλ
−1
min x̂T

i (t)Ĥ−1BBT Ĥ−1 x̂i(t). (24)

λσ(t),iλ
−1
min ⩾ 1Due to , it can be found by (24) that

V̇i(t) ⩽ x̂T
i (t)Ĥ−1

(
AĤ+ ĤAT−2BBT

)
Ĥ−1 x̂i(t). (25)

Let

M̂1 = AĤ+ ĤAT−2BBT+αĤ < 0, α > 0, (26)

then it can be proved by (22) and (25) that

V̇i(t) < −αVi(t). (27)

Then, it can be found by (27) that

Vi(t̃p) < e−α(t̃p−tp)Vi(tp) (28)

Vi(t)
[tp, t̃p).

[t̃p, tp+1) (p ∈ N), Vi(t)

which  indicates  that  is  decreased  in  the  switching
topology subinterval  In the communication pause
subinterval   differentiating  along

the trajectories of subsystems (14), it can be derived that

V̇i(t) = x̂T
i (t)Ĥ−1

(
AĤ+ ĤAT

)
Ĥ−1 x̂i(t). (29)

Let

M̂2 = AĤ+ ĤAT−βĤ < 0, β > 0, (30)

then it can be shown from (22) and (29) that

V̇i(t) < βVi(t). (31)

Then, it immediately follows from (31) that

Vi(tp + 1) < e β(tp + 1−t̃p)Vi(t̃p), (32)

Vi(t)
[t̃p, tp+1) Vi(t)

(t ∈ [t̃p, tp+1)) A < 0.

which implies that  may be increased in the commu-
nication  pause  subinterval .  Note  that 

 is decreased when the system matrix 
Combining (28) and (32) gives

Vi(tp + 1) < e β(tp + 1−t̃p)−α(t̃p−tp)Vi(tp). (33)

ωp = (tp+1− t̃p)
/
(tp+1− tp)Due to , it can be deduced that

Vi(tp + 1) < e((α+β)ωp−α)(tp+1−tp)Vi(tp). (34)

α(1− ω̂) > βω̂eβω̂tmax , e((α+β)ωp−α)(tp+1−tp)< 1
Vi(t)

[tp, tp+1) (p ∈ N)
p = 0

[t0, t1)

If  then  holds.
Thus,  according  to  (33),  it  can  be  found  that  is
exponentially  decreased  in  the  interval  .
When , it can be deduced from (34) that in the first
interval :

Vi(t1) < e((α+β)ω0−α)(t1−t0)Vi(0). (35)

κp = ((α+β)ωp−α)(tp+1− tp) (p = 0,1, · · · , τ) ,Let   then
it can be derived from (34) that

Vi(tτ) < e
τ−1∑
p=0
κp

Vi(0). (36)

tτ < t < tτ+1For  any  time ,  based  on  the  increased/de-
creased  properties  analysis  from  (28),  (32),  and  (34),  it
follows from (36) that

Vi(t) < e
τ−1∑
p=0
κp

Vi(0). (37)

τtmin ⩽ t ⩽ (τ + 1)tmaxDue to , it can be derived that
τ−1∑
p=0

κp ⩽
((α+β)ω̂−α)tmin

tmax
(t− tmax) . (38)

Substituting (38) into (37) yields

Vi(t) < e−((α+β)ω̂−α)tmin e((α+β)ω̂−α)tmint−1
max tVi(0). (39)

Then, it can be derived that

lim
t→ +∞

Vi(t) = 0. (40)

ĤSince  is  symmetric  and  positive  definite,  it  can  be
deduced by (22) that

lim
t→+∞

x̂i(t) = 0, i = 2,3, · · · ,N, (41)
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K = λ−1
minBTĤ−1.

which means that subsystem (14) is asymptotically stable.
Thus,  it  can  be  shown  that  leader-following  DMAS  (1)
with  control  protocol  (2)  can  achieve  the  desired  time-
varying formation with the gain matrix 

⌢
⌢
x(t) = [

⌢
x

T

2 (t),
⌢
x

T

3 (t), · · · ,⌢x
T

N(t)]TLet ,  then  it  can  be
deduced by control protocol (2) that

E =
+∞∑
p=0

w t̃p

tp

⌢
⌢
x

T

(t)
(
(Lff
σ(t)+ Lfl

σ(t))
2⊗KTQ̂K

)⌢⌢
x(t)dt. (42)

By (14) and (42), one has

E =
N∑

i=2

+∞∑
p=0

w t̃p

tp

(
λσ(t),i

)2 x̂T
i (t)KTQ̂Kx̂i(t)dt. (43)

K = λ−1
minBTĤ−1Substituting  into (43) yields

E =
N∑

i=2

+∞∑
p=0

w t̃p

tp

(
λ−1

minλσ(t),i

)2
x̂T

i (t)Ĥ−1BQ̂BT Ĥ−1 x̂i(t)dt.

(44)
0 = λσ(t),1 < λmin ⩽ λσ(t),i ⩽ λmax (i = 2,3, · · · ,N),Due  to  

it immediately follows from (44) that

E ⩽
N∑

i=2

+∞∑
p=0

w t̃p

tp

(
λ−1

minλmax

)2
x̂T

i (t)Ĥ−1BQ̂BTĤ−1 x̂i(t)dt. (45)

Thus, it can derived by (26), (30), and (45) that

E⩽
N∑

i=2

+∞∑
p=0

w t̃p

tp

x̂T
i (t)Ĥ−1

(
M̂1+

(
λ−1

minλmax

)2
BQ̂BT

)
Ĥ−1 x̂i(t)dt+

N∑
i=2

+∞∑
p=0

w tp+1

t̃p

x̂T
i (t)Ĥ−1 M̂2Ĥ−1 x̂i(t)dt −

N∑
i=2

+∞∑
p=0

w t̃p

tp

x̂T
i (t)Ĥ−1

(
M̂1−αH

)
Ĥ−1 x̂i(t)dt−

N∑
i=2

+∞∑
p=0

w tp+1

t̃p

x̂T
i (t)Ĥ−1

(
M̂2+βĤ

)
Ĥ−1 x̂i(t)dt−

α

N∑
i=2

+∞∑
p=0

w t̃p

tp

x̂T
i (t)Ĥ−1 x̂i(t)dt+β

N∑
i=2

+∞∑
p=0

w tp+1

t̃p

x̂T
i (t)Ĥ−1 x̂i(t)dt.

(46)

From (25) and (29), one has
N∑

i=2

+∞∑
p=0

w t̃p

tp

x̂T
i (t)Ĥ−1

(
M̂1−αĤ

)
Ĥ−1 x̂i(t)dt+

N∑
i=2

+∞∑
p=0

w tp+1

t̃p

x̂T
i (t)Ĥ−1

(
M̂2+βĤ

)
Ĥ−1 x̂i(t)dt ⩾

N∑
i=2

w +∞
0

V̇i(t)dt. (47)

By (26) and (46), if

AĤ+ ĤAT−2BBT+αĤ+
(
λ−1

minλmax

)2
BQ̂BT < 0 (48)

R̂1 < 0 R̂2 < 0holds,  then  linear  matrix  inequalities  and 
as shown in Theorem 1 can be obtained according to the
Schur  lemma  in  [32].  Furthermore,  on  the  basis  of  (30)
and  (48),  according  to  the  mean  value  theorem  of  inte-
grals, it can be derived by (46) that

E<
N∑

i=2

Vi(0) +
N∑

i=2

+∞∑
p=0

(
βVi(tp+1)

(
tp+1− t̃p

)−αVi(t̃p)
(
t̃p− tp

))
.

(49)

α(1− ω̂) > βω̂eβω̂tmaxDue to ,  it  can be obtained by (32)
that

N∑
i=2

+∞∑
p=0

(
βVi(tp+1)

(
tp+1− t̃p

)−αVi(t̃p)
(
t̃p− tp

))
< 0. (50)

Eub =

N∑
i=2

Vi(0) =
N∑

i=2

x̂T
i (0)Ĥ−1 x̂i(0)Let ,  then  it  can  be

founded by (49) and (50) that

E < Eub (51)

Eubwhere  is the upper bound of the energy consumption
during the formation control process.

Due to[
⌢
x

T

2 (t),
⌢
x

T

3 (t), · · · ,⌢x
T

N(t)
]T

= ([0, IN−1]⊗ Id)
⌢
x(t), (52)

by (9) and (11), it can be derived that

Eub =

N∑
i=2

x̂T
i (0)Ĥ−1 x̂i(0) =

x̄T(0)
(
U−T[0, IN−1]T [0, IN−1]U−1⊗ Ĥ−1

)
x̄(0) (53)

and
N∑

i=2

x̂T
i (0)x̂i(0) =

x̄T(0)
(
U−T[0, IN−1]T [0, IN−1]U−1⊗ Id

)
x̄(0). (54)

x̄i(0) = xi(0)− fi(0) (i = 2,3, · · · ,N)
U

x̂i(0) , 0 i ∈ {2,3, · · · ,N}

According  to  the  assumption  of  Definition  1,  the  ini-
tial  conditions   are
bounded and not all agreement. Because  is non-singu-
lar, there must exist some   , then
the following inequality holds:

N∑
i=2

x̂T
i (0)x̂i(0) > 0. (55)

ℓNext, we can choose a positive scalar variable  as the
optimal parameter to construct the minimum-energy con-
straint as

Emin = ℓ

M∑
i=2

x̂T
i (0)x̂i(0). (56)

Due to
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U−T[0, IN−1]T [0, IN−1]U−1 =

[
N −1 −1T

N−1

−1N−1 IN−1

]
, (57)

it can be obtained that

Eub = x̄T(0)
([

N −1 −1T
N−1

−1N−1 IN−1

]
⊗ Ĥ−1

)
x̄(0), (58)

and

Emin = x̄T(0)
([

N −1 −1T
N−1

−1N−1 IN−1

]
⊗ ℓId

)
x̄(0), (59)

[
N −1 −1T

N−1

−1N−1 IN−1

]
Eub < Emin,

ℜ̂3 < 0

where  is  regarded  as  the  relationship

matrix  of  the  energy  consumption  during  the  formation
control  process.  Let  then  the  linear  matrix
inequality  is obtained. □

[tp, t̃p) (p ∈ N)
[t̃p, tp+1) (p ∈ N)

α

α

β

β

tmax

ω̂

α(1− ω̂) > βω̂eβω̂tmax (α > 0, β > 0)

[tp, t̃p)

[t̃p, tp+1)

Remark  3　 The  Lyapunov  function  candidate  is
required to  converge in  the  switching topology subinter-
val  ,  and  may  diverge  in  the  communica-
tion  pause  subinterval  .  To  restrict  the
convergent/divergent  quantity  of  the  Lyapunov  function
candidate,  two  coefficients  are  introduced.  One  is  the
convergence coefficient , which can ensure the conver-
gence  rate  of  the  Lyapunov  function  candidate  is  faster
than  in the switching topology subintervals.  The other
is the divergence coefficient , which undertakes that the
Lyapunov  function  candidate  diverges  with  a  rate  no
more  than  in  the  communication  pause  subintervals.
Furthermore,  with  the  maximum  interval  and  the
maximum  communication  pause  rate  being  involved,
the inequality   is intro-
duced  to  ensure  the  convergent  quantity  of  Lyapunov
function  candidate  in  the  switching  topology  subinterval

 to  be  greater  than  the  divergent  quantity  of  the
Lyapunov function candidate in the communication pause
subinterval .  Therefore,  the  globally  asymptotic
stability  of  subsystem  (14)  during  the  formation  control
process can be guaranteed, and the desired leader-follow-
ing time-varying formation can be achieved.

E =
N∑

i=2

w +∞
0

uT
i (t)Q̂ui(t)dt

uT
i (t)Q̂ui(t) (i = 2,3, · · · ,N)

ui(t) (i = 2,3, · · · ,N) Q̂ = Q̂T > 0
Q̂

Remark  4　 The  specific  meaning  of  the  minimum
energy constraint can be regarded as the minimum energy
reserve to ensure the formation achievable of the closed-
loop  system,  which  should  be  larger  than  the  practical
total  energy  consumption.  In  this  paper,  the  total  energy

consumption  describes  the

global  energy  consumed  by  the  formation  control  of  all
followers,  where  is  a
quadratic  form  of  the  control  protocol

 with  a  weighted  matrix .
For  a  specific  case,  can  be  diagonalized  with  each

ui(t)
uT

i (t)Q̂ui(t) (i = 2,3, · · · ,N)
ui(t) (i = 2,3, · · · ,N)

ui(t)

ui(t) (i = 2,3, · · · ,N)

ui(t) (i = 2,3, · · · ,N)

diagonal element denoting the specific proportion of each
control  channel  of .  In  this  sense,

 can  be  regarded  as  the  inner
product  of  with  the  specific  propor-
tion of each control channel of ,  which can describe
the global energy consumption. By this way, we can con-
struct the scalar expression of the energy consumption for
the  vector  ,  which  is  a  common
method in the optimal control and can be referred in [33]
for more details.  Moreover,  it  should be pointed out that
the  total  energy  consumption  is  constructed  without  the
physical unit, since  is dimensionless
for the general leader-following DMAS. However,  if  the
leader-following  DMAS  represents  a  physical  system,
then there is a physical unit. For example, the unit of the
energy  consumption  index  can  be  Joule  for  an  electric-
powered multiple quadrotor system.

xi(t) =
[
xip(t), xiv(t)

]T ∈ Rd = R2 xip(t) xiv(t)

Remark 5　In the actual situation, such as robots and
unmanned  aerial  vehicles  UAVs,  there  are  different
motion characteristics,  dynamics and kinematics models,
whose  models  containing  the  analysis  of  kinematics  and
dynamics  can  refer  to  [34].  Actually,  the  dynamics  of
each  agent  in  the  DMAS  can  be  modeled  as  a  second-
order  integrator  with  position  and  velocity  states;  i.e.,

  with  and  rep-
resenting the position-like state and the velocity-like state
(see  [35−37]).  For  example,  the  control  of  the  UAV  is
usually decomposed into the position-loop control and the
attitude-loop control. Note that the control of the attitude
loop  is  realized  by  the  internal  controller  of  each  agent
and can be designed independently. However, the forma-
tion  control  of  a  DMAS  belongs  to  the  position  loop,
which  means  that  the  dynamics  of  each  agent  can  be
modeled as the second-order integrator. In this paper, the
dynamics  of  each  agent  are  modeled  as  general  high-
order  ones,  which  contain  second-order  integrator  cases.
Hence, the dynamics model of each agent and the corre-
sponding method in this paper can be used in the forma-
tion research for some practical multi-agent systems, such
as robots and UAVs.

K
Based on the aforementioned proofs, if the gain matrix
 is given in advance, then sufficient conditions for mi-

nimum-energy  leader-following  formation  achievement
in the sense of linear matrix inequality is proposed below.

K

ḟi(t) = A fi(t)
(i = 2,3, · · · ,N) α(1− ω̂) > βω̂eβω̂tmax α > 0
β > 0 ĤT

c = Ĥc > 0

ℓc

Theorem 2　For the given gain matrix , DMAS (1)
with  control  protocol  (2)  is  minimum-energy  leader-fol-
lowing  formation  achievable  if 

,  with  and
, then there exists  such that the follow-

ing  minimization  problem  has  a  minimum-energy  opti-
mal parameter :
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min ℓc

s.t.


ℜ̂c1 = Ĥc A+ AT Ĥc−βĤc < 0

ℜ̂c2 =

[
℘c λmaxKTQ̂
∗ −Q̂

]
< 0

ℜ̂c3 = Ĥc− ℓcId < 0

℘c = Ĥc A + AT Ĥc − λmax KTBT Ĥc−λmax ĤcBK+
αĤc Emin =

x̄T(0)
([

N −1 −1T
N−1

−1N−1 IN−1

]
⊗ ℓcId

)
x̄(0)

where 
. In this case, the minimum-energy constraint 

.

 4. Numerical simulations

i (i = 2,3, · · · ,7)

In this section, a numerical simulation is provided to ve-
rify the above theoretical results. Consider a DMAS with
agent 1 being the leader and agents   fol-
lowers. The system matrices are

A =

 0 0 −1
−6.3 −6.3 1
−1.5 −2.5 0


B =

 0 1
1 0
0 1


.

x1= [12,14,−25]T x2= [45,28,−17]T x3= [2,−81,−22]T

x4= [16,60,−50]T x5= [−35,20,65]T x6= [−15,−3,21]T

x7 = [−15,4,−36]T

The  initial  states  of  agent i (i=1,2,···,7)  are  given  as
, , ,
, , ,
.

The  desired  leader-following  formation  functions  are
set as follows:

f1(t) =
[

0 0 0
]T
,

fi(t) =


20sin

(
t+

iπ
3

)
−20sin

(
t+

iπ
3

)
−20cos

(
t+

iπ
3

)


,

i = 2,3, · · · ,7.where 

t = 10 s

tmax = 2.3 s
ω̂ = 0.35

The switching set  with  four  topologies  is  presented in
Fig.1,  where  the  yellow  five-pointed  star  represents  the
leader and other different color squares denote six differ-
ent  followers.  The  switch  signal  of  randomly  switching
topologies and aperiodic communication pauses is shown
in Fig.  2,  where  the  time period  is  set  as  and  is
divided  by  time  intervals  with  1.9  s,  2.2  s,  1.7  s,  2.3  s,
and  1.9  s.  In  this  case,  the  duration  of  each  switching
topology or each communication pause may be different,
which  means  that  the  topologies  are  switched  randomly
and  communication  pauses  are  aperiodic  with  the  maxi-
mum interval  and the maximum communica-
tion pause rate . 

2 3

6 5

7 41

2 3

6 5

7 41

2 3

6 5

7 41

2 3

6 5

7 41

(a) Topology 1 (b) Topology 2

(c) Topology 3 (d) Topology 4

Fig. 1    Switching set
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Fig. 2    Switching signal
 

α

β Q̂ α = 0.8,
β = 0.7, Q̂ = diag{0.000 5,0.000 5}.

(A,B)
ḟi(t) = A fi(t)

α(1− ω̂) > βω̂eβω̂tmax i = 1,2, · · · ,7
Ĥ−1

ℓ

The convergence  coefficient ,  the  divergence  coeffi-
cient ,  and  the  weighted  matrix  are  set  as 

 and  It  can  be  found
that  is stabilizable, and the formation feasible con-
ditions  and  the  specific  inequality

 are  satisfied,  where .
The  real  symmetric  matrix  of  the  Lyapunov  func-
tion candidate and the minimum-energy optimal parame-
ter  are solved as

Ĥ−1 =

 1.582 1 0.331 4 −1.054 7
0.331 4 0.390 0 −0.998 2
−1.054 7 −0.998 2 2.587 9

 ,
ℓ = 3.6194,

Krespectively. Then, the gain matrix  is

K = λ−1
2 BT Ĥ−1 =

[
3.775 9 4.443 3 −11.373 2
6.008 7 −7.597 3 17.468 0

]
.

t = 10 s
E(t) |t=10 = 331.310 9

Thus, the total energy consumption with the minimum-
energy  constraint  during  the  time  period  is

.
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ℜ̂3 = Id − ℓĤ < 0

Ĥ−1
F K̂F EF

If  the  inequality  is  not  considered,
then  the  conclusion  of  Theorem  1  will  degenerate  into
other  formation criteria  as  discussed in [20] and [24].  In
the  case,  without  the  minimum-energy  constraint,  the
matrix variable, the gain matrix, and the total energy con-
sumption  are  represented  by , ,  and  respec-
tively, which can be expressed as

Ĥ−1
F =

 2.623 8 0.523 7 −1.685 6
0.523 7 0.629 7 −1.609 5
−1.685 6 −1.609 5 4.170 1

 ,
K̂F=λ

−1
2 BTĤ−1

F =

[
5.966 4 7.174 5 −18.337 6
−10.688 8 −12.371 2 28.306 9

]
,

EF(t) |t=10 = 520.193 8.

t = 10 s E(t) |t=10 < EF(t) |t=10

It can be found that the total energy consumption with
the  minimum-energy  constraint  is  less  than  the  total
energy  consumption  without  the  minimum-energy  con-
straint in ; i.e., .

xi(t)− fi(t)(i = 1,
2, · · · ,7)

K

t = 0 s

The  tracking  error  trajectories 
 in  three  different  dimensions  with  the  control

gain  matrix  are  described  in Fig.  3,  where  the  black
curve  with  little  circles  depicts  the  trajectory  of  the
leader. By Fig. 3, it can be found that there are some lit-
tle  abrupt  waves  in  the  curve,  which  reflect  switching
actions  from  topologies  to  communication  pauses,  or
switching  actions  among  different  topologies.  It  can  be
found that  the desired formation can be achieved for the
case that the topologies are switched randomly and com-
munication pauses are aperiodic. Fig.  4 exhibits  position
changes  of  the  leader  and  six  followers  at  the  moment

, 1.5 s, 3.5 s, and 4 s, where the leader and six fol-
lowers  are  marked  by  a  yellow five-pointed  star  and  six
squares with different colors, respectively.
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ẋ1(t) = Ax1(t)

As  shown  in Fig.  5,  the  leader  rotates  counterclock-
wise within 10 s, whose trajectory is shown by the red tri-
angle  dot  line  and  is  determined  by  the  dynamics  of  the
leader; that is, .
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E(t) EF(t)

E(t) < EF(t)

The  curves  of  and  are  shown  in Fig.  6,
where the two total energy consumptions trend to two dif-
ferent limited values. It can be found from Fig. 6 that the
total energy consumption with the minimum-energy con-
straint is less than the one with other methods during the
leader-following  formation  process;  i.e., .
Combined with the trending curves of the tracking trajec-
tories,  position  changes,  and  the  trajectory  of  the  leader
from Fig.  3 to Fig.  5,  it  can  be  seen  that  six  followers

gradually form and continuously maintain a time-varying
regular hexagon with circling the leader in the middle at
the same angular velocity.
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In  addition,  to  show  the  difference  of  the  simulation
results  with different  values of  parameters,  the values of
matrices , ,  the conversion coefficient  and the dif-
fusion coefficient  are chosen as follows:

A =

 1 1 −1
−5 −5 1
−1 −2 0

 , B =

 0 2
1.5 0
0 1.5

 ,
α = 0.8, β = 0.5,

(A,B) ḟi(t) =
A fi(t) α(1− ω̂) > βω̂eβω̂tmax

Ĥ−1

ℓ

it  can  be  found  that  is  stabilizable,  and 
 and  are  satisfied.  With  the

other  parameters  being  the  same,  the  real  symmetric
matrix  of  the  Lyapunov  function  candidate  and  the
minimum-energy optimal parameter  are solved as

Ĥ−1 =  

 0.463 0 0.123 6 −0.158 0
−0.158 0 −0.244 0 0.479 9
0.123 6 0.128 6 −0.244 0

 ,
ℓ = 0.767 0,

Krespectively. Then, the gain matrix  is

K = λ−1
2 BT Ĥ−1 =

[
2.111 9 2.197 3 −4.169 3
7.849 8 −1.353 4 4.601 4

]
.

E(t)|t=10 = 75.311 2
A B α β

In  this  case,  the  total  energy  consumption  with  the
minimum-energy  constraint  during  the  time  period  is

. From the above simulation results, it
can be found that the different values of , , , and 
may lead to the different gain matrix design, but the mini-
mum-energy  formation  can  be  achieved  by  the  associ-
ated  gain  matrix.  Thus,  it  can  be  found  that  DMAS  (1)
with  control  protocol  (2)  can achieve the  desired leader-
following  time-varying  formation  with  the  minimum-
energy  constraint  in  the  sense  of  the  linear  matrix
inequality  under  the  communication  constraints  of  ran-
domly  switching  topologies  and  aperiodic  communica-
tion pauses.
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 5. Conclusions
Minimum-energy time-varying formation problems of the
leader-following  DMAS  subjected  to  randomly  switch-
ing  topologies  and  aperiodic  communication  pauses  are
addressed in this paper. Based on the proposed formation
control protocol with the total energy consumption being
involved, criteria of design and analysis for the minimum-
energy formation are proposed, which can be checked by
the  generalized  eigenvalue  method.  Especially,  variables
in  criteria  that  are  required to  be solved are  independent
on the number of agents,  which can guarantee the scala-
bility  of  the  DMAS.  By  a  two-step  transformation
approach, the asymmetric Laplacian matrix of the leader-
following  DMAS  topology  is  well  dealt  with.  Further-
more, the minimum-energy constraint can be determined,
which  is  associated  with  the  initial  conditions  and  the
relationship  matrix,  where  the  relationship  matrix  is  the
Laplacian  matrix  of  the  star  graph  with  the  interaction
weight  being  one.  In  the  further  work,  the  minimum-
energy leader-following formation control problems with
jointly  spanning  tree  topologies  will  be  further
researched.
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