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Abstract: Some attributes are uncertain for evaluation work
because of incomplete or limited information and knowledge. It
leads to uncertainty in evaluation results. To that end, an evalua-
tion method, uncertainty entropy-based exploratory evaluation
(UEEE), is proposed to guide the evaluation activities, which can
iteratively and gradually reduce uncertainty in evaluation results.
Uncertainty entropy (UE) is proposed to measure the extent of
uncertainty. First, the belief degree distributions are assumed to
characterize the uncertainty in attributes. Then the belief degree
distribution of the evaluation result can be calculated by using
uncertainty theory. The obtained result is then checked based on
UE to see if it could meet the requirements of decision-making. If
its uncertainty level is high, more information needs to be intro-
duced to reduce uncertainty. An algorithm based on the UE is
proposed to find which attribute can mostly affect the uncer-
tainty in results. Thus, efforts can be invested in key attribute(s),
and the evaluation results can be updated accordingly. This
update should be repeated until the evaluation result meets the
requirements. Finally, as a case study, the effectiveness of ballis-
tic missiles with uncertain attributes is evaluated by UEEE. The
evaluation results show that the target is believed to be
destroyed.
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effectiveness.
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1. Introduction

t3]

The basic goal of evaluation activities is to obtain a “net
assessment [ 1], which means the uncertainty in the evalua-
tion should be reduced to obtain a clear and elegant
result. However, the evaluation problems are usually
fraught with uncertainties (unknowns) which perplex the
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whole evaluation process.

In practice, a net assessment is usually hard to be
obtained. On the one hand, the evaluation object’s
attributes are uncertain; on the other hand, the relation-
ship between the evaluation object’s attributes and the
evaluation results is also uncertain. For example, deter-
mining the attribute values of an air-surface missile in a
complex operational environment can be difficult and
expensive. In addition, it is hard to determine the perfor-
mances of enemy air defense weapon systems. Moreover,
it is difficult to generate the relationship between the mis-
sile’s operational effectiveness and capability parameters.
As a result, calculating the “net effectiveness” of the mis-
sile in the operational context is difficult and rarely
reported in literature.

Though uncertainty leads to the difficulties in achiev-
ing net assessment, it is still common in evaluations.
Cheng et al. identified the performance parameters and
corresponding weights of the attack helicopter using a
qualitative-to-quantitative transformation of the lingui-
stic variable [2]. Then the analytic hierarchy process
(AHP) is used to calculate the system effectiveness of the
attack helicopter. Luo et al. used interval numbers to
characterize uncertainty in attributes [3]. The uncertain
results were described by intervals. The ranking result of
alternatives was calculated based on the ranking method
proposed in [4,5]. Wu et al. used interval numbers with
probability distribution to characterize uncertainty [6—8].
Then the ranking results were obtained by the mean-vari-
ance method, the mid-point and half-width method, and
other algorithms. Bandte et al. used the subjective proba-
bility distribution approach to characterize the uncer-
tainty of attributes [9—11]. They then calculate the proba-
bility distribution of the evaluation result based on the
experiment model (e.g., simulation model), or aggregate
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operators (e.g., weighted average operator, weighted geo-
metric operator). Finally, the mean or other statistic is
used to represent the evaluation result. In addition, fuzzy
sets [12,13], fuzzy variables [14], rough sets [15], and
other mathematical tools are used to characterize uncer-
tainty in evaluation. The outcome of the evaluation is still
presented as a statistical value, like a mathematical
expectation.

For the existing evaluation methods with uncertainty,
two issues have not been well studied:

(i) Mathematical tools for characterizing human uncer-
tainty. Uncertain attributes are traditionally characterized
by subjective probability distributions [16,17] or interval
numbers [18,19]. In that case, the extent of uncertainty is
measured by variance [20—22] or the length of the inter-
val [18,19]. However, this probabilistic form with associ-
ated operational rules is usually only suitable for random
cases with enough samples. Liu pointed out that probabi-
lity theory is no longer applicable when the estimated
probability distribution is not close enough to the inhe-
rent frequency [23,24]. This is because, in the absence of
many samples, estimating the inherent frequency is typi-
cally difficult. Furthermore, using fuzzy variables to
describe attribute uncertainty may result in a logical para-
dox as discussed in [23].

(i1) Treatment of uncertain results. The evaluation
results need to be used to compare which alternative is
better, so uncertain results are usually replaced with cer-
tain values. Traditional methods, such as methods in
[25—28], mainly rely on statistic values (e.g., expectation,
maximum value). In practice, however, the statistical va-
lues often differ from the actual values, as discussed in
the example of fighter jet seat design in [29]. To achieve
an accurate and comprehensive evaluation result, reduc-
ing uncertainty in results should be conducted, rather than
simply replacing uncertain results with a statistical value.

Evaluation methods, which can measure uncertainty
and gradually reduce uncertainty in practice, are rarely
reported in literature. Reducing the uncertainty should be
essential to the evaluation works, otherwise the evalua-
tion results would not be trustworthy. For example, in the
development of equipment (e.g., a missile), it is neces-
sary to evaluate the operational effectiveness of various
design options with uncertainty reduced (especially in the
initial design phase). Only in this manner, the net effec-
tiveness of each design option can be determined to sup-
port equipment research and development. This is the
main motivation for the works performed in this paper.

In this paper, we propose a new systematized evalua-
tion method to reduce the uncertainty in a complex prob-
lem, which gets rid of calculating statistic values. This
method is called uncertainty entropy-based exploratory

evaluation (UEEE). It is based on an iterative approxima-
tion process. In this method, the belief degree distribu-
tion function [30] is introduced, which is appropriate for
intuitive judgement to characterize the uncertainty in
evaluation work [23,30]. Based on it, the uncertainty
entropy (UE) is proposed to measure the extent of uncer-
tainty. Furthermore, an analytical model is proposed to
calculate the contribution of each attribute to overall
uncertainty of the evaluation result. Based on that, reduc-
ing the uncertainty of the evaluation result can be
achieved by iteratively reducing the uncertainty of the
attributes with large contributions.

This paper is organized as follows: Section 2 presents
the fundamentals of belief degree distribution. Section 3
proposes the evaluation method (UEEE). Section 4
applies UEEE in evaluating ballistic missile operational
effectiveness under uncertainty. Section 5 concludes the

paper.
2. Fundamentals of belief degree distribution

2.1 Uncertainty characterization

In general, uncertainty can be classified into two cate-
gories: aleatory uncertainty and epistemic uncertainty
[31-33].

Aleatory uncertainty is referred as the uncertainty
inherent in the physical behavior of the system. It is usu-
ally considered irreducible and is expressed in terms of
probability (long-run frequency). For example, there is no
way to reduce the uncertainty of the outcome of a dice
roll or a coin toss.

Epistemic uncertainty is categorized as uncertainty
caused by incomplete knowledge or limited information.
This type of uncertainty can be reduced. More precise
measurements or more experiments can help reduce epis-
temic uncertainty. However, it usually needs a great
investment of manpower, materials, cost and time.

Therefore, the goal of UEEE here is to efficiently
reduce epistemic uncertainty in evaluation results. Some
researchers have used subjective probability to quantify
epistemic uncertainty [34—36]. However, as discussed in
[23,24], a fundamental premise of applying probability
theory is that the estimated probability is close to the long-
run frequency, otherwise, using subjective probability
may result in errors.

Belief degree indicates the strength of a person’s belief
that an event will occur. Belief degree takes values
between 0 and 1. The higher the value, the higher the
probability that the person subjectively feels that the
event will happen. From an axiomatic point of view, the
essential difference between probability and belief degree
is the difference in the product degree. Roughly speaking,



1604

the product measure of probability theory is “multiplica-
tion”, while the product measure of belief degree is “tak-
ing the smallest”, i.e.,

P,{AX B} = P,{A}x P,{B},
M{Ax B} = M{A} A M{B),

where P, is the probability measure, M is the belief
degree measure. Give an example to look at how subjec-
tive probability differs from belief degree. A specific
exam has four subjects (math, politics, history, and geog-
raphy), and one person must pass all four to pass the
exam. Assume a person takes the exam and he believes
there is a possibility of 70% that he can pass math, 70%
that he can pass politics, 70% that he can pass history,
and 50% that he can pass geography. If the chance of
passing the exam is calculated by using the probability
theory, the probability of passing the exam can be calcu-
lated as 0.7x0.7x0.7x0.5~0.17. By applying uncer-
tainty theory instead, the belief degree of passing the
exam can be calculated as 0.7A0.7A0.7A0.5=0.5.
Clearly, the person is just very unsure about passing the
geography subject (0.5 belief degree), which cannot indi-
cate that he believes that he will fail, nor that his chance
of passing is slim. If there are more subjects, the proba-
bility of passing this exam could be close to 0. Therefore,
the result obtained by subjective probability seems unrea-
sonable.

Everyone approaches the same problem from a diffe-
rent angle. However, subjective probability does not cor-
respond to the characteristics of human intuitive thinking.
For this reason, the long-run frequency of an event is dif-
ficult to estimate. Long-run frequency imagination is far
more difficult than natural feeling. Thus, the unknown
attributes are hardly precisely described by probability
distributions. However, applying probability theory
requires precise distributions because the probability mul-
tiplication rule could amplify errors, resulting in incor-
rect decision-making. In contrast, the minimum rule of
belief degree would be more reliable. As a result, we
think subjective probability is useful when an expert with
reasonably reliable information and a precise opinion is
available. Otherwise, belief degree distribution is more
reliable. That’s why, in this study, only the belief degree
is used to measure the attribute uncertainty.

Some attributes, such as the circular error probability
(CEP) of an unknown missile, cannot be determined pre-
cisely; thus, the support of domain experts is needed to
evaluate the belief degree distribution of attributes in a
certain range. One possible way of modeling the belief
degree is to use a fuzzy membership function [14,37].
However, it is usually inappropriate because it may lead
to counter-intuitive results. In [23,38], an example of the
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bridge overload is provided to explain the reasons. The
characterization of the attribute “overload” should use a
belief degree distribution rather than frequency due to the
information reliability. Since the uncertainty stems pri-
marily from the limitations of the measurement facility,
we cannot obtain the precise/reliable value of “overload”.
The uncertainty distribution function of “overload” is
given in Fig. 1.

Belief degree
A

1,00 f- - mmmem i .
075 |-

o 100 125

150 Overload

Fig. 1 Uncertainty distribution function of overload

The belief degree measure M(y) represents the happen-
ing belief degree of the event y. For example, M(over-
load < 100) represents the belief degree of the uncertain
attribute “overload” is smaller than 100. The uncertainty
distribution function @(y) means the belief degree of the
uncertain attribute x < y (x means the studied attribute),
i.e., @(y) = M(x < y). As shown in Fig. 1, it is an uncer-
tainty distribution function curve of uncertain attribute
“overload”. The belief degree of overload smaller than
150 is 1, namely &(150) = 1; the belief degree of over-
load smaller than 125 is 0.75, namely @(125) = 0.75; and
finally, @(100) = 0. For the uncertain attribute vector X,
if all components of X are independent with each other,
then the vector belief degree can be defined as

M(X <¥)= A M(xi <3) = A B3 (1

for any given vector ¥ [30].

The above is the basic principle of the belief degree
distribution. It is applicable mainly when there are not
enough samples (even no sample) to evaluate a probabi-
lity distribution. In that case, the generation of the belief
degree distribution function relies mainly on the subjec-
tive human judgment. The specific process is as follows:
First, the expert uses a calibration method, which can be
referred as in [39], to perform a calibration exercise.
Interaction with experts is then used to collect evaluation
data. Finally, the belief degree distribution function is
generated by using the segmental interpolation method.
The detailed steps can be found in [38,40].

2.2 Operation of belief degree distribution function

Definition 1[30] A belief degree distribution function
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&(x) is regular when it is a continuous and strictly
increasing function with respect to x, at which 0 < @(x) <
1, and

lim &(x) =0
o . ()
lim &(x) =1

X—+00

A regular uncertainty distribution function @(x) has an
inverse function on the range of x with 0 < @(x) < 1, and
the inverse function @71(05) exists on the open interval
(0,1).

Definition 2[30] Assume ¢ is a variable with a regu-
lar belief degree distribution function @(x). The inverse
function q§*'(a) is then referred to as the inverse function
of the belief degree distribution of £.

Definition 3[30] The uncertain variables &;,&,,---,&,
are assumed to be independent if

M{ﬂ (e Bi)} = A Mg € B) 3
i=1 =
for any Borel sets By, B,, -+, B,.

Theorem 1[30] Let &,&,---,&, be independent un-
certain variables with regular belief degree distributions
D, D,,---,D,, respectively. If f is a strictly increasing
function, then the uncertain variable & = f(&),&,,-,&,)
has an inverse belief degree distribution.

(@)= (P (@), D (@), , D, (@) 4)

Similarly, after transforming, if f is a strictly decreas-
ing function, then

v a)= f(P]'(1-a),®;' (1-a), B, (1-a). (5)

3. Proposed UEEE
3.1 Principles and procedures of UEEE

As discussed, the goal of UEEE is to reduce uncertainty
in evaluation results and make them more certain. The
extent of uncertainty in an evaluation result is primarily
determined by the uncertainty in the attributes and their
sensitivity to the evaluation result. Regions with high sen-
sitivity and uncertainty are referred to as “extreme states”
in [41], and they have a significant impact on the desired
evaluation results.

Since the sensitivity of attributes is inherent to the
evaluation model, it cannot be reduced. Therefore, the
uncertainty in evaluation results can only be reduced ite-
ratively by reducing the attribute uncertainty. However,
reducing the uncertainty in all attributes is impractical in
most practical problems due to the limited resources,
time, and cost. As a result, the key attribute(s) should be
first found which can mostly affect the uncertainty of the
evaluation result.

1605

Fig. 2 shows the general process of the proposed
UEEE. The method is using UE to measure the extent of
uncertainty. First, an evaluation framework is con-
structed, which consists of evaluation indicators, evalua-
tion object attributes, and evaluation models. Following
that, all uncertain attributes are characterized with belief
degree distributions. The belief degree distribution of the
evaluation result is then calculated based on uncertainty
theory [38]. The belief degree distribution of the result is
then checked based on UE to see if it could support deci-

sion-making.

1. Construction of the evaluation
framework

!

2. Characterization and
calculation of
all attribute uncertainty

3. Whether evaluation results
meet the demand (interaction
judgments using UE)?

Complete
evaluation

4. Sensitivity analysis using UE
(to identify the attributes with
high contribution)

!

5. Reduce the uncertainty of high
uncertainty-contribution attributes
in priority

6. Is it possible to reduce
uncertainty further?

Fig.2 Procedures of UEEE

If the level of uncertainty in the result is too high, more
information and knowledge need to be introduced, for
example, conducting more experiments. Then the uncer-
tainty in attributes can be reduced. The sensitivity analy-
sis is performed based on UE to find which attribute(s)
mostly contributes to the uncertainty of the evaluation
result. Thus, efforts can be made to reduce uncertainty in
the obtained key attribute(s) by investing in both human
and material resources. The belief degree distribution of
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the evaluation result is updated with the modified
attribute(s). The preceding procedures need to be carried
out iteratively until the UE of the evaluation result meets
the requirements.

3.2 Construction of evaluation framework

The evaluation framework mainly consists of evaluation
object attributes, evaluation results and the evaluation
models.

Evaluation object attributes (abbreviated as attributes
in this paper) are the inherent nature of a system.
Attributes represent a system’s essential characteristics.
Attributes may be certain or uncertain. Uncertain
attributes are very common in the evaluation of practical
complex problems. The evaluation result is a set of quan-
titative scales defined according to the evaluation objec-
tive. The evaluation model is the mapping relationship
between attributes and the evaluation result. The type of
an evaluation model could be an analytical model, a
numerical model, a simulation model, a physical experi-
ment model, or a subjective judgment model.

An evaluation model can be expressed as the mapping
function below:

Y=fX)+e (6)

where Y is the evaluation result, X is the vector of
attributes, and X =(X;,X,,--,X,)T. € is the uncertain
value. f(-) is the evaluation model. It is worth noting that
the evaluation model function f(-) can be assumed to be
monotonic [42,43] in the most evaluation practices.

When evaluating a complex problem, the evaluation
object attributes X, as well as the evaluation model f(-),
are usually uncertain for humans. Therefore, the evalua-
tion result Y is also uncertain. The goal of UEEE is to
reduce epistemic uncertainty in Y. It could be achieved by
reducing the uncertainty of high uncertainty-contribution
attributes iteratively.

3.3 Uncertainty metric and uncertainty
contribution analysis of attributes

Information entropy is widely used in information theory
to express the expectation of the amount of information
about a random event. Probability theory has information
entropy, and belief degree theory should also have the
concept of entropy. This section gives the definition of
UE on the basis of the principle of the belief degree dis-
tribution function.

Definition 4 UE is used to measure the extent of
uncertainty of an uncertain variable. Let £ be an uncer-
tain continuous variable with a belief degree distribution
function of @, corresponding to the UE:
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1
1-&(f)

where £ is an uncertain continuous variable, @ repre-
sents the belief degree distribution function of the uncer-
tain variable, S; is the UE of the variable. 0<S; <
Us— L, Ug— L; is the length of the interval.

The more the belief degree distribution of the variable
¢ concentrates around @(¢) = 0.5, the greater S;.

Let Sy be the UE of the evaluation result Y. Then,

dg (7)

Le

Ue 1
S, = J (@(g)k)gz% +(1-D(¢))log,

s —IU" (V)1 L+(1-q§ ) IR P
P, \ TR ) STz e,

®)

Let X;(i=1,2,---,n) be an attribute and Sx(i=1,
2,---,n) be the UE of X;. Then,

Ui 1 1
Sx, =fL‘ (‘pi(Xi)Ing _@i(X_i) +(1-2,(X;))log, 1—,(X)) ) dx;.

©)

If Sy is large, the evaluation result is not trustworthy
due to the high level of uncertainty. From (6) and (8), it
can be seen that Sy is affected by both the attributes X;
and the evaluation model f(-). It means Sy can be
reduced if the uncertainty of X; or f(-) is reduced.

As analyzed above, after determining the evaluation
model f(-), reducing Sy can only be accomplished by
reducing the uncertainty in attributes. It is impractical to
reduce the uncertainty in all uncertain attributes espe-
cially when the number of uncertain attributes is large.
This is due to the limited human, materials, and time
resources. Therefore, it is necessary to identify the key
attribute(s) which can mostly affect Sy. As introduced
below, the key attribute(s) can be obtained by calculating
the contribution ratio.

Theorem 2 For Y= f(X,X,,---,X,), if Xi(i=1,
2,---,n) is an uncertain variable, then Y is also an uncer-
tain variable. Sy is the UE of X; and Sy is the UE of Y.

If f(-) is a strictly monotonically increasing function,
Sy can be decomposed as

S, = Z I ' M) Ny(a)da. (10)

Similarly, if f(-) is a strictly monotonically decreasing
function, Sy can be decomposed as

R T

i=1

where M;(a) =

0
6<Df‘ is the global sensitivity coeffi-
o

"1
cient of X;. Sy =f0 Ni{(a)da is the UE of X,, where
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Ni(a) = alogz 1 +(1-a)log, — o )@ (@)

The proof of Theorem 2 is given below:

Proof Let Y= f(X,X,,---,X,) be the mapping rela-
tionship for the system. Assume f(-) is monotonic.

Let @,(Y) be the belief degree distribution function of
Y. That is, @ = @y (Y).

The UE of Y is

+oo 1 1
Sy=f7m (¢y(Y)10gzm+(1—<15y(Y))10gz m)

d—Y:dY da(®, (@),

dy,
(@) =

1 1 1
Sy = L (a10g2 St (1-a)log, m)(qﬁy"](af))’da.

Let @;(X;) be the belief degree distribution function of
Xi(i=1,2,---,n).

If f(-) is a strictly increasing function, then

¢Y71(a,) = f(¢171(1 _Q’), ¢271(1 _a)s T ¢)171(1 _a))

If f(-) is a strictly decreasing function, then

Dy (@)= f(@,7'(1-), D, ' (1-a),, D, (1 -a)).
Therefore,
df  ddr(a)
—~ 00 () da
@, is an increasing function
(@ (@) = s

do'(1-a)
Z@di 'l-a) dl-a)

@; is a decreasing function

Without loss of generality, let f(-) be a strictly mono-
tonically increasing function. Therefore,
_ - of do (o)
¢ 1 [ i ,
( Y (Cl)) - a@l’l(a/) da

i 1 1
Sy = fo (alog25 +(1 —a)log2m)~

L0 do@),
L0 (@) da

.
SY:;foaéi“a

1 1
-(aflogz— +(1 —a/)logzl—)-
a —a

(@, (@) da.
Let
__of
M) = 5@
and

1
Ni(a) = alogza +(1- cz)log2 )(G') (),

SO
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n 1
Sy = ZL Mi(a)- Ni()da.

i=

1
Clearly, Sy = fo Nia)da is the UE of X(i=1,
-,n). Let C{(i=1,2,---,n) be the contribution of X;
to the UE of Y. Obviously, C; is

1
C = fo M(@)- Ni@)da. (12)

Similarly, if f(-) is a strictly decreasing function, then

Sy = —zn:fol M(1-a)-N(1 - a)da
i=1

(13)
€=~ [ M(1-a)- N1 -a)da
0

The Sobol method is built on the basis of probability
theory. The reason for its computational complexity is
closely related to the fact that its first nature principle is
probability theory. In probability theory, the calculation
of probability distributions of multiple independent vari-
ables is very complicated. For example, the result of
adding two independent random variables needs to be
expressed in terms of convolution. The addition of n
independent random variables will produce an n—1
dimensional convolution equation, that is, n—1 reintegra-
tion, and this calculation can only rely on Monte Carlo
methods, which are computationally intensive. From a
pragmatic point of view, UE is more advantageous. Using
the belief degree distribution function to portray the
uncertainty is more consistent with human intuitive think-
ing, and the calculation is simpler. O

3.4 Reducing the uncertainty of high uncertainty-
contribution attributes

Based on the calculation of the contribution ratio, the
attributes with the high contribution should be prioritized
for the following uncertainty reduction. New knowledge
and information need to be introduced. Activities such as
conducting more experiments or precise measurements
need to be implemented. Then the distributions of key
attributes can be modified. The wisdom of crowds [44],
which involves the collaboration of multiple experts, is
another important method for reducing uncertainty [40].
The accuracy of subjective judgment depends not only on
one’s knowledge and experience, but also on one’s char-
acter and state. Being too confident or too conservative
can have an impact on the accuracy of judgment. In order
to improve the accuracy of expert judgment and reduce
judgment noise, experts need to be calibrated before they
give judgment data. The calibration method can be found
in [40]. In addition, the Delphi method and multi-expert
belief degree integrated method [40] can help reduce
judgment noise.
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If the uncertainty of an attribute is hard to reduce, the
attribute X; can also be regarded as an indicator Y. Then a
similar approach can be used again. It means a difficult
problem can be decomposed over and over again. That is
to say, UEEE can be used recursively. The evaluation
results’ uncertainty is reduced iteratively and recursively
by applying UEEE.

4. Illustrative example: evaluation of ballistic
missile operational effectiveness under
uncertainty

Mission scenario: There are six ballistic missiles attack-
ing the enemy military target (such as a command
center). The operation objective is to damage the target
(to make it lose operational capability). The commander
needs to decide whether to launch the studied missiles.
The main concern is, the location of our missiles can be
discovered once the attack is launched. It means that once
the missiles are launched, the target must be destroyed,;
otherwise, the enemy can counterattack, resulting in a
passive situation. Therefore, the operational effective-
ness of the six ballistic missiles needs to be evaluated in
terms of the probability of destroying the enemy target.
The main factors influencing ballistic missile opera-
tional effectiveness are the number of missiles &, the pe-
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probability error CEP, the damage radius R of a single
missile, and the probability of a single missile damaging
the target P,. They are all considered in the following
evaluation works.

4.1 Evaluation framework

Evaluation result: the damage probability P of the target
losing operational capability.

Evaluation object attributes: the number of ballistic
missiles &, the penetration probability of missiles
launched P,, circular probability error CEP and damage
radius R, damage probability of a single missile P,.

Evaluation model: P = f(N,CEP,R, P,, P,), where f is
the simulation experiment in this case study.

The simulation experiment model is built, whose prin-
ciples are shown in Fig. 3. N missiles are launched. Use
random simulation to choose which missiles penetrate
successfully. Next, calculate the position of each missile
drop point according to CEP. Determine the damage cir-
cle according to the damage radius. Then count the num-
ber of damage circles that contain the target, let ¢ be the
number. The damage probability P of the target losing
operational capability can be calculated by using the fol-
lowing equation:

. .- .. . P=(1-P). 14
netration probability of missiles launched P,, the circular ( g (14)
4
e Penetrati CEP ol
= = enetration Pt > 2t
= = probability P, . damage radius R 1k .
N missiles launched Success missiles E 0k W
=l
72 L
The damage Number of hits on 3r
" P=(1-Py «— LI T T TTTT
probability P the target ¢ "4 392101 23 4
X/km

Fig.3 Process of the simulation

Fig. 4 shows the results of a randomized simulation
experiment with six ballistic missiles striking the target.
The experimental parameters are set as N =6, CEP = 1 km,
R =1 km, P, = 0.8, P, =0.6. Fig. 4 shows that there are
four missiles successfully penetrated and one missile hits
the target with a damage probability of 0.6.

After 5 000 simulations, the probability (long-run fre-
quency) of the target being destroyed is convergent at
0.57. This result can be regarded as the evaluation result
of the operational effectiveness of the six ballistic mis-
siles with determined attributes.

However, in practice, the above attributes (CEP, R, P,,
P,) are difficult to obtain accurately. It means that they
are uncertain. Domain experts need to be added to evalu-
ate their belief degree distributions.

4

-3 -2 -1 0 1 2 3
X/km

Fig. 4 Simulation of the target attacked by six ballistic missiles
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4.2 Attribute belief degree distributions and
evaluation results
The belief degree distributions of uncertain attributes

1.0

0.8

0.6+

0.4+

Belief degree

02F

0 05 10 15 20 25 30 35
CEP/m
(a) Belief degree distribution function of CEP
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0.6

0.4+

Belief degree

021

0 0.2 0.4 0.6 0.8 1.0
P,
(c) Belief degree distribution function of P,
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(CEP, R, P,, P,) are generated as shown in Fig. 5.
From Fig. 5, P, is highly uncertain because its belief
degree is concentrated around 0.5.

1.0

< o <
s N [ee]
T T

Belief degree

<
o
T

0 0.5 1.0 1.5 2.0 2.5
R/m
(b) Belief degree distribution function of R

< < <
£ =)} [ee)
T T T

Belief degree

<
o
T

0 0.2 0.4 0.6 0.8 1.0
P,
(d) Belief degree distribution function of P,

Fig. 5 Belief degree distributions of uncertain attributes

In the simulation experimental model, the functional
relationships among R, P,, P;, and P can be regarded as
increasing functions in their ranges, whereas the func-
tional relationship between CEP and P can be regarded as
a decreasing function in their ranges. According to Theo-
rem 1, (4) and (5), that is,

@, (@) = f(N, D, (@), D! (@), P, (@), Pep(1— @) (15)

where P = @,'(«) is the belief degree distribution inverse
function of P, N =6, R = @;'(«) is the belief degree dis-
tribution inverse function of R, P, = (D;j (@) is the belief
degree distribution inverse function of P,, P, = @;!(a) is
the belief degree distribution inverse function of P;, and
CEP = &},(a) is the belief degree distribution inverse
function of CEP.

By using (15), the belief degree distribution function of
P is calculated as shown in Fig. 6.

Fig. 6 shows that the belief degree of P < 0.99 is 0.6.
The belief degree of P>0.99 is 0.4, which means the tar-
get could be damaged successfully by missiles with a
40% belief degree. It is uncertain for humans to give a

decision. The epistemic uncertainty of P should be
reduced.
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Fig. 6 Belief degree distribution of P

4.3 Reducing UE of evaluation results iteratively

As mentioned, the exploratory evaluation method reduces
the UE of the evaluation result by iteratively reducing the
UE of high uncertainty-contribution attribute in priority.
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By using (8), the UE of evaluation result P can be
given as 0.97.

Then, use (9), the obtained UE of CEP, R, P,, P, is
2.15,0.83, 0.83, 0.83, respectively.

By using (12) and (13), the contribution of each input
parameter to the uncertainty in P is calculated by using
the numerical approach: CEP contributes 0.21, R con-
tributes 0.03, P, contributes 0.04, and P, contributes 0.70.
The summation of CEP, R, P,, P, is 0.98. It approxi-
mately equals the uncertain entropy of P (Sp=0.97),
indicating that the calculation is correct. The contribution
ratio of each input parameter is shown in Fig. 7.

R
Pc
4%
17,
71%

Fig. 7 Each attribute’s contribution ratio

After finding the most important attribute P, the next
step is to invest both human and material resources
to reduce the uncertainty in P, The belief degree
distribution function of P, is modified as shown in Fig. 8.
At this point, the UE of P, decreases from 0.83 to 0.30 by
using (9).

1.0 -
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2 041 — .
m / Belief degree
¢ !
function after
0.2 ¢ J modification
f
0 : n . ! !
0 0.2 0.4 0.6 0.8 1.0

Py

Fig. 8 Belief degree distribution of P, after modification

Similar to the above steps, re-evaluate P after the first
round of modification. The new belief degree distribu-
tion function of P updates as displayed in Fig. 9. At this
point, the UE of P decreases from 0.97 to 0.65 by using
(8). It is obvious that uncertainty has been greatly
reduced. However, the uncertainty in P still remains so
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high that we are unable to draw conclusions that they can
be used to support decision-making. Instead, we need to
continue to reduce the uncertainty of the key attributes.
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Fig. 9 Belief degree distribution of P after the first modification

The contribution of each input parameter to the uncer-
tainty in P is updated:

CEP contributes 0.37, R contributes 0.09, P, con-
tributes 0.16, and P, contributes 0.02. The summation is
0.64. It approximately equals the uncertain entropy of P
(P=0.65), indicating that the calculation is correct. The
new contribution ratio of each input attribute after the
first modification is shown in Fig. 10.

P,
3%

Fig. 10 Each attribute’s contribution ratio after the first modifica-

tion

At this point, both human and material resources are
needed to reduce the uncertainty in CEP. The belief
degree distribution function of CEP is modified as shown
in Fig. 10. As a result, the UE of P, decreases from 2.15
to 0.46.

Re-evaluate P after the second round of modification.
The new belief degree distribution function of P is
updated again (Fig. 11). At this point, the UE of P
decreases from 0.65 to 0.32. It is apparent that the effect
of reducing uncertainty is also beneficial.



HU Jianwen et al.: Uncertainty entropy-based exploratory evaluation method and its applications on missile ...

1.0

o
0
T
!

Original

g
o
T

'

<
IS
T
'

Belief degree

'After modification

e
o
T
!

0 1 1 L
0 0.2 0.4 0.6 0.8 1.0

CEP/m
Fig. 11 Belief degree distribution of CEP after modification

As seen in Fig. 12, the belief degree of P < 0.8 is 0.1.
That is to say, the belief degree of P > 0.8 is 0.9, which
means that the probability (long-run frequency) of the tar-
get destroyed by six missiles (with 90% belief degree)
exceeds 0.8. Therefore, the commander has a high level
of confidence to launch the attack.
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Fig. 12 Belief degree distribution of P after the second modification

From the evaluation result, it is clear that the belief
degree distribution is a more reasonable mathematical
tool for modeling epistemic uncertainty than subjective
probability. It may be confusing to describe the unknown
damage probability with a subjective probability distribu-
tion.

4.4 Discussions

From the case study of multiple missiles, when all evalua-
tion attributes are determined, we can calculate the inher-
ent probability (long-run frequency) of the target being
destroyed through many experiments. However, these
attributes are uncertain. It is difficult for us to measure
them precisely, and we do not have enough samples (or
even no sample) to estimate probability distributions.

In this study, domain experts are invested to evaluate
their belief degree distributions. Then the belief degree
distribution of the evaluation result can be calculated by
using uncertainty theory. The evaluation result is then
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checked based on UE to see if it could satisfy the require-
ment of decision-making. If the requirement is satisfied,
the evaluation work can be finished. If not, a sensitivity
analysis is performed to identify the key attribute that
contributes the most to the UE of the evaluation result.
For the key attribute, human and material resources are
invested to introduce new information in order to reduce
their uncertainty. Then the belief degree distribution of
the key attribute can be modified. Following that, the
belief distribution of the evaluation result can be updated
with the modified attribute. The iterative reduction is
repeated until the UE of the evaluation result meets the
requirements. Finally, a reliable evaluation result that can
support decision-making is obtained.

5. Conclusions

The UEEE method is proposed in this paper, which
employs an iterative approximation process. The method
gives specific steps to reduce the uncertainty in evalua-
tion results in order to improve the reliability of the
results. It has the following advantages:

(i) UEEE uses an exploratory iterative approach to
gradually reduce uncertainty in evaluation results, rather
than simply using statical values such as expectation, as
the ultimate evaluation (or assessment) result.

(i) UE can better quantify the extent of epistemic
uncertainty than variance. It corresponds more to human
intuitive thinking than variance.

(iii) An analytical model for UE contribution analysis
is proposed, which provides an important tool for identi-
fying the key attribute(s) that mostly affects the uncer-
tainty of the result. UE is easy to calculate and suitable
for high-dimensional space. Thus, it can be directly
applied to the evaluation activities, especially those with
limited resources to reduce the uncertainty in attributes.
In this way, the efficiency of evaluation work can be
improved.
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