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Deinterleaving of radar pulse based on implicit feature
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Abstract: In the complex countermeasure environment, the
pulse description words (PDWs) of the same type of multi-func-
tion radar emitters are similar in multiple dimensions. Therefore,
it is difficult for conventional methods to deinterleave such emit-
ters. In order to solve this problem, a pulse deinterleaving
method based on implicit features is proposed in this paper. The
proposed method introduces long short-term memory (LSTM)
neural networks and statistical analysis to mine new features
from similar PDW features, that is, the variation law (implicit fea-
tures) of pulse sequences of different radiation sources over
time. The multi-function radar emitter is deinterleaved based on
the pulse sequence variation law. Statistical results show that
the proposed method not only achieves satisfactory perfor-
mance, but also has good robustness.
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1. Introduction

In the electronic reconnaissance, the mission of the elec-
tronic warfare (EW) receiver is to intercept emitter pulses
of interest as much as possible. Normally, these inter-
cepted pulses are interleaved. Pulse deinterleaving means
to separate these interleaved pulses based on the pulse
description word (PDW) to obtain the emitters of interest.
PDW includes pulse amplitude (PA), time of arrival
(TOA), pulse repetition interval (PRI), pulse width (PW),
radio frequency (RF), and direction of arrival (DOA).
Traditional de-interlacing methods fall into two main cate-
gories: (i) PRI-based de-interleaving methods, including
the cumulative difference histogram (CDIF) algorithm
[1], the sequential difference histogram (SDIF) algorithm
[2,3], and the PRI transforms algorithm [4—6]; (ii) clus-
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tering methods based on multi-dimensional features (RF,
PW, DOA, etc.), including support vector clustering and
fuzzy clustering [7—11]. The preconditions of the above
methods are that the features of the same emitters have
good correlation, and different emitters have good separa-
bility. In addition, there are some novel de-interleaving
algorithms. For example, Liu and Yu [12] solved pulse
classification, denoising, and de-interleaving problems
using residual neural network (RNN). The features it used
are PRI and PW. Gencol et al. [13] used PA to estimate
the angular scan velocity of the radiation source, and
combined PRI, PW, and DOA for clustering to accom-
plish pulse deinterleaving. The prerequisite for both
methods is the distinguishability of PW and DOA for dif-
ferent emitters.

However, in a complex electromagnetic environment,
the EW receiver often intercepts two or more emitter
pulse sequences from the same type of radar. These pulse
sequences have multiple modes, including search mode
and track and search (TAS) mode [14,15]. The PW and
RF features of different emitter pulse sequences are basi-
cally the same. In addition, the distance between forma-
tion aircraft is much smaller than the distance between
the receiver and aircraft. The accuracy of direction find-
ing of the EW receiver is not sufficient enough to distin-
guish the DOA of multiple emitters. PW, RF, and DOA
cannot be used for pulse deinterleaving, that is, the clus-
tering methods fail in such circumstances. The feature
parameters of the advanced complex radar system in the
time domain have various changes and a large range of
changes. Therefore, the PRI-based method cannot be used
directly. Features that can be used for pulse deinterleav-
ing include TOA and PA. However, there are few studies
on pulse deinterleaving of emitters using TOA and PA
features. There are many studies on the analysis of the
variation law of PA. Under different antenna scanning
types, [16—19] proved that there is a certain variation law
of PA through real data and simulation data. The varia-
tion law of PA is related to the pattern of the antenna. In
addition, Guo et al. [20] proposed a trajectory feature-
based pulse de-interleaving method using TOA and PA. It
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can only solve the problem of deinterleaving search
pulses in the case of overlapping air and frequency
domains.

Multifunctional radar emitters have multiple modes of
operation. The intercepted pulse sequences include both
search and tracking pulses and are very heavily inter-
leaved in the air, time, and frequency domains. In order to
solve this problem, firstly, this paper analyzes the
sequence variation law of search pulse and tracking pulse.
Their variation patterns are very different and less corre-
lated. Therefore, the variation pattern of the tracking
pulses sequence (implicit feature) is extracted by statisti-
cal analysis, and the feature is used to separate the search
pulses from the tracking pulses. Secondly, long short-
term memory (LSTM) neural network is used to extract
the trajectory change pattern of the search pulse
sequence. On this basis, the pulse envelope prediction
model and the sequence trajectory tracking model are
established to complete the de-interleaving of the search
pulses. Then, support vector clustering (SVC) is used to
classify the tracking pulses. Finally, results are obtained
by fusing the above de-interleaved results based on the
correlation between the search and tracking pulses of the
same emitter.

The rest of this paper is organized as follows. Section 2
introduces the mathematical model of PA and the crite-
rion of amplitude information change. In Section 3, the
detailed of the proposed method is presented. Simula-
tions are carried out in Section 4 to demonstrate the per-
formances of the proposed methods. Section 5 concludes
the paper.

2. PA model
2.1 Mathematical model

The PA can be expressed by the power density of the
radar signal received by the EW receiver. The amplitude
change is mainly caused by antenna beam modulation,
which reflects the scanning law of the antenna. The
power density S [21] is
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where P, is the radar signal power, G, is the maximum
antenna gain, R represents the distance between the radar
and the reconnaissance platform, L is the electromag-
netic wave transmission loss, F,(-) is the normalized
antenna pattern function, and 6 is the angle between the
line of sight of the reconnaissance equipment at the radar
platform and radar antenna. Because the distance and the
angle between the EW receiver and the emitter is consi-
dered negligible changes, the term P,G,/ [(47R)*L)] is consi-
dered constant. This assumption is suitable for static com-

bat scenarios and scenarios where the antenna scanning
rate is much faster than the motion of the airborne plat-
form, which is most common in electronic warfare. Thus,
the received signal power is a function of F,(6). The PA
in the experiment is the relative power of the signal after
logarithmic amplification processing, sampling, holding
and storage, the unit of PA is dB. S is expressed in deci-
bels:

P
PA:lOlgm+G,+F,(6)—L )

where G,, F,(6), and L are the corresponding decibels.
For the radar under tracking, F,(6) = 1. For the radar in
the search state, F,(6) is affected by the radar beam shape
and scanning pattern.

The purpose, performance, and carrier of the radar are
different, and the pattern function of the radar antenna is
different. Therefore, accurate expressions of pattern func-
tion are often complicated. In order to facilitate engineer-
ing calculations, simple functions can be used for approx-
imation, which can be represented by Gaussian function
or Sinc function as follows:

@ $in(2.7836/605)
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where 6,5 is the —3 dB beam width.
2.2 Law of PA change

The premise of analyzing the law of amplitude informa-
tion changes. The radar antenna has a certain pattern.
During the radar scanning, the pattern of the antenna is
shown to the reconnaissance antenna in a certain motion.
The radar emitters are working in search or tracking state.
In general, the radar periodically scans in a circle at a cer-
tain angular velocity, and the antenna pattern is generally
represented by Gaussian function or Sinc function [16].
Therefore, the above premises can be satisfied.

When the location of the reconnaissance equipment is
scanned, the beams meet and the receiver detects the
pulse and determines its parameter. The number of pulses
in the encounter period are the number of pulses received
in the periodic scan. There are two working patterns of
radar: tracking pattern and searching pattern, and PA fea-
tures are different under different working patterns [22].

Regardless of human interference, the amplitude of the
search pulse in a single scan period is a function of the
radar antenna pattern, i.e., the PA change law is similar to
the Sinc function. When the relative motion between the
EW receiver and the emitter is significant, the PA
becomes a function of the changing distance. In the track-
ing state, after the radar locks the target, it continuously
emits pulses to the target to achieve tracking of the target.
The reconnaissance platform receives continuous pulse
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information, and the tracking PA is a function of the dis-
tance R between the radar and the reconnaissance plat-
form. The PA distribution features in these two patterns
are shown in Fig. 1(a) and Fig. 1(b), respectively. How-
ever, there are inevitable PRI jitter, missing pulses, and
environmental noise in the actual environment which is
introduced in the experiment part.
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(a) Tracking pulses
Fig. 1 PA distribution

(b) Search pulses

3. Proposed method

The structure diagram of the proposed method is shown
in Fig. 2. First, pre-processing and trajectory feature
extraction of the pulse sequence can reduce the effects of
PRI jitter, pulse loss, and environmental noise to a cer-
tain extent. Since the pulse sequence includes tracking
pulses and searching pulses, and the trajectory change
characteristics of the two pulses are different, it is neces-
sary to separate them apart. Then the search and tracking
pulses are classified using LSTM and SVC, respectively.
Finally, the classification results are fused to obtain the
final de-interleaved results. Each part of the proposed
method is discussed in detail below.

{TOA,, PA,} ;

Search pulse classification based on LSTM

[Pulse sequence pre-processing]

(LST™ training)—%—i»(Envelope prediction with LSTM)%

Fusion of tracking and

search pulses

l Trajectory feature extraction ‘ Training

{(LSTM training - Trajectory tracking with LSTM)%

Predicting

l Separation of tracking and searching pulses

Tracking pulse classification based on SVC

Fig.2 Framework of proposed method for pulse deinterleaving

3.1 Pulse sequence pre-processing

The purpose of pulse pre-processing is to reduce the
influence of PRI jitter, missing pulses, and environmen-
tal noise on the changing law of pulse trajectory, to bet-
ter extract trajectory features. Since the intercepted pulse
sequence is overlapped, it is necessary to classify the
pulse clusters to obtain non-overlapping pulse clusters
and overlapping pulse clusters. Then, the pulse cluster is
denoised. Finally, the idea of segmentation is used to seg-
ment each pulse cluster and extract the centroid pulse.

3.1.1 Pulse cluster classification

Typically, for phased-array radar emitters, the PA varia-
tion during the beam dwell time is small. The PA varia-
tion between different wave positions is large [13,18].
Based on this, we use the first-order amplitude difference
method to process the pulse sequence without distin-
guishing between the emitter pulse signal and the noise.
The amplitude difference can be calculated as

APA:|PAi+l_PAi|» i=1,2,"',N—1 (4)

where N is the total number of pulses. The pulse clusters
are classified according to the amplitude difference detec-
tion threshold d,ps and the number of pulses over the
detection threshold 6,,,. That is
j
APAn = (j_i+ 1)5APA7 .]_ i D 6num’
Z ®)

According to (5), we can obtain non-overlapping clus-
ters and overlapping pulse clusters. The above process is
shown in Fig. 3, where the pulse clusters in the dashed
box are the overlapping pulse clusters PA,;, and the oth-
ers are the non-overlapping pulse clusters PA .
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Fig.3 Sketch of the pulse cluster classification

3.1.2 Pulse cluster denoising

Since the intercepted emitter signal includes not only the
pulse signal of interest but also a large amount of noise.
Therefore, it is necessary to filter the clusters of non-
overlapping and overlapping pulses separately, so as to
filter out most of the noise and reduce the impact on the
subsequent pulse de-interleaving. Pulse cluster filtering
can also use first-order amplitude differencing to filter
out noise. The first-order amplitude difference of the non-
overlapping pulse cluster is

AP‘Amyl = PAn01H1 - PAnnlk ) k = 1’27 T K- 1 (6)

where K is the total number of pulses in the non-overlap-
ping pulse clusters. According to §xps for the non-over-
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lapping pulse cluster denoising, when APA,,, > dapa, the
corresponding data samples are noise, and the rest of the
data samples are emitter pulse signal, noted as PA ..

The denoising process of the overlapping pulse cluster
PA, is different. First, the first-order amplitude diffe-
rence is performed on PA,,.

AP‘Aol = PIA‘OIM _PAol, > I= 1s2,"' ,L_ 1 (7)

where L is the total number of pulses in the overlapping
pulse clusters. Then, the overlapping pulse clusters are
classified based on daps. When APA;, < dapa, the corre-
sponding data sample is the emitter pulse. And the data
sample of APA,;, > dapa is calculated once more for the
first-order amplitude difference and compared with the

PAnolF = ({PAnolFl ) PAnole 5T PlAnolF,m.,kI } ) {PAnolF

threshold daps. The data samples larger than Saps are
noise and the denoised overlapping pulse clusters are
noted as PA .

3.1.3 Non-overlapping pulse clusters segmentation

First, the first pulse of PA,r is defined as the reference
pulse. Then the amplitude difference APA,,r is calcu-
lated sequentially starting from the second pulse. When
APA r = Oapa, the corresponding pulse, i.e. the segmen-
tation point PA,,, of the pulse cluster, is recorded. And
the reference pulse is updated (the next pulse at the seg-
mentation point). The above process is repeated to obtain
Z segmentation points, corresponding to Z + 1 pulse clus-
ters.

kp+12 PAnOImekl+2 sTT T PAHOlmekz } PR

‘mar}

{PAuolmek,,,m > PAnolF..wk,,,,+: PR PAnolmerl } s {PAnDlmekl > PAHOIFmarkZH PR PAHOlFend }> (8)

where {-} is a cluster of pulses. The segmentation
schematic is shown in the solid box in Fig. 4. Finally, the

centroid pulse {TOA, ., PAorr} 1s extracted, as shown
by the black solid dots in Fig. 4.

1 1
TOAnolFR {TOAnolFRl = E (TOAmark| - TOAn01F| ) 5 TOAnolFR; = E (TOAmarkz - TOAnole) 5T,

1
TOAnolFRﬁ] = 5 (TOAnolFem - TOAmarkz)} (9)
1 n01F 1 n0lF ik,
PAnO = PAno 1 = PAI',PA“O ) = PA RN
h T n0IF,yq, — nOIF, + 1 . :mZﬂ:F e T OIF a, — NOIF g 41 + 1 k:n(;, ¢
1 n0lFe,q
PA R, = PA; 10
R 001 g — NOIF g, + 1 j=n;, ! (10)
And the amplitude difference APA.g 1is calculated
2 B 5 sequentially starting from the second pulse. When
P APA. i, > Opa, the corresponding pulse is recorded as the
675 reference pulse 2. Then the amplitude difference APA,
_— of the reference pulse 2 is calculated.
(APAolF. < 5APA) U(APA g < Oapa) =9 (11)
. C . T When (11) is satisfied, the corresponding pulse, i.c.,
the segmentation point PA,g_,of the pulse cluster is
TOA/s recorded.

Fig. 4 Schematic diagram of pulse cluster segmentation

3.1.4 Overlapping pulse clusters segmentation

First, the first pulse of PAr is defined as reference pulse 1.

Reference pulse 1 and reference pulse 2 are updated
simultaneously. The above process is repeated to obtain
V segmentation points, corresponding to V+1 segment
pulse clusters. The segmentation schematic is shown in
the dashed box in Fig. 4.
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PAolF = <{PA01F1 9PA01F27 te ,PAolFmkl }, {PAolF

{PAolFm. K,

—1+172

Since PA, is an overlapping pulse cluster, each {-} in
PA,r contains two pulse clusters, i.e., it needs to be pro-
cessed using first-order amplitude differencing. Finally,
the centroid pulse {TOArr,PAgrr} is extracted based on
(9) and (10), as shown by the solid gray point in Fig. 4.
The centroid pulse {TOA,,r,PALorr} With non-overlap-
ping pulse cluster and the centroid pulse {TOA jrr, PAqrr}
with overlapping pulse cluster are unified and noted as
{TOAsx, PAgg}.

3.2 Extraction of trajectory feature

Based on the analysis of the trajectory variation law of
the pulse sequence, the trajectory features of the sequence
shown in Table 1 are obtained. Where Feature 1 is shown
in (9) and (10) and the centroid pulses can represent clus-
ter of pulses, thereby reducing the number of pulses to be
processed. Features 2 and 3 are used in Subsection 3.4.3
to segment the search pulse, serving the pulse envelope
prediction. Feature 4 is the peak of each pulse envelope.
Feature 5 is the implicit trajectory change feature
extracted by the LSTM neural network. A schematic dia-
gram of the trajectory characteristics of the pulse
sequence is given in Fig. 5.

Table 1 Trajectory features
Item Formula
Centroid Equations (9) and (10)
PA difference between centroid pulses |PAFR,,,+] - PAFRm|
TOA difference between centroid pulses TOAFR,,,; — TOAFR,,
Peak of PA envelope PAFR,,_, <PApr,, <PAfR,,,
Implicit feature LSTM
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Fig. 5 Schematic diagram of pulse sequence trajectory features

3.3 Separation of tracking pulses and search pulses

Consider that the trajectory variation patterns of the

PAOan\urk1+Z PR PAOlqurkZ } P

marky +1 7

PAGFo o s PAGEs 5 (PAGE s, s PAGE o+ s PAGr, ) (12)

search pulse and the tracking pulse are different. Even if
there is the influence of jitter, noise, and other situations,
the trajectory change law of the search pulse can be
approximated by Sinc function, and the trajectory change
of the tracking pulse is approximated by linear function.
Therefore, the extraction of pulses with linear variation
characteristics in the pulse sequence can achieve the
extraction of tracking pulses, thus completing the separa-
tion of search pulses and tracking pulses.

PArr, , < PArr, < PAR (13)

The reason is that the amplitude of the tracking pulse is
usually larger than that of the search pulse. Peak extrac-
tion can initially filter out some of the search pulses and
retain almost all of the tracking pulses and a small num-
ber of search pulses, thus improving the accuracy of
detection. The specific steps of the algorithm are as fol-
lows.

Let t ={TOAg , m=0,1,--- ,M}. PA can be described
as a function of TOA. Hough transform (HT) has to com-
plete the conversion of the two-dimensional feature space
to the two-dimensional parameter space {a,(3}.

Step 1 Parameter space initialization. The quantized
intervals « and g of the two-dimensional parameter space
are written as Aa and AB, and the spatial parameter P}, , =
{@j.Bp, 1=0,1,--- .M, -1;j,=0,1,--- ,M,—1} is ob-
tained.

Step 2 Mapping and detecting. {TOAg, PAg} is map-
ped to the parameter space P;; » and the space count ma-
trix A; , is accumulated. When all pulses in the feature
map are mapped and accumulated, the maximum values
max and B, of Aj ; in the parameter space are extrac-
ted. The slow-varying feature of the tracked pulses are

PAfeature = amaxTOAFR +ﬁmax' (14)

The presence of tracking pulses is then determined by
the double thresholds Ops,,; and Jpa,. and the number of
pulses threshold 6, .

PAfeaturel = amaXTOAFR +ﬂmax - 6PAFR1 (15 )
PAfeature2 = a’maxTOAFR +ﬁmax + 6PAH<2 (16)

D (PAs, > PArcaurer,) U (PAm, < PAraes,) > S (17)

m

As shown in Fig. 6, the red dashed lines are PAj e
and PAfeatureZ .
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Step 3 Tracking pulse extraction. The tracking pulse
extraction is based on the autocorrelation function of the
peak pulse sequence itself. The PRI transform algorithm
[23], which has a strong ability to suppress harmonic
interference, is used to solve the variation pattern
between peak pulses in the TOA dimension, i.e., PRI. Its
core idea is to transform the difference in TOA (DTOA)
of the pulse sequence to the spectrum. The PRI value of
the pulse sequence is estimated from the position of the
spectral peaks. The details are as follows.

First, the mathematical model is constructed,
T,m=0,1,---,M—1) is the TOA of the peak pulse,
where M is the total number of pulses. And the mathe-
matical model can be described as

M-1
s()=6(-T,) (18)
m=0
where 6 (¢) is the unit impulse function. An integral trans-
formation is performed on s(f) and an exponential factor
exp (2mjt/ 1) is introduced.

D(r) = f: s@)s(t+Dexpujt/)de (19)

where 7> 0. |D(7)| forms a PRI spectrum with a peak at
the true PRI value. Then, the discrete formulation of the
PRI transform is obtained by substituting s(z) into (19).

M-1 m—1 27'[]Tm
D(T)2226(T—T,,1+Tll)exp T —T

m=1 u=0

) (20)

where m,u€{0,1,---,M -1} and u > m. The role of the
exponential factor is to suppress subharmonic generation.
Finally, based on the PRI value at the peak, a sequence
search is used to extract the tracking pulse. The sequence
search process is shown in Fig. 7. The first pulse of the
pulse sequence is the start pulse. Pulse extraction is per-
formed at the PRI according to the search threshold e.
When Pulse 3 is successfully extracted, it is used as a
new starting pulse to continue the search. The extracted
pulses are tracking pulses. If the extraction fails, as
shown in Pulse 5 in Fig. 7, a pulse search is performed at
2PRI according to the search threshold e. If the extrac-
tion fails for three consecutive times, the search ends and
Pulse 2 is used as the starting pulse to continue the
search, until the last pulse. The final extracted peak pulse
is the tracking pulse {TOA .k, PAma}- The remaining
pulses form the search pulse {TOA.archs PAsearcn}- TOgether
they form the centroid pulse sequence {TOAgg,PAgR},

ie.,

TOA¢ = TOA euren U TOA e
{ FR S h k ) ( 2 1)

PAFR = PAsearch UP Atrack

12 3 4 5 6 1 8

=
[
|
|

2PRI-¢ I ‘
2PRI+e |

[
I«

Fig. 7 Sequence search schematic

3.4 Search pulses classification

3.4.1 How LSTM fits the prediction task

Deep learning technology has evolved rapidly over the
past decade, and in some areas, systems based on the
technology have reached or even surpassed human levels
[24,25]. There are two popular types of neural networks,
namely, convolutional neural networks (CNNs) and
RNNs [26,27]. RNN is designed for processing sequen-
tial data. LSTM introduces the forgetting mechanism in
the original RNN framework, which well solves the prob-
lem of gradient disappearance and successfully extracts
the long-term patterns of sequence data [28—30]. LSTM
processes the data samples one by one in a temporal order
to extract the implicit information contained in the
sequence data. It can predict the upcoming data samples
based on the change pattern of previous data samples.

TOA and PA features are in the form of sequence data
and they contain a lot of implicit information. The law of
trajectory change they present is difficult to express by
traditional methods. Combining the characteristics of
LSTM neural network, this section proposes to use
LSTM neural network to extract the trajectory features of
the pulse sequence. The pulse signal features of the next
time step are predicted based on the a priori pulse signal
features. In this way, we judge whether the features of the
pulse signal at that moment are consistent with the trajec-
tory change law, so as to realize the trajectory tracking of
the pulse sequence and complete the search pulse classifi-
cation. The LSTM neural network model is given below.

The core unit of the LSTM neural network is the me-
mory module. Multiple identical memory modules are
connected to form an LSTM neural network. The me-
mory module contains memory cells with self-linking and
gating units. The state S, ; of the memory cell, the out-
put H,_; of the previous time step, and the input X, of the
current time step together determine the state vector of
the internal gating cell. First, the information of X, and
H,_, is selectively filtered through the forgetting gate:

F[ = SlngId (prxt + WFHHrfl + B[:) . (22)
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Then the information that needs to be updated is calcu-
lated. This step consists of two aspects. First, decidce
which values are used to update based on the input gate:

It = Slngld (W])(X[ + WIHHt—l + B]) . (23)

Second, generate new candidate values based on the tanh
function:

G, = tanh (WGXXt + WGHHt—l + BG) . (24)

The combination of the first two steps is the process of

dropping unwanted information and adding new informa-
tion:

S, =G,0L+S,,0F,. (25)

The final step is to determine the output of the model,
i.e., the output gate. The information from X; and H,_, is
passed through the sigmoid function to obtain an initial
output O, as follows:

0[ = Slngld (W()Xx, + WOHHFI + Bo) . (26)

O, is multiplied pair-wise with the state S, after the
tanh activation function to obtain the output H, of the
model:

H, =tanh(S,)00, 7)

where sigmoid and tanh are activation functions; W, is
corresponding weight matrix; B, is the corresponding
bias; © stands for element-wise multiplication.

3.4.2 LSTM for PA envelope prediction

LSTM for PA envelope prediction is a pre-classification

of the search pulse. The network structure is shown in
Fig. 8. First, the PA envelope is segmented using trajec-
tory Feature 3 and Feature 4. Then, the peak
{TOAareh, » PAsaren, } Of each envelope is extracted and
normalized to serve as the input to the LSTM. The out-
put H, is obtained after processing by the LSTM net-
work as well as the fully connected layer. The output
layer is wused to predict the pulse features
{TOA scarchy s PA gearen,} for the next time step. The output

layer is
TOA aren, = W H, +b™*
N (28)

{PA’Semhz = W™H, +b™

where W and b represent the weights and biases, respec-
tively. Since the output pulse features are normalized vec-
tors, they also need to be denormalized to obtain the final

output {TOAseamhz,PAseamhz}. The pulses are extracted
according to the prediction results with feature detection
thresholds 610 and Op,, i1.€.,

{ |TOAsearchz - TOAsearchz

|PAsearchz - PAsearchz

< Oroa

< Jroa

If the search is successful, the corresponding pulse is
extracted. If it fails, the pulse of that time step is padded
by the predicted pulse and the prediction continues for the
next time step. If the search fails three times in a row, the
search ends, and the pulses extracted during that search
are grouped into one category. Repeat the above process
until the number of remaining pulses is less than three
and the global search is finished.

Fully connected layer

-
et
|

. Input pulse train

Peak pulse | °
f
{TOA, PA} [ o X
o < .
@] Standardization | :
© ' o

O
O

3.43 LSTM for PA trajectory tracking

Envelope prediction only pre-classifies the search pulses,
it also needs to track the trajectory of the pre-separated
results, so as to filter out the anomalous pulses that do not
conform to the trajectory change pattern of the pulse
sequence. The anomalous pulse may be affiliated with the
search pulse of other emitters, or it may be affiliated with
the tracking pulse. In this subsection, LSTM neural net-

(@)
,,,,,,, N

Padding

work is used to extract the trajectory change pattern of
pulse sequences. And the pulses of future time step are
predicted according to the prior pulse sequence to deter-
mine whether the pulse of each time step conform to the
trajectory change law.

Usually, the input of LSTM is equally spaced data
samples, while the TOA of pulse sequences has a large
randomness leading to a non-equally spaced sequence of
search pulses for pre-classification. Therefore, equal
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interval processing of pre-classified search pulses is
required before trajectory tracking. By comparing the
results of segmented linear interpolation, proximity inter-
polation, spherical interpolation, and cubic polynomial
interpolation, it is clear that cubic polynomial interpola-
tion is optimal. Therefore, we use cubic polynomial inter-
polation to process the pulse sequence with equal inter-
vals.

The structure of the trajectory tracking network based
on LSTM is shown in Fig. 9. First, the equally spaced
processed pulse sequence is normalized and the first four
PAs are used as inputs. Next, the PA prediction ITAsearch,
for the next time step is obtained based on the processing
of the LSTM layer as well as the fully connected layer.
Then, the pulse at that time step is judged according to
the amplitude difference threshold o, :

‘PAsearch‘ - PAsearch, <Opa-.

I [PAscaen, ~ P
conforms to the sequence trajectory change pattern. And
the second to the fourth PAs are combined with the PAs
of that time step as the input PA sequence for the next
time step. If it is not satisfied, the pulse of that time step
does not conform to the sequence trajectory change law,
i.e., anomalous pulse. It is classified to other emitters and
replaced with ﬁmh, for PAeuren, - It is combined with the
second to fourth pulse as the input for the next time step.
The above process is looped iteratively until the last
pulse. Finally, the above process is performed for the
search pulses of other emitters as well, until all emitters
complete the pulse sequence trajectory tracking. If
anomalous pulses are also present, they are categorized as
tracking pulses.

< 0y, the pulse at that time step

Fully connectea lz;yer ! Obeying the trajectory
i pattern of an emitter’s

pulse streams

i i Filter out
Pt WP g g%,
& »Standardization O © O ; B Ooo g
° : : : & o e o
e o ! 3 10 o OR laci o)
PA trajectory i Y i PA trajectory eplacing
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3.5 Tracking pulse classification

The idea of the SVC algorithm [31,32]: the data samples
are transformed from the attribute space to the high-
dimensional feature space by a nonlinear transformation,
and then the optimal hypersphere is found in this new
space. This nonlinear transformation is constructed by
defining a nonlinear mapping of the kernel functions.
Since kernel function mapping can better distinguish,
extract, and amplify useful features making them better
for clustering, the tracking pulse is mapped to a high-
dimensional feature space by choosing a nonlinear trans-
formation @. In the feature space, a closed convex hyper-
sphere of minimum radius R can be found. Classification
is performed based on the closed convex hyperspherical
surface for tracking pulses. We omit the details of SVC
here and the interested reader is referred to references
[8,9].

3.6 Fusion of search pulses and tracking pulses

In tracking mode, the maximum gain of the antenna is
pointed at the receiver at each moment, that is, the ampli-
tude of each moment of the tracking pulse takes the maxi-
mum value. In the search mode, a scan cycle (correspond-
ing to a PA envelope) in only one moment the maximum
gain of the antenna pointing to the receiver, that is, a scan

cycle in the search pulse in only one moment of the PA to
take the maximum. Therefore, this section uses the corre-
lation of PA between different operating modes of the
same emitter to correlate and match the search and track-
ing pulses. Thus, the final step of homotypic radiation
source signal separation is completed.

For the sake of illustration, two emitters are used here
as examples. The maximum value of each envelope in the
search pulse of the radiation source is first extracted and
noted as

PAsearchpeakl = {PAsearchpeakll 5 PAsearchpeaklg P PAsearchpeakl,,}
and
PAsearchpeakZ = {PAsearchpeak2| 5 PAsearchpeakZZ D) PAsearchpeakZ,,,} .

Then the mean Values Of PAsearchpea.kl ) PAsearchpeakZa PAtrackl )
and PA... are calculated separately:

n
Z PAscarchpcakl i

A i=1

PAsearchpeakl = n
" , (29)
§ PAsea.rchpeakZ,

DA i=1

PAsearchpeak2 =

m
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ZP Atrackl,
ﬂlrackl = =
A (30)
ZPAlrackZ,
ﬁlrackz = =
q

Finally, the search and tracking pulses are correlated
based on PAsearchpeakla PAsearchpeakl H PAlrackl and PAlrackl .
When either condition (PAsmhpeakl > PAcarchpeax1 and
PAlrackl > PAtrackl) or (PAsearchpeakl < PAsearchpea.kl and PAtrackl <

PALrackl) is satisfied, then the search pulse corresponding
t0 PAguenpeai and the tracking pulse corresponding to
PA.. are classified as the same type of emitter, and
the rest are the same type of emitter. When either condi-
tion (ﬁsearchpeakl >ﬁseamhpeak1 and ﬁurackl < ﬂuackl)

or (PAsearchpeakl < PAcarchpeakt and PA 1 > PAlrackl) is
satisfied, the search pulse corresponding to PAeucnpeak
and the tracking pulse corresponding to PA.,., are classi-
fied as the same type of emitter, and the rest are the same
type of emitter.

4. Simulation
4.1 Simulation scene and parameter setting

4.1.1 Simulation scene

At the beginning of the study, the current experimental
conditions were not able to produce realistic radiation
source data. Therefore, this section uses electromagnetic
environment simulation software [22] to generate homo-
geneous radar radiation source pulse data. And to illus-
trate the validity of the simulation data, a set of real pulse
data is shown in Fig. 10. The red and blue colors repre-
sent the tracking pulse and the search pulse, respectively.
It is worth noting that real data are less available, there-
fore, simulation data are used to verify the effectiveness
of the proposed algorithm.

90
msof ..' XEER
S0} 4 B i : n
Seo0l'® it o e fu 5!
50 - - " -
0 5 10 15 20 25
TOA/s

Fig. 10 Real pulse data

The radar emitter parameters are shown in Table 2,
where the pattern of the emitter antenna is a Sinc func-
tion. A total of two scenarios are included, one for the
training scenario: a reconnaissance platform versus a
radar emitter platform. The pulse data in this scenario is
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used to train the proposed method. The other is a test sce-
nario: one reconnaissance platform versus multiple radar
platforms. The pulse data in this scenario are used to test
the performance of the proposed method. And to improve
the generalizability of the method, the one on one train-
ing scenario includes various forms. The motion trajec-
tory of the reconnaissance platform and the emitter
include: straight line, fold line, and curve. The motion
model includes: constant velocity (CV), constant acceler-
ation (CA), and constant turn (CT).

Table 2 Radar parameter

Item Value
Functional state Track and search (TAS)
Transmitters power/W 12
Maximum gain/dB 38
First sidelobe level/dB —34
Average sidelobe level/dB —44
3 dB beam width (azimuth) 2°
3 dB beam width (elevation) 2°
Antenna scanning rate/(°/s) 50
Azimuth scanning/(°) +15
Elevation scanning/(°) +4
RF/MHz [9400,9800], pseudo-random agility
PRI/ps [30,50], group stagger
DOA/(°) 36
PW/ns 1300

Experimental platform information: Intel i7 processor,
4 GHz, Windows 10, 16 G memory, Matlab2018b with
the deep learning toolbox.

4.1.2 LSTM model parameter setting

The LSTM network configuration parameters for PA
envelope prediction are given in Table 3. Other hyperpa-
rameters: learning rate of 0.01 and number of iterations of
260. The parameters of the LSTM network for pulse
sequence trajectory tracking are shown in Table 4. The
learning rate is 0.004 and the number of iterations is 400.
The gradient threshold for both networks is 1. If the gra-
dient exceeds the threshold, L2 regularization is used to
penalize the gradient.

Table 3 Parameter settings of LSTM for PA envelope prediction

Parameter Unit Method
Input layer 1 -
LSTM layer 128 -
Fully connected layer 256 -
Output layer 1 -

Optimization - Adam

Loss function - Root mean square error (RMSE)
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Table 4 Parameter settings of LSTM for PA trajectory tracking

Journal of Systems Engineering and Electronics Vol. 34, No. 6, December 2023

sequence is shown in Fig. 11. Different colors represent

different emitter. Fig. 11(a) shows the real pulse distribu-

Parameter Unit Method
Input layer 4 -
LSTM layer 256 -
LSTM layer 256 -
Fully connected layer 512 -
Output layer 1 -
Optimization - Adam
Loss function - RMSE

4.2 Simulation results and analysis

4.2.1 Feasibility simulation verification

A typical two-plane formation is used as an example. To
better simulate the real environment, pulse jitter and loss
are added to the intercepted pulse sequence of the emitter
for the test scenario, where jitter and loss are set to 20%
respectively. The result of de-interleaving the pulse

tion, and Fig. 11(b) shows the de-interleaved results of
the proposed method. Enlarged views of some time per-
iods are given in Fig. 11(c)—Fig. 11(f). By comparing the
real pulse distribution with the results in this paper, it can
be seen that the overall result is satisfactory despite a
small number of errors. For example, the blue envelope
near 16 s in Fig. 11(c). The correct result is blue, while
the proposed method incorrectly classifies the peak pulse
of the envelope as red. The reason for this is that the peak
pulse of the search envelope is judged to be a tracking
pulse when the tracking pulse is extracted, and the track-
ing pulse is classified as another emitter when it is
classified. Then there are some errors in the two
envelopes near 33 s in Fig. 11(e). This is due to the
LSTM network trajectory tracking prediction bias when
search pulse classification is performed. The overall cor-
rect rate is 93.37%, which proves the feasibility of the
proposed method.
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Fig. 11 Deinterleaving results

4.2.2 Comparison with other methods

In order to verify the advantages of the proposed method,
a comparative experimental analysis is required. How-
ever, the premise assumptions in this paper are quite dif-
ferent from traditional de-interleaving methods. It is clear
from the previous analysis that traditional clustering algo-

rithms and PRI-based algorithms cannot handle the prob-
lem in this paper. To the best of our knowledge, [20] is
the only paper that performs pulse de-interleaving of
homogeneous radar emitters. Therefore [20] can be used
as a comparison method. In addition, since the idea of the
proposed method is to extract the variation pattern of
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pulse sequences, it can be compared with similar algo-
rithms, including deep neural networks (DNNs) and sup-
port vector regression (SVR).

The parameters of DNN are set as follows. The num-
ber of units in the input and output layers is the same as
that of LSTM neural network, and the number of units in

the hidden layer is 256 and 128. For SVR, the particle
swarm optimization (PSO) algorithm is used to optimize
the penalty factor C and the width parameter g of the ker-
nel function, where the range of C is [0.1,10] and the
range of g is [0.1,20]. The de-interleaving results of the
four methods are shown in Table 5.

Table S Statistical results
Criterion Results in [20] DNN SVR Improved method
Number of total pulses 584873 584873 584873 584873
Number of correct pulses 478101 502371 503565 555759
Number of false pulses 106772 82502 81308 29114
Accuracy/% 81.74 85.90 86.10 95.02
Computation time/s 29.97 40.78 38.85 43.49

The accuracy is improved by 13.28% compared to
[20]. The reason is that the method of [20] is equivalent
to the PA envelope prediction part of the proposed
method. It only considers the correlation between each
envelope and does not consider the implied trajectory fea-
tures of the pulses within the envelope. When the pulses
are heavily overlapped, it separates many pulses that do
not conform to the PA change pattern. Therefore, the cor-
rect rate of [20] is low. Compared with DNN and SVR,
the correct rate is improved by 9.12% and 8.92%, respec-
tively. Since DNN and SVR are less sensitive to sequen-
tial data than LSTM, the prediction bias of both models is
larger than that of LSTM. In summary, compared with
these three methods, the proposed method in this paper
has better performance and proves the advantages of the
proposed method.

4.3 Robust simulation

In a real combat environment, the EW receiver usually
intercepts a continuous pulse sequence with many
defects. For example, the arrival time uncertainty (or jit-
ter) caused by the clock defect in the receiver timing cir-
cuit, the pulse missing caused by the pulse lower than the
receiver’s sensitivity, and finally the noise in the environ-
ment. Therefore, in order to verify the robustness of the
proposed method in the actual environment, noise, miss-
ing, and jitter PRI are added to the simulation data. The
settings of different proportions of missing, jitter PRI,
and noise and the corresponding correct rates are shown
in Table 6. The pulse distribution of one set of data (miss-
ing: 20%, jitter PRI 20%, noise 10%) is shown in Fig. 12.
Fig. 12(a) shows a set of pulse distributions. Fig. 12(b)
shows a 10—15 s local zoom of this set of pulses.

Table 6 Deinterleaving performance under different missing, jitter and noise ratios %
Scenario Missing Jitter PRI Noise Probabilities of correct deinterleaving
1 20 20 10 92.67
2 40 40 10 92.37
3 50 50 10 91.86
4 50 50 20 90.04
5 50 50 30 87.36
6 50 50 40 85.89
7 50 50 50 83.43
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Fig. 12 Pulse distribution with jitter

From Table 6, it can be concluded that the loss and jit-
ter have little impact on the performance of the proposed
method, and the correct rates are above 90%. The reason
is that pulse jitter and loss are specific to individual
pulses, while the proposed method takes a pulse cluster
(containing thousands or even tens of thousands of
pulses) as a unit and extracts the centroid pulse of the
pulse cluster. This way of thinking eliminates to some
extent the effect of jitter and loss on the pulse variation
pattern. Therefore, even if there is a large percentage of
jitter and loss, it does not affect the performance of the
proposed method too much.

As the percentage of noise increases from 10% to 50%,
the correctness of the proposed method decreases from
91.86% to 83.43%. The reason is that the trajectory
change pattern of the pulse cluster is affected when the
noise ratio increases. That is, the proportion of misclassi-
fying noise as emitter pulse increases during preprocess-
ing; the features become inaccurate during trajectory fea-
ture extraction; the proportion of misclassification in-
creases during tracking pulse and search pulse separation;
and noise will affect the trajectory change pattern of PA
during search pulse classification. Although noise can
have a large impact on the performance of the algorithm,
the correct rate of the proposed method is still close to
85% when the ratio of loss, jitter and noise does not
exceed 50%. In summary, the robustness of the proposed
method is proved to be better.

It is worth noting that although the proposed method
has satisfactory performance and robustness, it also has
some limitations. (i) Since the proposed method relies on
the variation pattern of PA sequences, it will fail when
there are artificial disturbances or multipath effects.
(ii) The radar emitter of this paper is an active electroni-
cally scanned array. It only needs to change the phase of
the array element to achieve the change of beam pointing.

(20%), missing (20%), and noise (10%)

There is also a radar for mechanical scanning radar. It
rotates the antenna sector periodically to achieve beam
scanning. The working principles of the two are different,
so the method proposed in this paper cannot be directly
applied to mechanical scanning radar. Changes need to be
made to the pre-processing section.

5. Conclusions

In this paper, a de-interleaving method based on the
implicit features of pulse sequences is proposed. The de-
interleaving problem of the same type of multi-functional
radar emitter in the heavily overlapping environment of
air, time, and frequency domains is solved. The proposed
method extracts the trajectory variation patterns of pulse
sequences through LSTM and statistical analysis to com-
plete the de-interlacing process. Simulation experiments
show that the method has satisfactory performance and
robustness. In future work, we will focus on addressing
the limitations of the proposed method.
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