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Abstract: As one of the most important part of weapon system
of systems (WSoS), quantitative evaluation of reconnaissance
satellite system (RSS) is indispensable during its construction
and application. Aiming at the problem of nonlinear effective-
ness evaluation under small sample conditions, we propose an
evaluation method based on support vector regression (SVR) to
effectively address the defects of traditional methods. Consider-
ing the performance of SVR is influenced by the penalty factor,
kernel type, and other parameters deeply, the improved grey
wolf optimizer IGWO) is employed for parameter optimization. In
the proposed IGWO algorithm, the opposition-based learning stra-
tegy is adopted to increase the probability of avoiding the local
optima, the mutation operator is used to escape from premature
convergence and differential convergence factors are applied to
increase the rate of convergence. Numerical experiments of 14
test functions validate the applicability of IGWO algorithm deal-
ing with global optimization. The index system and evaluation
method are constructed based on the characteristics of RSS. To
validate the proposed IGWO-SVR evaluation method, eight
benchmark data sets and combat simulation are employed to
estimate the evaluation accuracy, convergence performance and
computational complexity. According to the experimental
results, the proposed method outperforms several prediction
based evaluation methods, verifies the superiority and effective-
ness in RSS operational effectiveness evaluation.

Keywords: reconnaissance satellite system (RSS), support vec-
tor regression (SVR), gray wolf optimizer, opposition-based
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1. Introduction
1.1 Background

Satellite reconnaissance refers to reconnaissance activi-
ties carried out in outer space using radar, radio receivers,
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and photoelectric sensors on satellite platforms. Consider-
ing the advantages of wide coverage, high security, and
freedom from geographical conditions, reconnaissance
satellite system (RSS) has outstanding strategic signifi-
cance and civilian value in military requirements and
civil applications. Therefore, it is indispensable to evalu-
ate the operational effectiveness of RSS.

System effectiveness is defined as the ability of a sys-
tem to meet the given quantitative characteristics and
requirements under certain conditions. Effectiveness
evaluation models have been studied in a wide variety of
applications by using various methods, including ana-
lytic hierarchy process (AHP), analytical assessment,
expert-based method, data envelopment analysis (DEA),
and availability-dependability-capability (ADC) model.
Li et al. [1] combined the fuzzy comprehensive evalua-
tion method and AHP to evaluate the effectiveness of
submarine cluster torpedo system, in which the complex
non-linear relationship between weapon system and its
influencing factors is difficult to describe. Xiao et al. [2]
employed the DEA method to evaluate the effectiveness
of family farms, the model achieved high accuracy but
the quantity and quality of dataare demanding, resulting lim-
ited scope of application. The ADC model is widely used
in evaluation for its convenience. Shao et al. [3]
employed the ADC model for low orbit communication
satellite evaluation, in which the availability, dependabi-
lity and capability matrices are difficult to obtain [4]. Bat-
tle simulation assessment method evaluates the effective-
ness of weapon system by collecting performance charac-
teristics data [5]. This method requires a large number of
testing results as support, resulting in the restriction by
factors such as test conditions and funds.

Based on the analysis above, traditional evaluation
methods have many limitations. First, subjective influ-
ence cannot be avoided, leading to an impact on the accu-
racy of the assessment. Second, the efficiency of evalua-
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tion is low. For complex nonlinear system like RSS, clas-
sical evaluation methods are not competent.

1.2 Research motivation

Over the past decade, intelligence algorithms with high
solving efficiency, such as neural network and support
vector regression (SVR) have been widely employed in
evaluation of complex weapon system-of-systems
(WSoS) [6—8]. Neural network models like back propa-
gation neural network (BPNN) collect a large amount of
data in the process of combat simulation. Li et al. [9]
applied the model of efficiency prediction based on
Elman neural networks to effectiveness prediction of
command, control, communication, computer, intelli-
gence, surveillance, reconnaissance (C4ISR) system. The
fitting capability is relatively good but training stability is
insufficient [10]. For RSS studied in this paper, the num-
ber of evaluation object is so limited that it is difficult to
obtain a large amount of usable historical data. To fur-
ther improve the prediction accuracy of effectiveness
with high-dimensional and noisy small samples, Ren et
al. [11] proposed a method which extracts the common
features on related domain data by taking advantages of
the stacked denoising autoencoder. The accuracy is
improved but the computational cost is also considerable.
In comparison, SVR has fewer parameters and faster run-
ning speed on small samples. Cheng et al. [12] estab-
lished a combat effectiveness evaluation model based on
SVR, and completed the nonlinear mapping from evalua-
tion indicators to operational effectiveness. However,
analysis of evaluation object is not in-depth enough, the
model setting and comparison are also relatively simple.
Cui et al. [13] considered the problem of parameter selec-
tion in maritime weapons evaluation, but only employed
grid search method, leading to poor effect of this model.
The setting of parameters has large impact on accuracy
and generalization performance of SVR, especially when
dealing with high-dimensional data. To overcome this
shortcoming, meta-heuristic algorithms, including popu-
lation-based and individual-based algorithms, have
achieved competitive result when dealing with SVR
parameter optimization [14]. The whale optimization
algorithm (WOA) was applied to select SVR parameters
for short-term power load forecasting [9]. Sine cosine
algorithm (SCA) was involved to optimize SVR parame-
ters for the time series prediction [14]. Particle swarm
optimization (PSO) was employed in SVR for obtaining
the optimal parameters in total organic carbon content
prediction [15]. The firefly algorithm (FA) was adopted
in SVR parameters optimization for stock market price
forecasting [16]. The ant lion optimizer (ALO) was
employed to optimize SVR parameters for on-line volt-
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age stability assessment [17]. The classic genetic algo-
rithm (GA) was adopted to determine SVR parameters
for forecasting bed load transport rates of three gravel-
bed rivers [18]. The fruit fly optimization algorithm
(FOA) was employed for predicting the number of vacant
parkin spaces after a specific period of time [19]. Most of
the above researches started from a specific application
field, which rarely discuss convergence performance and
computational complexity. Motivated by these issues, this
work attempts to optimize SVR parameters with good
accuracy, convergence performance, and computational
cost. The grey wolf optimization (GWO) algorithm is an
excellent swarm intelligence method which has few
parameters, and no derivation information is required in
the initial search. Moreover, it is simple and scalable, and
has a special ability to strike balance between explo-
ration and exploitation during the search which leads to
favourable convergence. As a result, the GWO algorithm
is applied to SVR parameters optimization in this paper.
The GWO algorithm is proposed by Mirjalili et al. [20]
in 2014. Compared with some proposed intelligent opti-
mization algorithms, such as PSO, ALO, moth-flame
optimization (MFO), SCA, WOA and multi-verse opti-
mizer (MVO), GWO has advantages in global search
ability, solution accuracy and convergence speed [21].
However, standard GWO has many deficiencies. The
diversity of population is usually poor due to the simple
search mechanism, resulting in a high probability in pre-
mature convergence when dealing with multimodal prob-
lems. Meanwhile, the control parameter decreases lin-
early, leading to the restricted population distribution
range. To overcome these deficiencies, many improve-
ments have been employed in GWO to avoid premature
convergence and improve the exploration ability [22—29].
In view of the defects of traditional evaluation meth-
ods and the GWO algorithm, the main purpose of this
paper is to propose a prediction-based effectiveness eva-
luation method with SVR. Considering the imperfection
of traditional SVR parameter selection, the improved
GWO (IGWO) algorithm with three improvement strate-
gies is applied to optimize the SVR parameters for effi-
cient and accurate prediction of RSS. Finally, the estab-
lished model is applied to the simulated RSS evaluation,
and compared with several prediction-based evaluation
model to verify the feasibility of the proposed approach.

1.3 Main contributions

The main contributions of this work are summarized as
follows:

(i) SVR-based evaluation method is introduced to eva-
luate effectiveness of RSS. The proposed method not
only avoids the influence of subjectivity, but also obtains
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a higher evaluation accuracy.

(i1) The IGWO algorithm with opposition-based learn-
ing strategy, mutation operator, and differential conver-
gence factor is proposed to escape from local optima and
relieve the premature convergence of the GWO algo-
rithm. Numerical experiments of 14 test functions demon-
strate the excellent convergence performance stability.

(iii) The performances of IGWO-SVR are superior to
several prediction-based evaluation methods in both
numerical experiments and operational evaluation. In
view of the considerable prediction accuracy, stability,
and computational complexity, this work provides an
effective method for effectiveness evaluation.

The remainder of this paper is organized as follows. A
review of SVR is provided in Section 2. Section 3
improves the GWO algorithm, benchmarks its perfor-
mance with the test suite, and provides the main proce-
dure for optimizing SVR parameters. Section 4 con-
structs the indicator system of RSS and provides the
effectiveness evaluation framework based on IGWO-
SVR. Section 5 includes the case study of two experi-
ments and discussion. Section 6 presents conclusions.

2. Survey of SVR

SVM was proposed by Vapnik in 1995 [30]. It is a super-
vised learning algorithm for data analysis and pattern
recognition based on statistical learning theory, which
can realize data classification and regression analysis.
SVR is an application of SVM to solve the regression
problem, it has been widely used in many fields [31]. The
linchpin of SVR is to find the optimal classification sur-
face and to minimize the distance between the training
samples and the optimal classification surface [32].

SVR follows the principle of structural risk minimiza-
tion, considering the range of confidence and empirical
risk to achieve global optimization at the same time [33].
In order to solve the non-linear problem of RSS effective-
ness evaluation in this paper, SVR introduces a kernel
function through appropriate non-linear transformations
to map the non-linear problems in the low-dimensional
space to the linear problems in the high-dimensional
space. It reduces the problem of finding the optimal
hyperplane of linear regression in the feature space to
solving the convex programming problem and finding the
global optimal solution [34]. The principle of SVR can be
briefly described as follows.

Assume that the training set is given as T = {(x;,y;) |
i=1,2,---,n}, where x; € X =R" indicates the ith ele-
ment of input in n-dimensional space and y; € Y = R indi-
cates the actual value corresponding to x;. In the case of
nonlinearity, kernel function «(x;,x;)=¢(x;)X@(x;) is
introduced to map the input samples from the original

space to the high-dimensional feature space for linear
regression, thereby establishing a linear regression model
in high-dimensional feature space. The regression func-
tion after transformation can be shown as

fxX)=w-px)+b (D

where f(-) denotes regression function; w is the weight
vector; ¢(-) denotes non-linear mapping function of ker-
nel space for extracting the character from the original
space; b denotes the bias.

In order to maintain good sparsity in SVR, the &-insen-
sitive loss function is introduced to minimize the struc-
ture risk, where & denotes the allowable error value of the
regression function. The e-insensitive loss function is
defined as

c(x,y, ) =1y - f(X)l. =max{0,ly - f(0)l-&}.  (2)

A certain margin of difference is allowed between the
actual and predictive value. When the difference is less
than &, the loss is zero. As the value of & becomes larger,
the sensitive band width increases while the model com-
plexity decreases. However, this may lead to the occur-
rence of “under-learning”. In contrast, if € is too small, it
may cause the problem of “over-learning” [35].

SVR can be described as the solution to w and b, mini-
mizing ||w|*/2 on the premise of satisfying &. With the
introduction of slack variables & and &', SVR is trans-
formed into a minimization problem of seeking optimiza-
tion objective function, which can be shown as

min %uwu2 +C2(§i +&) 3)

yi—fx)<e+§&
st.y f(x)-y: <&+
.6 20, i=1,2,---,n
where C is a constant known as the penalty factor and
&€ represent the difference between target value and
estimated value.
Introducing the Lagrange function, the above problem
is transformed into its dual form as

min % Z (@) — ;) (a; - a_,) K (x;,x;)—

i,j=1

n n
SZ((Z: +a;)+ Zyi(oz,- -a))
i=1 i=1

—a))=0
Oga’i, (Y;SC, i=1,2,‘°°,n

where @, and «; are Lagrangian operators. Define train-
ing sample that satisfies (@, —«;) #0 as support vector.
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Solve (4) to get the saddle point of the convex function,
and the regression function is

F@) = (= a)K (x,x;) +b (5)

where N denotes the number of support vectors. The ker-
nel function adopts a radial basis function with strong
generalization ability.
2
=il ]
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K(x;,x)) = exp[ (6)
where the radius parameter o of the kernel function has a
great influence on the learning performance of SVR. The
choice of the appropriate radius parameter is a key issue
in parameter selection of radial basis function (RBF) core
SVR model. The structure of SVR is shown in Fig. 1. The
optimization of SVR is a typical multi-parameter opti-
mization problem, in which it is of vital importance of
obtaining balance between exploration and exploitation.
The special capability to strike the right balance between
exploration and exploitation is precisely the advantage of
GWO, which is developed to solve the global optimiza-
tion problem. Therefore, GWO is selected to optimize
SVR in this paper.

T.f(x)

J=Slard)K(x, x)+b

Fig.1 SVR structure

3. IGWO-based SVR parameters
optimization

3.1 Standard GWO algorithm

GWO is a biological heuristic optimization method
derived from simulating the social hierarchy and hunting
mechanism of gray wolf in nature, which has been proven
to have a more reasonable global optimal search mecha-
nism and suitable for processing parameter optimization
problems [36]. Also it has very few parameters, and no
derivation information is required in the initial search,
thus GWO is used to optimize SVR. In GWO algorithm,
the swarm is divided into four groups according to the
degree of fitness from high to low: a, S, J, w, where a, f,
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and o are the leadership (the optimal solution) to guide
other wolves to search for the target. The remaining (can-
didate solutions) update their positions around a, S, or J.
The optimization process of GWO is the position update
process of a, f, , and w [37].

The mathematical model of the gray wolf algorithm
includes three steps.

Step 1  Encircling behavior. According to the sur-
rounding mechanism of wolves in nature, the behavior of
hunting prey is defined as

D =|E-Xp(i)- X, (7

X(i+1)=X,(i)-L-D. (8)

Equation (7) represents the distance between the prey and
the gray wolf. Equation (8) denotes the position update
formula of the gray wolf. ¢ is the current iteration number,
X,(f) is the position of the prey, and X(i) is the position
of the gray wolf. L and E are coefficient vectors:

L=2a-r —a, )

E=2-r, (10)

where convergence factor a decreases linearly from 2 to 0
as the number of iterations increases. |r;| and |r,| are ran-
domly distributed in the interval [0, 1].

Step 2 Hunting behavior. During the hunting pro-
cess, the three-level individuals of a, B, and ¢ lead to
finding the direction and gradually approaching the prey.
The mathematical model of the individual tracking the
prey is described as

D,=|E, -X,-X|
Dy=|E- X, - X] (11)
Ds =|E;- X; — X|

where D,, Dy, and D; represent distances between
@, 8, and ¢, respectively. X,, X;, and X; represent the
current positions of @, B8, and ¢, respectively. E,, E,, and
E, are random vectors. X denotes the individual w posi-
tion at the current moment.

Xl :Xar_Ll'Daf

X2 :XB_LZ'Dﬂ (12)
X3 =X5—L3‘D5
X +X,+X
X(i+1):'TH (13)

Equation (12) describes the direction and step size of the
o advancing to a, 8, and 6. Equation (13) determines
the final position of w.

Step 3  Attacking behavior. As a decreases linearly
with the approach to prey, the corresponding |L| also
changes within [—a,a]. When |L|<I, the algorithm con-
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verges to obtain the position of the prey.
3.2 The proposed IGWO method

3.2.1 Opposition based learning strategy

For most evolutionary methods, individuals may fall into
a local optimal value when it comes to most evolutionary
algorithms. Hence, finding some methods to explore the
entire solution space as much as possible is indispensable
[38]. To enlarge the hunting range of the swarm and
avoid problem of local optima, opposition-based learning
(OBL) strategy has been applied to improve the perfor-
mance of evolutionary methods by comparing the perfor-
mance of both the opposite solution as well as its original
solution [39]. The basic mechanism of OBL is evaluating
optimal solution obtained in the current search as well as
solutions in the opposite direction to the optimal solution
at the same time, as shown in Fig. 2. Therefore, if the cur-
rent solution is local optimal, then the algorithm success-
fully jumps out of it, which will increase the probability
of finding better solutions. As a result, the global
exploitation and local exploration of the population can
be effectively enhanced. The OBL strategy can be
described as

g OrCX)n X<
T G- (X5-Ch)ems X2
XL_IP_,’_X(!own
. J (15)

i= ’
2
where X;‘p and X;“’W“ denote the upper and lower bounds
. . . . ’\k

of the jth dimension, respectively. X;; denotes the oppo-
site point of the ith individual at the kth iteration in the
jth dimension. r; distributes between [0, 1] uniformly,
which is a random number.

y
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Y - B

Dl

A' O

B I

=1 1

5" C - C

/ O B!

ni 4 D
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1 1 1
0 X X, X5y

@ : Original point; O : Opposite point.
Fig. 2 Opposition-based learning strategy

3.2.2 Mutation operator

The mutation operator is proposed to improve the popula-
tion diversity [40], as shown in Fig. 3.

Offspring 1 Hybrid Hybrid New swarm
nghE Selection == p
o = T =
ﬂ .
9 i:’ = Mutation m—p
) Sort € -
A Tl
@) £ | == m solutions
ol
AN — Aband
Parent('Wo |:| andon
Low | Il
Offspring 2 2m 2m

Fig.3 Mutation operator

The main idea of mutation operator is that the global
best-known solution found by the swarm can provide
multiple search directions for the agents, while the muta-
tion operator can increase the swarm diversity. The basic
mechanism is maintaining elite individuals and enhanc-
ing the distribution range of solutions in the space at the
same time. In order to achieve this goal, firstly, the off-
spring swarms generated by the GWO method is merged
with swarms generated by the OBL strategy, thus a
hybrid swarm is formed, which has 2m individuals. In the
hybrid swarm, all individuals will be sorted according to
the fitness values. The first half m individuals are
reserved as the new swarm. The top p individuals with
the best fitness values will be selected as the next genera-
tion, while the remaining m—p individuals will be
applied to generate mutants by (16).

Ef =0 47 (X0 (16)

where E! is the ith mutant at the kth iteration. Q* is the
individual selected from the set of X,, X;, and X;, ran-
domly. r, distributes between [0, 1] uniformly as a ran-
dom number.

In this way, the diversity of the swarm is enhanced
while the elite individuals are maintained at the same
time.

3.2.3 Convergence factor

In standard GWO, the balance between exploration and
development capabilities is controlled by parameter a,
which decreases linearly over [0,2]. However, in actual
optimization problems, due to the extremely complex
search process of the algorithm, it is difficult for the li-
near decreasing strategy of the control parameter a to
adapt to the actual situation of the search. Dynamically
changeable functions of @ must be used instead of identi-
cal linear function. The mechanism for differential con-
vergence functions is that search intensity should be
determined by dominance. The exploration intensity of «,
as a commander, is the lowest among «,(,5, whereas it is
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the highest for §. According to this phenomenon, conver-
gence function of a should be compatible with domi-
nancy priority. Fig. 4 confirms that the proposed func-
tions completely pay attention to the priority such that
function a; results in higher values than a, and ag; a, is
the lowest one. Hence, the decreasing functions for a of
a, f, and 0 are described as follows:

. Na
i) = G - exp((#) 1n(“i)) (17)
lmﬂx amax
i\ (ay
as(i) = Amax - €XP (( - ) ln( - )) , (18)
lmax amaX

a,(i) + as(i)

-
where a,,, and a,;, denote the upper bound and lower
bound of a, respectively. i is the current iteration and i,,
is the maximum number of iteration. 7,,7s are the growth
factors of @ and ¢, respectively. The values of n,,7;s are 2
and 3, respectively.

(19)

aﬁ(i) =

4.0
351
3.0¢
25¢
s 201
15¢
1.0F
0.5F

0

0 100 200 300 400 500
Iteration

:p; — 0.

Comparison of decreasing functions (a.,ag , and as) for

—
Fig. 4
IGWO

The value of the three functions over iterations are
shown in Fig. 4. As the commander, the exploration of «
is the lowest. Based on this finding, function of a should
compatible with dominancy priority, which means that
function a, has higher value than a, and ag, while a, is
the lowest. In this way, a,, a5, and a; are dynamically
changed instead of adopting identical linear functions.

3.2.4 Execution procedure of IGWO

The pseudo code of the proposed IGWO algorithm with
the above three strategies is presented as Algorithm 1.

Algorithm 1 Framework of IGWO

Input: maximal number of generations iy, swarm size
N.
Output: the best search agent X,

1: /* Initialize a, L and E */

2:  Calculate the fitness of each search agent

3: X, « the best search agent

4: X, < the second best search agent

5: X « the third best search agent

6:  While i <,

7 for each search agent

8 Update the position of the current search agent

with (14) and (15)

9: end for

10: Update a,, a5, as, L and E

11: Generate the new swarm with (16)

12: Calculate the fitness of all search agents
13: Update X,, X, and X;

14: i=i+1

15:  End while

16: Return X,

3.2.5 Performance analysis

Multiple comparison methods are applied in this work for
testing the performance of improvements adopted in the
proposed IGWO algorithm. The algorithms in compari-
son and the corresponding descriptions are shown in
Table 1.

Table 1 Comparison algorithm and description

Algorithm Description

PSO Standard particle swarm algorithm
GWO Standard gray wolf algorithm
MFO Moth-flame optimization algorithm [41]
ALO Ant lion optimizer [42]

SCA Sine cosine algorithm [43]

WOA Whale optimization algorithm [44]
MVO Multi-verse optimizer [45]
IGWO Hybrid improved gray wolf algorithm

To ensure the reliability of the results, all comparison
algorithms uniformly set the maximum population size to
30 and the maximum number of iterations to 500.

To evaluate the proposed IGWO, 14 test functions are
chosen to be optimized, including the unimodal functions
(fi — f7) with one global optimum, multimodal functions
(fs— fi1) with multiple optimal solutions and fixed-
dimensional multimodal functions (fi; — fi4). The test
functions are widely used to assess the performance of
state-of-the-art algorithms [28]. The details of the 14 test
functions are shown in Table 2. For each test function,
thirty runs are conducted independently to reduce the
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negative effect of randomness. Table 3 shows the results
for all test functions. The accuracy and stability of the

algorithms are described by the average and standard
deviation (Std.) of 30 independent results respectively.

Table 2 Benchmark function

Function Definition Dimension Range Optimum
n
fi A=) 30 [~100,100] 0
i=1
n n
£ A@ = l+] [ 30 [-10,10] 0
i=1 i=1
n i 2
£ B = Z{ij] 30 [~100,100] 0
i=1 \j=1
Ja fa(x) =max{|xl};1<i<n 30 [~100,100] 0
n—1 2
fi f5(x) = Z [IOO(x,-+1 —xF) + (- 1)2J 30 [~30,30] 0
i=1
n
fi fo =" (x;+0.5) 30 [~100,100] 0
i=1
n
5 fr(0 =) ix} +rand;rand € [0, 1] 30 [~1.28,1.28] 0
i=1
n
fi f@ =" —xisin( ) 30 [-500,500] ~418.9829%5
i=1
n
5 fo(x) = Z [ = 10cos (2mx;) + 10] 30 [-5.12,5.12] 0
i=1
n
fio(x) = —20exp|-0.2 [Z xl?] /n|-
fro =t 30 [-32,32] 0
n
exp (Z cos (2mx;) /n] +20+e
i=1
n n X
fi Ar=25x10"4 "2 [ | cos(j) +1 30 [-600,600] 0
i=1 i=1 !
. , 1
S fio(x) = 4xf = 2.1x) + 2+ 0100 — 4] 4 2 [-5.5] -1.0316
i fi3(x) =(x2 - 3, §x1 -6 2+ of1- L cosxy +10 2 [-5.5] 0.398
’ 4271w 8n
; F1a(0) = [T+ (xy + 22+ 1)7 (19 = 141 + 327 = 1433 + 63132 + 333 )| X
14 2 [-2,2] 3
[30+ (21 —3x2)% (18— 321 + 1227 +48x; — 36313, + 2713 )|
Table 3 Comparison of experimental result
Function Ttem PSO MVO MFO ALO SCA WOA GWO IGWO
Average 1.01¢-04 1.73¢-33 6.37¢-28 8.94¢-28 3.96¢-39 2.54e-46 1.32¢-39 1.11e-73
fi Std. 1.54¢-04 2.09¢-33 9.30e-28 9.38¢-28 4.74¢-39 4.64e-46 8.71e-40 2.81e-73
Time 0.0043 0.0083 0.0209 0.0195 0.0183 0.0184 0.0117 0.0158
Average 1.99¢-02 4.93e-20 1.40e-16 1.04e-16 1.48¢-23 4.14e-28 1.42¢-23 9.23¢-52
£ Std. 1.65¢-02 2.53¢-20 9.89-17 6.48¢-17 9.76¢-24 2.45e-28 1.25¢-23 1.54e-51
Time 0.0056 0.0067 0.0131 0.0127 0.0106 0.0105 0.0065 0.0072
Average 67.3020 5.14e-06 4.88¢-06 7.04¢-06 2.20e-08 5.25e-07 1.29¢-08 7.67e-11
£ Std. 35.1326 1.48¢-05 5.13¢-06 1.42¢-05 5.98¢-08 3.56e-07 2.94¢-08 1.12e-10
Time 0.0347 0.0393 0.0428 0.0406 0.0395 0.0397 0.0416 0.0297
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Continued

Function Item PSO MVO MFO ALO SCA WOA GWO IGWO
Average 1.0974 3.01e-08 5.57e-07 8.44¢-07 1.85e-10 7.26e-07 3.07e-10 6.11e-12
fa Std. 0.2795 3.39e-08 4.32e-07 8.08e-07 1.64e-10 3.97e-07 3.65e-10 7.81e-12
Time 0.0044 0.0062 0.0119 0.0094 0.0095 0.0171 0.0056 0.0094

Average 1.45e-06 1.76e-14 7.65e-08 4.46¢-05 6.74e-14 7.64e-15 7.99¢-15 0

fs Std. 3.19¢-04 3.37e-15 8.56e-07 2.24e-05 8.47e-15 1.12e-15 0 0
Time 0.0043 0.0094 0.0154 0.0141 0.0157 0.0094 0.0117 0.0115
Average 3.47e-01 6.56e-04 7.14e-01 1.1476 4.99¢-01 6.74e-01 7.23e-01 1.52e¢-04
Js Std. 2.39¢-01 3.82¢-04 4.26e-01 2.52e-01 4.56e-01 1.68e-01 2.52e-01 1.56e-04
Time 0.0098 1.1535 0.0118 0.0121 0.0095 0.0094 0.0094 0.0056
Average 1.76e-01 1.34¢-03 2.14e-03 1.79e-03 1.29¢-03 1.02e-03 9.65e-04 2.25e-04
fr Std. 4.95e-02 6.84e-04 1.02¢-03 8.44e-04 7.00e-04 4.84e-04 8.85¢-04 2.10e-04
Time 0.0103 0.0157 0.0184 0.0156 0.0157 0.0163 0.018 0.0119
Average 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

fs Std. 3.58e-02 4.28e-05 7.79¢-06 8.65e-06 2.08e-06 5.71e-06 0 0
Time 0.0275 0.0247 0.0247 0.0234 0.0332 0.0230 0.0276 0.0277

Average 52.4065 1.0366 2.0143 1.6277 5.68e-15 1.7677 0 0

fo Std. 9.2906 2.0276 3.5410 2.4442 1.80e-14 3.7301 0 0
Time 0.0065 0.0119 0.0146 0.0123 0.0122 0.0121 0.0136 0.0062
Average 1.03e-01 3.61e-14 1.07e-13 1.06e-13 1.26e-14 1.51e-14 1.40e-14 3.73e-15
Sio Std. 2.91e-01 3.53e-15 2.16e-14 1.94¢-14 2.92e-15 1.67e-15 4.12e-15 2.80e-15
Time 0.0077 0.0107 0.0139 0.0119 0.0108 0.0108 0.0136 0.0071

Average 6.18e-03 6.94¢-03 2.99e-03 1.09e-03 0 2.65e-03 2.32e-03 0

fu Std. 7.37e-03 1.29¢-02 9.45¢-03 3.47e-03 0 5.73e-03 7.35e-03 0
Time 0.007 0.0118 0.0143 0.0124 0.0117 0.012 0.0145 0.0083
Average —-1.0316 -1.0316 -1.0316 —-1.0316 —1.0316 -1.0316 -1.0316 —-1.0316

iz Std. 0 8.74¢-08 6.28e-07 3.47¢-08 1.35e-07 1.16e-04 5.47¢-09 0
Time 0.0283 0.0273 0.0244 0.0289 0.0284 0.0287 0.0232 0.0083
Average 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Sz Std. 6.67¢-04 4.93e-07 7.67e-06 1.75e-04 5.24e-05 0 5.24e-05 0
Time 0.0085 0.0066 0.0069 0.0069 0.0068 0.0069 0.0069 0.0069
Average 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
Sis Std. 2.81e-05 1.97¢-05 2.91e-05 4.71e-05 1.57e-05 7.44¢-06 3.72¢-05 4.90e-16
Time 0.0084 0.0065 0.0065 0.0066 0.0065 0.0065 0.0065 0.0065

According to Table 3, in most test functions, the pro-
posed method has significantly better performance than
the standard GWO algorithm. For example, the global
optimal objective values of several functions (fs,fs, and
fi1) are obtained by the proposed IGWO algorithm tri-
umphantly while the other methods fail to make it, which
demonstrates the better performance of IGWO when it

comes to multimodal functions. In the fixed-dimensional
multimodal test functions (fi,—fi4), IGWO has the best
standard deviation among these methods. Furthermore,
the running time of the proposed IGWO is less than 0.5 s,
demonstrating its high execution efficiency. It should be
noted that the running time of PSO and MVO is shorter
than the proposed IGWO in f,, f;, and f, with a slight dif-
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ference. The improvement strategies introduced in the
IGWO algorithm (opposition-based learning strategy and
mutation operator) have brought a relatively greater com-
putational complexity. When dealing with simpler opti-
mization problems, there is no need for greater computa-
tional complexity, which leads to a slight advantage in
the running time of GWO and PSO algorithms in some
cases. In summary, IGWO has advantages in most test
functions. Compared with GWO and other algorithms,
the proposed IGWO algorithm is capable of seeking
approximate optimal solutions efficiently for different
functions.

Fig. 5 demonstrates the convergence trajectories of
IGWO v.s. standard GWO, PSO, MFO, ALO, SCA,
WOA, and MVO algorithms. According to Fig. 5, IGWO
is able to seek out solutions quickly compared with other
methods in most functions. The optimization of PSO and

SCA is relatively poor. Meanwhile, the convergence tra-
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jectories of GWO, and IGWO algorithm flatten out when
the number of iteration beneath 500 in f, f;, and f,, while
the modified algorithm continues rapid convergence. In
13, WOA, GWO, and IGWO have similar performance,
while IGWO is slightly superior in accuracy. In f, itera-
tive curves of algorithms in comparison are stepped,
because f; has a large number of local optima. It can be
seen that MVO, PSO, MFO, and ALO fall into local
optima. Although IGWO, MVO, SCA, and WOA con-
verge at a similar speed, the accuracy of IGWO is the
best. In multimodal functions f;, f},, and f;;, IGWO con-
verges to the global optimum solution as the iteration is
about 200, which is faster than the algorithms in compari-
son. The experimental results verify the modified strate-
gies employed are capable of enhancing convergence per-
formance of the standard GWO algorithm effectively
with convergence rate and the avoidance of premature

convergence.
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Fig. 5 Convergence trajectories of six algorithms for eight test functions with 30 variables

3.3 IGWO-based SVR parameters determination

In this subsection, the IGWO-SVR approach is proposed.
Two issues are mainly discussed. (i) It is necessary to
determine the overall representation of SVR parameters
[46]. The methods proposed against these two issues in
the proposed IGWO-SVR are discussed. The population
X ={X,X;,---,X,} consists of X; (the individuals), where
n denotes number of individuals. X; is determined by SVR

parameters. The three main parameters of SVR, penalty
factor C, Gauss kernel function o~ and insensitive loss
function & are selected to be optimized. The individual
X; ={C,o,¢}. (ii) The choice of a suitable evaluation
approach is necessary. In most regression issues, mean
squared error (MSE) is usually chosen as the indicator. In
this study, MSE is selected as the fitness function.

The overall framework of the proposed IGWO-SVR
method is illustrated as shown in Fig. 6.
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IConfirm Ib, ub and initialize X. Set the
maximum of the iteration Max_Iter.
The loop count variable /=1

'

Divide the samples into training set
and testing set

'

Conduct the supervised learning with
SVR based on training set and X for |«
obtaining training models

Obtain MSE based on testing data set _
. . =+
with training models
Choose the optimum MSE and the T
homologous optimal SVR Update X with IGWO
parameter X,

opt ry

No

I>Max_Iter?

Yes

Output X,

opt

End
Fig. 6 Schematic diagram of the IGWO-SVR method

Step 1 Initialize the gray wolf population position
with the OBL strategy according to (14). Confirm the
lower and upper limits of X; ={C,o, &} for forming the
limit sets 1b and ub, respectively. The number of popula-
tion is marked as M. The maximum of iterations is
Max_Iter. The loop count 7 is set to 1.

Step 2 Divide the samples into training set and test-
ing set.

Step 3 The supervised learning is conducted with
SVR with training set and X for obtaining corresponding
models.

Step 4 Evaluate the performance of SVR for MSE
with the training models.

Step 5 Classify individuals in accordance with fit-
ness value. Individuals with the best fitness a, f, and ¢
are retained, and the remaining individuals are updated
according to (11)—(13). Thus obtain the current optimum
SVR parameter set.

Step 6 If />Max_Iter, jump to Step 7. Otherwise, / =
I+ 1, jump to Step 3.

Step 7 Output X, as the best parameter of SVR.

4. Construction of effectiveness
evaluation model

4.1 Effectiveness evaluation indicator system
construction

RSS undertakes the task of providing intelligence and

information support for command organizations at all le-
vels, combat troops, and main combat weapons. To eva-
luate its effectiveness, a reasonable indicator system is a
prerequisite. However, the effectiveness and connotation
measurement framework of RSS are still unclear. In order
to quantify the operational effectiveness of RSS in the
combat system to guide the development of equipment
construction, many research have been conducted on the
index system of RSS [47—51]. The selection of underly-
ing indicators of RSS needs to meet the general princi-
ples of objectivity, timeliness, measurability, complete-
ness, and consistency. Meanwhile, due to the spatiotem-
poral dynamic characteristics of RSS, the satellite appli-
cations are constrained by satellite system orbits and
combat units, resulting in vagueness and uncertainty of
RSS’s operational effectiveness. Therefore, the establish-
ment of the indicator system for RSS requires continuous
iteration.

The main steps of the iteration are as follows. (i) Estab-
lish a workable evaluation indicator architecture.
(i1) After the construction of preliminary evaluation indi-
cator system structure through practice testing, the busi-
ness authorities, experts and technical personnel are con-
stantly solicited for suggestions to improve the construc-
tion. (iii) The effectiveness evaluation indicator system is
finally obtained through continuous practice and repeated
iteration. The process is shown in Fig. 7.

»> Start

I
v v

Target analysis

System analysis

[ ]
v

Characteristic
attribute analysis

v

System structure Evaluation hierarchy

analysis determination
| I

v

Information source
analysis

Consult and test in
practice

>

Weight
analysis

Normalized
analysis

y
Determination of the evaluation

index hierarchy
]

Fig. 7 Process of indicator system establishment

Through the process shown in Fig. 7, the effectiveness
evaluation index system of RSS has been established.
Four operational effectiveness indicators: signal recon-
naissance capability, imaging reconnaissance capability,
information transmission capability, and reconnaissance
information processing capability are established, respec-
tively. Each of the above indicators can be decomposed
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into multiple quantifiable individual performance indica-
tors. Finally, a layered decomposition indicator system
for evaluating the effectiveness of RSS is obtained, as
shown in Fig. 8.

Communication Frequency range
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Fig. 8 Operational effectiveness evaluation indicator system of

RSS

Based on the specific application of the RSS and avail-
ability of data, a total of six indicators including cover-
age rate, revisit time, communication duration, response
time, reconnaissance frequency, and transmission delay
are determined as data characteristics. Each indicator is
defined as follows: (i) Coverage: the ratio of the target
area covered by the space reconnaissance system to the
total target area at a certain moment. (ii) Revisit time: the
revisit time measures the interval between when the area
is not covered. (iii) Communication duration: the dura-
tion of a single communication. (iv) Response time: the
time from a point when a coverage request is made to
when it is under coverage. (v) Reconnaissance frequency:
the number of times the area can be covered by the space
reconnaissance system in a unit time length. (vi) Trans-
mission delay: the time required for reconnaissance data
to be transmitted from the satellite constellation to the
ground terminal.

4.2 Effectiveness evaluation based on TOPSIS

On the basis of the constructed indicator system, in order
to verify the validity of the IGWO-SVR model, the study
adopts the technique for order preference by similarity to
an ideal solution (TOPSIS) method for evaluation. The
TOPSIS method of multi-attribute decision-making is
constructed based on the aerospace RSS index system.
The entropy weight method is adopted to obtain the
weight of each indicator, calculating the closeness,
obtaining the comprehensive value of each indicator [52].
The procedure of effectiveness evaluation with the TOP-
SIS method is shown as follows.

Step 1 Construct the target attribute decision matrix
A =(a;),,,,» Where a denotes the jth attribute value of the
ith data sets. Transform the decision matrix A4 into a stan-
dardized decision matrix R =(r;;) .

Step 2 Construct a weighted standardized decision
matrix Z = (2;),.,,2ij = IijW;-

Step 3 Determine the positive ideal solution z*and
the negative ideal solution z~. The positive ideal solution
and negative ideal solution are the solutions with the
largest and smallest indicators, respectively.

Step 4 Calculate the distance df and d; from each
evaluation sample to the positive and negative ideal solu-
tions. Obtaining the closeness ¢; of each sample to the
ideal solution as the performance value of the evaluation
sample, the formula is as follows:

S 20
T dvd (20)

4.3 Effectiveness evaluation model based on
IGWO-SVR

The main ideas of effectiveness evaluation and machine
learning are similar. They both establish the appropriate
models to evaluate or predict goals under the premise of
determining the evaluation goals. Based on this, the
essence of the effectiveness evaluation process is to solve
a multi-objective input nonlinear equation, which can be
described by the following model:

Object function F(Y)
g(¥)<0, i=1,2,---,m 21)
A\ hi(Y)=0, j=1,2,--k

where Y =[x;,x,,---,x,]T € R" denotes the evaluation
index, R” is n-dimensional real vector space; F(Y) is the
non-linear objective function of the n-dimensional index
space. g;(Y) and h;(Y) are the equality and inequality con-
straints of the objective function, respectively. For the
RSS studied in this work, the objective function space of
effectiveness evaluation is so complicated that cannot be
described by analytical formula. This is a typical “black
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box” system. The proposed method based on IGWO-SVR
algorithm abandons the military mechanism research
guided by reductionism, and instead starts with full-sam-
ple big data to extract data reflecting the results of com-
bat effectiveness. It can realize the nonlinear fitting of
complex systems and obtain the deep relationship implicit
in data, and achieve the prediction and evaluation of
effectiveness.

The IGWO-SVR based effectiveness evaluation model
is shown in Fig. 9. Firstly, according to the aerospace
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reconnaissance equipment effectiveness evaluation index
system, a data set is obtained. Take x;, the jth index of the
ith group of data, as the input, while the actual evaluation
value Y;(i=1,2,---,n) is taken as the output. The pro-
cessed index data is divided into training set and testing
set. The training set is used to train the model to obtain
mapping relationship between effectiveness value and
indicators. The accuracy and effectiveness of the model
can be determined by comparing the output evaluation
value and the theoretical value.

Construction of index system
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evaluation model
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n @ kS object scenarios
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Final effectiveness
evaluation model
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Effectiveness of RSS

Fig. 9 Flowchart of the operational effectiveness evaluation of RSS based on the IGWO-SVR model

5. Case study

The experimental conditions include (i) Intel® Core™
i7-8750H CPU@2.21 GHz, 32 GB RAM, windows 10
64-bit operating system; (ii) Matlab R2016b and STK
11.2; (iii) Libsvm toolkit for Matlab; (iv) data sets,
which are obtained from combat case simulation and
the university of california at irvine (UCI) machine learn-
ing repository, respectively. The main features of UCI
data sets are shown in Table 4. Considering the speed of
operation, all data sets are normalized in the range of
[0,1].

Table 4 Basic information of eight training data sets

Data Dataset Instance  Attribute  Characteristic

a Tertiary structure 45730 9 Real

b PM2.5 43824 13 Integer, real
¢ Stability 10000 14 Real

d Air quality 9358 15 Real

e Student 649 33 Integer

f Wine 4898 12 Real

g German 1000 21 Integer, real
h News popularity 39797 61 Integer, real
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Case study consists of two experiments. The first one  a result, accurate calculation of complexity is usually a
is adopted to evaluate the accuracy and stability of the  hard work. In this experiment, the average running time
prediction, as well as the computational complexity of the ~ on the same criteria is calculated, as shown in Table 7.
proposed method, which is conducted with University of =~ The unit of data is s. According to Table 7, IGWO-SVR
California, Irvine machine learning repository. The se-  acquires the minimum computational cost when it comes
cond experiment verifies the feasibility of the proposed  to datasets b, e, f, and A. For rest of datasets, the conse-
IGWO-SVR model in RSS effectiveness evaluation with ~ quence of IGWO-SVR is also competitive.
data obtained from simulation.

5.1 ExperimentI

Table 5 Initial parameter setting of IGWO-SVR and other me-

thods
In Experlmgnt I, the proposed IGWO-SVR method is Method Parameter item Value
compared with SVR, GWO-SVR and BPNN based on the
data sets from UCI machine learning repository, in order SVR SVR parameters (2,1,0.01)
to evaluate prediction accuracy and computational cost. Number of search agents 30
The initial parameter settings of these methods are shown . N
X . Maximum iterations 500
in Table 5. Training data accounts for 80%, and the IGWO-SVR
remaining 20% is used as testing data. According to the Minimum of SVR parameters  (le—4,1e=4,0)
training and testing data, the optimum prediction accu- Maximum of SVR parameters (100,100,1)
racy is acquired through procedures in Section 3. For
. Number of neurons in input layer 6
each method the procedure repeats twenty times under
the same conditions. The average and standard deviation Number of neurons in output layer 1
of 2Q e@curames a.re s.hown in .Tabl.e 6. The box-p.10t of BPNN Number of neurons in hidden layer 10
prediction accuracies is shown in Fig. 10. The whiskers
denote the maximum and minimum MSE, the box indi- Learning efficiency 0.1
cates quartiles and the horizontal line denotes mean of Error limitation 0.001
MSE. In datasets b, e, f, and A, the proposed approach
. .. : . Number of search agents 30
obtains the minimum MSE against BPNN, SVR and
GWO-SVR. Meanwhile, the distribution of MSE is more Maximum iterations 500
P . GWO-SVR
concentrated, verifying the stability of the proposed Minimum of SVR parameters (le—4,1e-4,0)
approach. The computational cost of these methods is
Maximum of SVR parameters (100,100,1)

concerned with the amount of instances and attributes. As

Table 6 Prediction accuracy results for all data of each method

SVR IGWO-SVR BPNN GWO-SVR
Dataset
Average Std. Average Std. Average Std. Average Std.
a 1.70e-01 6.19¢-02 4.62¢-02 3.50e-03 3.05e-01 6.05e-02 1.10e-01 7.19¢-02
b 5.48e-02 1.61e-02 1.18¢-03 5.80e-04 4.27e-02 5.00e-03 1.90e-02 9.10e-03
c 8.62e-02 2.71e-02 7.60e-03 1.20e-05 1.26e-02 1.00e-03 1.06e-02 3.70e-03
d 8.70e-03 8.30e-03 6.10e-05 5.08e-04 1.78e-02 2.60e-03 6.80e-03 8.19¢-04
e 1.26e-02 2.20e-03 2.80e-03 2.98e-05 1.90e-02 5.80e-03 1.28e-02 1.90e-03
f 3.06e-02 2.39¢-02 7.50e-04 2.30e-03 7.08e-02 1.75e-01 1.63e-02 1.13e-02
g 3.54e-01 1.65e-01 1.58¢-01 2.78e-02 7.99¢-01 2.72e-01 4.26e-01 6.73¢-02
h 2.42e-02 9.70e-03 1.19¢-02 2.60e-04 3.31e-02 9.00e-03 4.64¢-02 3.41e-02
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Fig. 10 Box-plot charts of MSE for IGWO-SVR and rest of methods based on eight datasets

bolded data, the greater the advantage of the IGWO-SVR
Table 7 Average running time of IGWO-SVR against other me- algorithm against other algorithms.

thods based on eight datasets

Dataset SVR IGWO-SVR BPNN GWO-SVR Table 8 P values of IGWO-SVR against other methods using
Wilcoxon’s statistical test (bolded if P>0=5%)
a 16.24 17.76 33.01 31.37 GWOSVR
- Vs
b 15.35 9.93 21.26 20.83 Dataset IGWO-SVR vs SVR GWO-SVR IGWO-SVR vs BPNN
c 10.42 14.76 15.53 22.79 a 6.16e-05 1.40e-02 5.93e-04
d 3533 19.63 28.50 17.43 b 2.43e-05 2.54e-02 6.73e-03
e 4.83 3.58 6.37 9.50 ¢ 1.68¢-05 3.93¢-01 1.19¢-01
f 131 1.02 727 4.28 d 6.42¢-05 3.68¢-01 1.00e-03
g 15.94 18.24 16.45 24.83
e 6.42e-05 7.82e-04 8.52e-04
15.88 12.61 23.95 13.89
f 1.59e-05 5.25¢-02 1.73e-01
Furthermore, Wilcoxon’s test is conducted to verify the g 4.57e-05 5.67e-05 2.64e-03
statistical significance of differences in computation
h 6.28e-05 2.46e-04 2.46e-04

results. Wilcoxon’s test is a nonparametric hypothesis
testing method, usually employed to determine whether
data come from the same distribution. First, suppose that
the prediction accuracy of IGWO-SVR is significantly
different from the accuracy of GWO-SVR, BPNN, and
SVR. Let the significance level a@ =5%. The P value
obtained by Wilcoxon’s test of the IGWO-SVR method
against rest of the methods are displayed in Table 8. If the
P value is greater than «, then the null hypothesis is
rejected, which means that the proposed IGWO-SVR
method does not have a significant advantage. Data that
fit this condition are bolded in Table 8. The less the

In accordance with Table 8, there are eight data sets (a,
b, c, d, e, f, g, h) with significant difference when IGWO-
SVR is compared with SVR. When it comes to GWO-
SVR, there is no significant difference on datasets c, d,
and f. On the remaining five data sets, IGWO-SVR is
with significant difference. In particular, two datasets
meet the reject condition of null hypothesis when com-
pared with BPNN. The experimental results above con-
firm that IGWO-SVR is superior to other methods in
terms of prediction accuracy and convergence stability.
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5.2 Experiment II

Experiment II aims at verifying the feasibility of
the proposed IGWO-SVR method in evaluation of
RSS. Data in experiment are derived from simulation
under specific operational scenarios, as shown in Fig. 9.
The orbital parameters of reconnaissance satellite
constellation are shown in Table 9 where RAAN
means right ascension of ascending node. Based on the
scenario, 320 instances are obtained. The number of
attributes is seven. TOPSIS method is applied to obtain
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the effectiveness of RSS according to procedures in
Section 4. Input has been normalized to speed up the cal-
culation. The data structure after preprocessing is
shown in Table 10, which is divided into training data
and testing data. The number of these two parts are
270 and 50, respectively. Following the procedure pro-
posed in Fig. 9, the IGWO-SVR model with best SVR
parameters is established, thus obtaining the mapping
between indicators and the corresponding effectiveness
values.

Table 9 Orbital parameters of satellite constellations degree ©)
Number Semimajor axis Eccentricity Inclination Argument of perigee RAAN True anomaly
LEO1-1/2/3 500 0 45.0000 0 0 0/120/240
LEO2-4/5/6 500 0 45.1092 0 89.8898 30.16/150.16/270.16
LEO3-7/8/9 500 0 449991 0 179.7800 60.31/180.31/300.31
LEO4-10/11/12 500 0 44.8897 0 269.8910 90.16/210.16/330.16
Table 10 Structure of sample data
Number X, Xy X3 X4 Xs X¢ Effectiveness
1 0.6178 0.3803 0.6533 0.9490 0.3588 0.9987 2.0857
2 0.1863 0.9098 0.1747 0.904 1 0.1193 0.1645 1.4126
3 0.0778 0.8667 0.1018 0.7284 0.0658 0.2526 1.3586
4 0.0725 0.8922 0.0898 0.5634 0.0491 0.4394 1.5264
320 0.7231 0.6378 0.7099 0.4211 0.4412 0.1644 1.5644

5.3 Result analysis

For testing the accuracy and convergence ability when
dealing with operational effectiveness evaluation (OEE),
the prediction result is compared with SVR, GWO-SVR
and BPNN model. Initial parameters of these methods are
consistent with the first experiment, as shown in Table 5.
Through procedures in Fig. 9, the optimal parameters
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45.16, the parameter of Gauss kernel function o = 2.3158
and the insensitive loss function ¢ = 0.108. For GWO-
SVR, the penalty factor C = 5.34, the parameter of Gauss
kernel function ¢ = 1.092 1 and the insensitive loss func-
tion ¢ = 0.517. The prediction results of the above me-
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Fig. 11

Fig. 12 demonstrates the absolute error corresponding
to these methods, confirming the accuracy of the pro-
posed IGWO-SVR method. According to Fig. 12, the
proposed method wins the first place.
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Fig. 12 Absolute error curves corresponding to various methods

For offering the comprehensive evaluation on accu-
racy of these approaches, the root MSE (RMSE), mean
absolute error (MAE) and determination coefficient (R?)
are calculated. In addition, the computational complexity
is calculated to measure the computational cost. In order
to reduce the influence of randomness, the process
repeats 20 times in the experiment to obtain the average
value of these indicators. The definition of each indicator
is as follows.

RMSE denotes expected root formula of the square of
difference between evaluation results and actual value
obtained after inputting each sample data into the model.

(22)

where Y;, ¥, represent actual and predictive values of the
ith sample respectively. n denotes the number of samples.
The smaller the value of RMSE, the higher the prediction
accuracy of the evaluation model.

Operational effectiveness evaluation curve

MAE demonstrates difference between the predictive
and actual values obtained after inputting each sample
into the model. MAE has better robustness when data
include outliers. MAE does not have the problem of error
cancellation, making it more accurate in reflecting the
actual error size, as follows:

MAE = 1 Z Y- ¥,
n

i=1

. (23)

R? measures how well the model fits the actual value:
1 N2
-39

R2 _ i=1

n

2 (r-7)

i=1

24

where ¥ denotes the mean of predicted values of n sam-
ples.

The indicator RMSE, MAE, and R?> of SVR, IGWO-
SVR, BPNN, and GWO-SVR are calculated, respec-
tively, as shown in Table 11. According to Table 11, the
accuracy of IGWO-SVR reaches 0.001. The R® between
the predicted value and the actual value reaches 99.7%.
Regarding MAE, the values are 0.02, 0.006, 0.04, and
0.02, respectively. IGWO-SVR obtains the best score in
RMSE, MAE, and R2. The computational cost of IGWO-
SVR dealing with evaluation problems is also competi-
tive. When it comes to prediction accuracy and computa-
tional cost, IGWO-SVR demonstrates powerful compete-
tiveness. Actually, in order to pursue accuracy in predic-
tion, the integrated method sacrifices a fraction of stabi-
lity of SVR. Regarding this term, IGWO-SVR realizes a
great balance. These verify the proposed method has the
optimal comprehensive performance dealing with effec-
tiveness evaluation of RSS. Meanwhile, the proposed
IGWO algorithm is worth to be applied in optimizing
parameters of SVR.
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Table 11 Comparison of experimental results
Model RMSE MAE R-square Time/s
SVR 0.035736 0.023742 0.85732 1.942
IGWO-SVR 0.000935 0.006358 0.99735 2.484
BPNN 0.035732 0.039750 0.87158 3.389
GWO-SVR 0.019308 0.024 802 0.92869 2.015

6. Conclusions

Traditional evaluation methods have defects dealing with
nonlinear evaluation under small sample conditions, thus
these methods are incompetent for effectiveness evalua-
tion of RSS. A comprehensive method optimizing SVR
parameters for OEE with the IGWO algorithm is pro-
posed in this paper. Through experiment with 14 bench-
mark functions, the proposed IGWO algorithm, which is
modified by three strategies (opposition-based learning
strategy, differential convergence factor and mutation
operator) has advantages in improvement of the search
rate and swarm diversity. Premature convergence is
avoided at the same time. Based on the IGWO algorithm,
the proposed IGWO-SVR method is capable of optimiz-
ing SVR parameters continuously. Finally, the method
achieves optimum evaluation accuracy and correspond-
ing SVR parameters. Experiments are carried out on two
aspects: prediction accuracy and computational cost,
respectively. The result in Experiment I on eight bench-
mark datasets confirms the excellent comprehensive per-
formance of IGWO-SVR against rest of methods. Experi-
ment II based on simulation verifies the feasibility of
IGWO-SVR in RSS evaluation.

Furthermore, the future work can be carried out from
two aspects. The first aspect is modifying the GWO algo-
rithm by developing effective strategies. Another aspect
is to extent the method proposed in this work to similar
systematic evaluation problems.
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