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Abstract: In the process of performing a task, autonomous
unmanned systems face the problem of scene changing, which
requires the ability of real-time decision-making under dynami-
cally changing scenes. Therefore, taking the unmanned system
coordinative region control operation as an example, this paper
combines knowledge representation with probabilistic decision-
making and proposes a role-based Bayesian decision model for
autonomous unmanned systems that integrates scene cognition
and individual preferences. Firstly, according to utility value deci-
sion theory, the role-based utility value decision model is pro-
posed to realize task coordination according to the preference of
the role that individual is assigned. Then, multi-entity Bayesian
network is introduced for situation assessment, by which scenes
and their uncertainty related to the operation are semantically
described, so that the unmanned systems can conduct situation
awareness in a set of scenes with uncertainty. Finally, the effec-
tiveness of the proposed method is verified in a virtual task sce-
nario. This research has important reference value for realizing
scene cognition, improving cooperative decision-making ability
under dynamic scenes, and achieving swarm level autonomy of
unmanned systems.
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1. Introduction

In the process of executing a certain mission, the swarm
unmanned system may face changes in environmental si-
tuations, which requires the unmanned system to have the
ability to plan in dynamic scenarios. However, existing
dynamic decision models are designed for specific tasks
or scenarios [1—4]. When the scenes, mission goals, envi-
ronment, and other factors related to the task change, the
original model will no longer be applicable. The decision
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to swarm unmanned systems faces the challenge of situa-
tion change and scene transformation.

The existing decision models can be categorized into
data-based and knowledge-based models. The data-based
models usually consider the task as a Markov process.
The model is built based on uncertainty theory and has
good adaptability to dynamic scenarios. However, the
construction of the model requires the accumulation of a
large amount of data, and the accuracy and computa-
tional efficiency of the model is relatively low. Whereas
the knowledge-based models can make full use of the
existing experience, the decision-making process can be
explained, and its efficiency is high under the condition
of the scenarios are well described semantically. Its dis-
advantage is that it has poor adaptability to the change of
scene.

As shown in [5], task ontologies are widely used to
semantically describe domain knowledge related to tasks.
In [5], the relationship between a certain situation and a
certain action is determined. However, in conditions with
uncertainty, there are various actions to act under various
situations, and both the estimation of situations and the
actions to act are probabilistic. Therefore, there is a need
for a probabilistic decision modeling method that can
well characterize the uncertainty and can be well adapted
to semantically description of the scenario.

Furthermore, when individuals in a swarm unmanned
systems are executing a cooperative task, they tend to
cooperate by assigning a certain role to each individual.
Thus, the decision-making problem of swarm unmanned
systems has the feature of role preference.

Therefore, this paper transforms the dynamic decision-
making problem into a probabilistic inferencing problem
and proposes a role-based Bayesian decision method
based on multi-entity Bayesian network (MEBN). The
research focuses on: (i) Establishing a knowledge base
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for situation awareness under multi-scenario. (ii) Propos-
ing a probabilistic inferencing model for decision-mak-
ing, which considers individual roles in a cooperative
swarm. (iii) Integrates the above decision-making and sit-
uation awareness into a hybrid inference framework that
supports probabilistic inference.

The rest of the paper is organized as follows. Section 2
introduces the related works and the framework pro-
posed. Section 3 introduces a concept operation scenario
for heterogeneous collaborative swarm unmanned sys-
tems. Section 4 focuses on the proposed role-based
Bayesian decision method. Section 5 details the multi-
scene knowledge base and construction of the whole
framework. Section 6 shows a verifying experiment for
the proposed method. Finally, Section 7 summarizes this

paper.

2. Related works and proposed framework
2.1 Related works

Human beings have complex thinking processes in con-
tingency planning. In this case, rule-based first-order rea-
soning is difficult to meet the needs of multi-scenario
decision-making. Signed directed graph (SDG) [6],
dynamic Bayesian network (DBN), dynamic influence
diagram (DID) [7], genetic fuzzy tree (GFT) [8], and
MEBN [9] are traditional methods for decision-making.
All of them describe the complex causality or correlation
between decision factors in the form of graphs, which can
support the complex reasoning process and have the
potential to be applied to multi-scene decision-making.
The characteristics of these models are compared in
Table 1.

Table1 Comparison of methods for decision-making

Feature MEBN

SDG DBN GFT DID

Fuzzy knowledge description capability \
Probability knowledge description capability
Modeling convenience
Utility decision
Formalization
Modularization
Knowledge reuse

Dynamic decision

<2 22 2 2 2 2 2

Preference description capability

|
<

2. =2
<
< 2 2

R

In this paper, MEBN is chosen as the basic modeling
method of domain knowledge related to decision-making.
Proposed by Laskey [9] in 2008, MEBN combines the
expressiveness of first-order logic with the advantage of
the Bayesian network in describing uncertainty. Com-
pared with other methods, the main advantages are as fol-
lows.

(i) The MEBN network used for inference is generated
in real-time according to the current evidence, unlike the
classical Bayesian network that has a fixed structure,
which makes the MEBN more suitable for the decision-
making of unmanned systems in a dynamic environment.

(i1)) MEBN’s Bayesian networks are generated in real-
time by integrating relevant MEBN fragments (MFrag) in
a bottom-up way according to the actual situation, which
makes the knowledge modeling process pay more atten-
tion to local characteristics and avoid handling a particu-
larly complex model.

(iii) It is applicable to web ontology labguage (OWL)
[10] and can be integrated with the existing knowledge
engine [11]. Ontology inference, rule-based inference,

and probability inference can be integrated into a compre-
hensive knowledge engine, which can effectively support
the decision-making of collaborative swarm unmanned
systems under a dynamic environment.

MEBN theory uses extended probability ontology to
organize planning variables into loose MFrags formation,
and then expresses the influence of different decision
variables on results through local probability parameters
in an explicit and formal way [12] MEBN has been
widely used in the field of situation awareness since it
was proposed. Probabilistic ontologies for net-centric
operational systems (PROGON) [13] is a probabilistic
ontology for distributed operational architecture. It aims
to describe complex and uncertain environments and pro-
vide semantic interoperation means for command and
control. In addition, MEBN method also provides a good
foundation for model learning. Literature [14] con-
structed a hybrid (discrete and continuous) MEBN learn-
ing algorithm, which can learn MEBN model in the case
of mixed discrete variables and continuous variables. Not
only local probability parameters but also the model
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structure of the model can be learned [15—20].

The system of logical knowledge description and prob-
abilistic reasoning rules composed of multiple MFrags,
which is called MTheory. Fragmented MFrag provides
great convenience for knowledge reuse. It can generate a
Bayesian network model in real-time according to the
current acquired evidence knowledge and the situation
requiring reasoning, namely situation specific Bayesian
network (SSBN).

By adding decision nodes and utility value nodes,
MEBN uses the principle of maximum utility value to
realize decision-making under uncertain conditions,

Ontology for unmanned system
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which is called multi-entity decision graph (MEDG) [21].
2.2 Proposed framework

The proposed framework for autonomous is shown in
Fig. 1. In the framework, operational scene is described
under a semantic-centered method, which lays the foun-
dation for knowledge process. The MFrags are also orga-
nized under the predefined concept in ontology. It brings
in expert’s knowledge in construction of the knowledge
frags. Utility value is set previously according to the role
assigned to the vehicle. The following ections detail the
realization of the framework.

I Assigned role ]

=
© ‘lé - 5 Experts’
) o .2
% § & E, knowledge Y
8= & o]
- E /M I Preference model ]
Structure .
. . Utility value
Descrinti information
escriptive v
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_ Sensors p|  Descriptionof —>| Bayesian network |—>| Decision output
information operational scenario

Fig.1 Diagram of role-based Bayesian decision framework for autonomous unmanned system

3. Region control operation concept for
heterogeneous collaborative swarm
unmanned systems

The proposed framework is verified based on a scenario
that a heterogeneous cooperative combat swarm com-
posed of unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs) executing region con-
trol operation. Assume that there may be enemy fortifica-
tions and UGVs in the area, and the ride side is equipped
with UAVs and UGVs. The scene is shown in Fig. 2, and
details of the scenario are descriped as follows.

o
oo & >
- - ® 2¢ : UAV of red side;
= [ e ® : UGV of'red side;
“& @ @ :UGV of blue side;
=) @ o < : Potential target point;
o : Fortifications of blue side.

- o

Fig.2 Swarm unmanned system cooperative region control opera-
tion scenario

3.1 Mission

UAVs and UGVs work together to detect and strike
enemy targets in the area.

3.2 Task assignment of UAV/UGV

All UAVs carry out area reconnaissance operations and
are equipped with visible and infrared reconnaissance
payloads.

UGVs routinely visit the potential enemy region, strike
or assign other UGVs to strike the target being founded.
UGVs are armed with two types of ammunitions. Accord-
ing to operational guidelines, piercing ammunitions are
usually used to attack enemy UGVs and blasting ammu-
nitions are used to attack enemy fortifications.

3.3 Enemy targets

Enemy UGVs have the same performance as the red side’s
UGVs.
Fortifications are built by the enemy to hold territory.

3.4 Scenario

The UAVs are loaded with visible light, infrared, and
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other reconnaissance payloads. The UGVs are equipped
with piercing ammunitions and blasting ammunitions.
UAVs and UGVs conduct air and ground reconnaissance
missions respectively. When a UAV found enemy fortifi-
cations or UGVs, it may assign the target to a suitable
UGV. The UGV decides its next action such as attac-
king the target, hiding, or escaping according to the situa-
tion.

4. Role-based utility value decision method

In this paper, the roles of a certain individual perform in
the swarmare described by utility values. By assigning diffe-
rent utility value, vehicles that play different roles show
different behavioral preferences.

By reconfiguring MEDG with the following proposed
utility value decision model, preference decision can be
realized. Table 2 describes the symbols related to the
model.

Table 2 Definition of related symbols

Symbols Definition

R A set of prior rules for autonomous decision model

- The mapping relationship between input and output of

decision nodes

L The serial number of a rule r

t Time

L The Lth rule

D, Decision node
Pa(Dy) Parent node of the decision node D,
WPa(Dy) Value range of the parent node of decision node D;

Local probability distribution function of decision node

P, (Ds|Pa(D . . .
r(DilPa (D) D at time ¢ under input from its parent node

pj The probability of the jth decision option

At time ¢, the expected utility value of each decision
option of decision node D under input X
The observed value of the decision system to the

EUX:,Dy)

O, . .
environment at time ¢

Moreover, the dynamics of the environment are
described as “time slice” by define a relationship concept
called “pretimeOf(-) ” that describe the chronological
order of events. This enables temporal inference. For
example, when the speed of the target at the current
moment is higher than the speed at the last moment, the
target can be judged to be accelerating.

The utility value decision model consists of four parts:
rule model, probability model, role model, and utility
value model. They are detailed as follows:

Rule model: The rule model describes the mapping
between situation elements and decision options, which is
a set of rules R=(r',r%,7,---,r"). Any rules describes

the mapping at time ¢ between the input of the decision
node and its output is defined as:

¥ Wpyp,) — Wp,

where wp,p, 1s the value range of the parent node of the
decision node D,. wp, is an output of the decision node.

Probabilistic model: The probabilistic model describes
the local probability distribution of the output of a deci-
sion node under different conditions. The probalistic
model is represented as

P,(D/|Pa(D,) = p;

where p; is the local probability distribution obtained
from experience, and it represents the probability of
choosing the jth option.

Role model: The role model is used to describe the
impact on the decision result of the role they play in the
swarm when they are performing a cooperative task. This
mechanism is mainly achieved by giving different roles
different utility values:

Uj:c—)u”

where u¢ is the utility value of role c.

Utility model: The utility model is used to calculate the
expected utility value under a certain decision option. The
expected utility value can be calculated by the following
formula:

E(U(X, D))= Y UsP(X,,0,,D,)

where U; represents the utility value of the jth decision
option, and P;(X,,0,,D,) is the probability of choosing
the jth option under the current state X,, observation
value O, and decision action D,.

5. Multi-scene knowledge base for decision-
making in a dynamic scenario

5.1 Problem analysis

The decision problem of the swarm unmanned systems
has obvious hierarchical characteristics, they are: swarm
level decision, coordination level decision, and indivi-
dual level decision. At the swarm level, it is necessary to
evaluate the overall situation of the swarm and decide
whether the current mission should continue or not. At
the coordination level, the corresponding unmanned vehi-
cles should be coordinated in time to deal with a certain
situation. At the individual level, action should be
decided according to the situation the individual faces
under the constraints of swarm task goals or collabora-
tive instructions.

In order to illustrate the principle of the model, the fol-
lowing decision scenes faced by the swarm are modeled
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and verified.

(1) Overall situation assessment and decision at swarm
level. The comprehensive situation assessment is mainly
carried out at the swarm level to evaluate the current mis-
sion capability of the swarm and generate swarm beha-
vior in the next stage.

(i1) Role-based decision at coordination level. Several
unmanned vehicles work cooperatively with a pre-
assigned role, the decision model should generate beha-
viors to act for these vehicles according to the situation
these vehicles confront and their pre-assigned roles.

(iii) Individual situation assessment and decision-mak-
ing at the individual level. In this scene, a single vehicle
generates its behavior according to the situation it con-
fronts.

5.2 Swarm level situation assessment and
decision-making

Swarm level decision-making outputs the behaviors of
the entire swarm, mainly considering the following
aspects of the situation.

(i) Confrontation capability: such as the overall situa-
tion of both sides has changed significantly, lacking the
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key combat forces needed to complete the mission. If
enemy armored vehicles are found and the piercing
ammunitions of the swarm are exhausted, the “withdraw”
decision option should be produced. Situation events that
affect the situation level include the number of
blasting ammunition and the number of piercing ammuni-
tion.

(i) Swarm state: the swarm state is divided into two
components: environment state and swarm serviceability.
The environment state describes the influence of environ-
mental factors such as electronic interference, visibility,
and other factors.

(iii) Sustainability: this factor measures the sustained
mission ability of UAVs and UGVs.

(iv) Enemy threat: this factor evaluates the influence of
enemy threats in the current situation, such as the num-
ber of enemy fortifications and the number of enemy
UGVs.

Moreover, two options are considered at the swarm
level: withdraw or continue executing the task. Fig. 3
shows the influencing factors of the swarm situation
assessment. Fig. 4 shows the knowledge base established
according to the above analysis.

Number of Enemy threat Number of UGV
fortifications

Average

sustainability of UGV

Visibility

Environment

Piercing

sustainability of UAV v ammunition
s Situation at Confrontation
Sustainability swarm level capabilit
— k—J P 24 Blasting
Average ammunition |

Swarm state ‘

N

Serviceability
rate of UAV
Serviceability
rate of UGV

Serviceability
rate

Fig.3 Key factors of real time dynamic planning for swarm unmanned systems
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Fig. 4 MFrags for swarm level situation assessment and decision model

5.3 Cooperation level role-based decision-making

When the swarm is marching in formation, if they are
suddenly attacked by the enemy or enter dangerous areas
such as urban areas, the vehicles should be able to carry
out cooperative tactical actions according to the assigned
role. Thus, the role-based decision model proposed in
Section 4 is integrated into MEBN, as shown in Fig. 5.
Therein, uavAttacked(uav, f) means UAV is attacked at
time ¢, ugvAttacked(ugv, f) means UGV is attacked at

IsA (swarrm, Swarm) IsA (ugv, UGV)

(uav=uavmemberOf (swarm))

(ugy=ugvmemberofswarm))

(uavmemberof (swarm)] (uavmemberof (swarm)] ( ~Ar=t_pre))

time ¢, Attacked(swarm,f) generates probability of the
whole swarm being attacked, alert(swarm, f) generates
alert level of the swarm, hasRole(ugv,/) means UGV’s
role at time ¢. Decision(ugv,?) defines the probability of
each decision options, and finally Utility(ugv,f) calcu-
lates the utility values of each decision options. The deci-
sion factors considered in the model are: the UAV is
attacked, the UGV is attacked, entering the urban area,
and march on the open road. The decision options are
search, march, and hide.

IsA (vav,UAV) IsA (z,TimeStep)

IsA (¢_pre,TirmeStep)

(¢_pre=pretimOf(z))

[uaVAttacked (uav, t)]

[ugvAttacked (ugv, t)]

\ ugvmernberOf (ugv) /

A

Attacked

Alert (swarm,t)]

A4
inThreatScense (ugv)i’ \

L+ Utility (ugv, 1)

[hasRole (ugv,t)]

Decision (ugyv, ?)

Fig. 5 Role-based cooperative task planning
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5.4 Individual level situation awareness and
decision-making

Individual level decision-making is a hybrid problem of
knowledge reasoning and algebraic solving, which con-
siders the strategy of executing the target when the indi-
vidual is fighting independently or participating in some
cooperative operations. This strategy will affect its
motion planning results. Such as when two vehicles coope-
rate in the chase-intercept pattern, the chaser’s trace point
is behind the goal, and the interceptor’s tracking point is
in front of the target. This cooperative strategy can reduce
the escape possibility of the target.

The UAVs are responsible for reconnaissance and tar-
get allocation. Its situation awareness mainly evaluates its
own safety condition, environmental state, payload state,
and so on. Decision factors and outputs are as follows.

(1) Decision factors: UAV state (endurance, health
state), environmental condition (whether there are aerial

obstacles, wind speed), mission condition (mission pay-
load, communication condition).

(i1) Decision output: obstacle avoidance, return, recon-
naissance, task assignment.

Similarly, the decision factors and outputs of situation
assessment and decision for UGVs are as follows.

(i) Decision factors: motion parameters of the target,
such as the speed (acceleration, deceleration, smooth), the
direction of movement (approach, away), and distance
(far, medium, near); the category of the target is UGV or
fortification; the state of the natural environment, such as
the weather, the presence, or absence of shelter.

(i1) Decision output: for collaborative interception situa-
tions, decision outputs are front-tracking, back-tracking,
and line-of-sight tracking; for the decision of whether or
how to attack the target, the decision outputs are attack
(piercing ammunition, blasting ammunition), and hide.

The decision model of UAVs and UGVs is shown in
Fig. 6.
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~._ % uavDecision (uav, 7) L \
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(a) Decision model of UAV
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-
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o
f_/-"
o

ugvDecision (7) jld

hasShelter (env, #)

(b) Decision model of UGV
Fig. 6 Decision model of UGV/UAV
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6. Experimental verification and analysis
6.1 Experimental design

The experiment is based on the region control operation
concept proposed in Section 3, and the following scena-
rios are designed to verify the effectiveness of the deci-
sion model:

(i) Swarm level situational awareness and decision-
making.

Journal of Systems Engineering and Electronics Vol. 34, No. 6, December 2023

(i1) Role-based collaborative situation awareness and
decision-making when the swarm is ambushed during
marching.

The task plot setting is shown in Table 3 and Table 4.
Among them, the situation is represented as symbolics.
The value of situation factors is also symbolics such as
TRUE, FALSE, HIGH, and LOW. The uncertainty of the
environmental situation is described through the probabi-
lity value of symbolically represented situation factors.

Table 3 Events for swarm level decision

Event labels TO Tl T2 T3 T4 TS Description
HASJAM - - - - - TRUE Find jamming
HASVISIBLE - - - - GOOD - Visibility
HASENVSTATE GOOD - - - - - Environment state
HASFIGHTERS HIGH LOW LOW LOW LOW LOW Enemy’s UGV number
HASFORT LOW LOW LOW HIGH HIGH HIGH Enemy’s fortifications number
HASUAVSERVICEABILITY HIGH - - - - - Serviceability rate
HASPIERCINGARMOUR HIGH HIGH LOW LOW LOW LOW Number of piercing ammunition
HASBLASTARMOUR HIGH HIGH HIGH HIGH HIGH LOW Number of blasting ammunition
HASUAVENDURACE HIGH HIGH HIGH HIGH LOW LOW Average sustainability of UAV
HASUGVENDURANCE HIGH HIGH HIGH HIGH HIGH LOW Average sustainability of UGV
HASTOTALENDURANCE HIGH - - - - - Sustainability

Table 4 Events for cooperation level role-based decision-making

TO T1 T2 T3 T4 T5 T6 T7 Description
UAVATTACKED FALSE TRUE FALSE TRUE FALSE FALSE FALSE UAV is attacked
UGVATTACKED FALSE FALSE FALSE FALSE FALSE TRUE FALSE UGV is attacked

ENTERCITY FALSE TRUE FALSE FALSE FALSE TRUE FALSE Entering city
OPENROAD TRUE FALSE TRUE TRUE TRUE FALSE TRUE Open road

6.2 Result analysis

6.2.1 Swarm level situational awareness and

decision-making

In the plot summary shown in Table 3, TO—T5 refer to the
situation information of the extracted six decision

Average sustainability of

moments. In the table, the three situation components of
the environment, swarm serviceability rate, and sustain-
ability are initially set to HIGH, and the subsequent states
are inferenced according to the observed events and the
state at the last moment. Fig. 7 shows the events that
occur at each moment.

UAV is LOW ) B
Enemy UGV  Piercing ammunition ~ Number of Blasting ammunition
number is LOW  number is LOW foglfl_lﬁaétisns Visibility is GOOD number is LOW
Found jamming
»
TO Tl T T3 T4 Ts

Fig. 7 Events setting of situation awareness experiment
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Fig. 8 shows the inference results of the environmental
situation component at time TO-TS5. Fig. 8(a) shows the
SSBN generated at TO, which shows that the inferenced
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environmental state is GOOD. Fig. 8(b) shows the proba-
bility curves of environmental situation components at
each time.
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Fig. 8 Inference environment situation at each time

Among them, at TO, the probability of the initial envi-
ronmental situation being GOOD is 1, and there is no
clear observation value at T1-T3, which leads to a
decrease in the probability. At T4, if the visibility is
GOOD, the probability of the environmental situation
being GOOD rises to 0.9. If interference is observed at
time T5 and the visibility evidence is missing, the proba-
bility of the environmental situation being GOOD
decreases to 0.4. The simulation results are consistent
with expected, which proves that the environmental situa-
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(c) Swarm state

tional awareness function works normally.

Fig. 9(a)—-Fig. 9(d) show the state curves of the main
situation components of the swarm level decision at each
time, and Fig. 9(¢) shows the output curves of the model.
Analysis of the curve in the figure shows that at T3,
although the endurance keeps a high level, but the avai-
lability, swarm state, and confrontation ability are at a
low level, especially the significant decline in confronta-
tion ability and the increase in threat degree, these make
the swarm more inclined to withdraw from the battle.
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(e) Decision output

Fig. 9 Probability curves of each situation element in group contingency planning model

At TS, a slight change in the swarm state and a slight
increase in the threat lead to a more obvious strategic ten-
dency to withdraw from the battle. The decision output
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results of the SSBN at T3 and TS are shown in Fig. 10.
As a result, the probability of withdrawing from the bat-
tle increased from 0.6654 to 0.71.
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Fig. 10 Decision output at T3 and TS5

6.2.2 Situation awareness and decision-making at the
collaborative level

Fig. 11 shows the events in the collaborative situational
awareness scene at each time. Due to the good visibility
on the open road in the battlefield, the enemy will not

ambush in such an open place, while in the urban sce-
nario, the enemy is easy to hide, and the possibility of the
swarm being attacked is higher. Therefore, in the study of
this paper, it is considered that the threat when unmanned
vehicles enter urban areas is significantly higher than
marching on open roads.

UAV is UAV is UGV is
attacked attacked attacked
Open road enter city Open road open road Open road enter city Open road
>
TO T1 T2 T3 T4 TS T6
Fig. 11 Defined events of collaborative situation awareness

Fig. 12 shows the computing resource consumption
during the decision-making. It can be seen that the infe-
rence time at each moment is at the millisecond level, and
its resource consumption can meet the real-time decision-
making requirements in normal circumstances. Table 5
lists the utility values under the influencing factors and

policy options. The utility value ranges from [-10,10]. As
shown in the table, by defining the distribution of utility
values, the guarder tends to search in the high-threat situ-
ation and keep moving in the low-threat situation, the fol-
lower tends to hide in the high-threat situation, and keep
moving in the low-threat situation.
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(a) Computing resource consumption of decision-making at T5

Time Inference time/s Time Inference time/s

TO 0.354 TO 0.631
Tl 0.563 T1 0.508
T2 0.493 T2 0.629

(b) Inference time consumed at TO—T5

Fig. 12 Computing resource consumption of decision-making

Table 5  Utility values for different roles in cooperative decision
problem
Role High : Low -
Search  March  Hide Search March Hide
Guarder 9 -4 =7 3 8 -9
Follower 2 -9 7 —6 9 -3

Through this simulation experiments, the decision out-
puts results at each time are shown in Table 6, and the
results shown in bold is the decision results at that time.
As can be seen from the table, the decision results con-
form to the predefined role tendency. In particular,
observe the utility value of the follower at time T3, which
is the scene where the UAV is attacked by the enemy on
the open road. At this time, although the follower can
make a correct decision, there is little difference between
the utility value of march and hide. This is related to the
setting of the local probability value of the impact degree
on the threat degree when UAVs are attacked and UGVs
are attacked. According to the setting, the contribution of
UAVs attacked to the threat degree is lower than that of
UGVs attacked, whose value is { UAV = TRUE, UGV =
FALSE }={0.6,0.4}, {UAV=FALSE,UGV=TRUE } =
{0.8, 0.2}. This scene represents an unexpected attack in
low level threat situation, in which it is acceptable to have
some ambiguity in the decision results.

Table 6 Collaborative decision results

Time Guarder Follower

Search  March Hide Search ~ March Hide
TO 4332 5336 —8.556 -4.224 5004 —0.78
Tl 7.523 —1.048 —7.492 0.032 4572  4.54
T2 4332 5336 —8.556 4.224 5.004 —0.78
T3 5.592 2.816 —8.136 —2.544 1.224 1.32
T4 4332 5336 —8.556 -4224 5004 —0.78
T5 8.112 2224 -7.296 0816 —6.336  5.52
T6 4.332 5336  —8.556 -4.224  5.004 —0.78
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It can be seen from the experimental results that the
multi-scene decision model of the swarm unmanned sys-
tem proposed in this paper can effectively support the
decision-making of the swarm unmanned system at the
swarm, cooperative, and individual levels. The role-based
decision framework proposed in this paper is applicable
to multiple scenarios. Compared with [22], the frame-
work in this paper has the advantage in role-based coop-
eration decision, better adaptability to dynamic and
changing scenes. Moreover, this framework integrates the
experience knowledge with description knowledge which
provides a feasible way of using prior experience know-
ledge.

7. Conclusions

This paper focuses on the multi-scene decision-making
problem of unmanned systems. In the background of
cooperative region control task, a role-based Bayesian
decision framework for swarm unmanned systems is pro-
posed. The proposed framework integrates description
logic, experience knowledge, and preference decision
theory, and its advantages as follows. Firstly, the frame-
work is constructed under a semantic-centered roadmap,
which solves the problem of extending it to adapt to new
scenarios. Secondly, it integrates experience knowledge
as a local structure of MFrag, which provides an easy way
to use experience knowledge. Thirdly, it integrates prefe-
rence decision theory, which solves the problem of coor-
dination of swarm cooperation of autonomous unmanned
systems. The research in this paper has important refe-
rence value for improving the real-time decision-making
ability of unmanned systems in multiple dynamic scenes,
improving their adaptability to complex battlefield envi-
ronments.
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