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Abstract: Considering the problem that the scattering echo
images of airborne Doppler weather radar are often reduced by
ground clutters, the accuracy and confidence of meteorology
target detection are reduced. In this paper, a deep convolutional
neural network (DCNN) is proposed for meteorology target
detection and ground clutter suppression with a large collection
of airborne weather radar images as network input. For each
weather radar image, the corresponding digital elevation model
(DEM) image is extracted on basis of the radar antenna scan-
ning parameters and plane position, and is further fed to the net-
work as a supplement for ground clutter suppression. The fea-
tures of actual meteorology targets are learned in each bottle-
neck module of the proposed network and convolved into
deeper iterations in the forward propagation process. Then the
network parameters are updated by the back propagation itera-
tion of the training error. Experimental results on the real mea-
sured images show that our proposed DCNN outperforms the
counterparts in terms of six evaluation factors. Meanwhile, the
network outputs are in good agreement with the expected mete-
orology detection results (labels). It is demonstrated that the pro-
posed network would have a promising meteorology observa-
tion application with minimal effort on network variables or
parameter changes.

Keywords: meteorology target detection, ground clutter sup-
pression, weather radar images, convolutional neural network
(CNN).
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1. Introduction

The capability of microwaves to penetrate clouds and rain
has placed the weather radar in an unchallenged position
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for remotely surveying the atmosphere. The Doppler
weather radar is currently the primary tool that can mea-
sure the scattering echo powers and radial velocities, both
in clear air and inside heavy rainfall regions veiled by
clouds. It is claimed that Doppler weather radars have
been the most important sensors for atmosphere surveil-
lance [1-5]. Unlike ground-based weather radars, the
working mode of airborne weather radar is generally
downward-looking or head-up looking. For the airborne
weather radar, the expected meteorological echo is often
severely affected by various ground clutters, which are
difficult to suppress effectively, due to the relatively
moving status, wide clutter spectrum and strong clutter
power. Thus, it is difficult to directly analyze the radar
echo, detect actual meteorology targets and further warn
meteorology hazardous areas. The flying-safety of planes
would be confronted with dangerous meteorology threats.

When the radar beam contacts the ground, the received
echo includes the meteorological echo and the ground
clutters. The ground clutters are generated by mountains,
hills, and forests in the same radar beam of the meteoro-
logical echo. Unfortunately, the ground clutter power is
generally stronger than that of actual meteorology targets
and the ground clutter spectrum is also wider. Consider-
ing the problem that the scattering echo images of air-
borne Doppler meteorological radar are severely affected
by ground clutters, such as non-rainfall, the accuracy and
confidence of the refined meteorology target detection are
reduced. Thus, it is vital to suppress the ground clutters
before the meteorology target detection and classifica-
tion [5].

Recently, the deep convolutional neural network
(DCNN) as the state-of-the-art machine learning model
has the ability of automatically extracting sample fea-
tures and has been successfully applied in computer
vision [6—10], radar automatic target recognition [11—15]
and climate observation fields [1-5,16—21]. In view of
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deep learning (DL), meteorology target detection and
ground clutter suppression in weather radar images are
similar to the image semantic segmentation, where the
network input is a multichannel image and the output is
assigned to every pixel. Inspired by the DL-based image
segmentation approaches [9,22—26], a semantic segmen-
tation-based DCNN is proposed for the meteorology tar-
get detection and ground clutter suppression in weather
radar images in this paper. The digital elevation model
(DEM) images are also employed as a supplement to the
weather radar echo images and fed to the DCNN together
for training. A DEM image is composed of a grid of pi-
xels spaced at regular intervals, with the pixel value rep-
resenting elevation at that point. In each regular interval,
the geographic location and height of terrain can be cal-
culated and terrain characteristics in different intervals
would vary. In this work, we first estimate whether the
weather radar beam contacts the ground. When the beam
contacts the ground, the horizontal ranges of the contac-
tors apart from the airborne weather radar are then calcu-
lated. After that, the DEM image of ground clutter
regions can be obtained and is further fed to the proposed
DCNN for ground clutter learning. To the best of the
authors’ knowledge, this is the first work that employs
DCNN and DEM images as a supplement to weather
radar images to suppress the ground clutters in airborne
weather radar images.

The outline of the paper is as follows. In Section 2, the
related approaches to meteorology detection and precipi-
tation are reviewed and presented. In Section 3, the
methodology based on a DCNN is described in detail.
The experimental design and evaluation result analysis
are described in Section 4. Finally, Section 5 concludes
the paper and discusses the future work.

2. Related work

The airborne weather radar images often contain the
information about actual meteorology, ground clutters,
and noise. For the challenging task of meteorology target
detection, warning, and forecasting, it has been problem-
atic to effectively extract and learn the features of meteo-
rology targets and ground clutters from multisource raw
data, due to a lack of computation and meteorology
observation data. In recent years, advancements in DL
techniques [22—29] and graphics processing units (GPU)
make it possible. Meanwhile, severe weather detection is
a typical research domain that uses weather radar images
as the primary input data. Due to the end-to-end abstract
ability and multilayered feature representation, DL meth-
ods are typically expected to perform better than the shal-
low machine learning methods, such as the features-based
support vector machine (SVM). As a traditional DL

method, convolutional neural network (CNN) has been
the state-of-the-art solution for semantic segmentation
[1,2,11], so it is reasonable to apply the similar neural
networks for precipitation prediction and ground clutter
suppression in weather radar images.

The traditional meteorology detection and prediction
methods mainly rely on algorithms that detect and extra-
polate radar echo observations or expert systems on basis
of the predefined rules and thresholds [1—3]. Much work
has been paid to the prior knowledge-based feature
extraction and threshold tuning, which makes these algo-
rithms difficult to be directly applied in varying scenar-
ios due to the poor adaptability. In contrast, the CNN-
based methods directly start from raw radar data and
compute a layer-wise transformation of each representa-
tion, producing abstract levels with increasingly
improved feature representation. By employing a series
of these transformations, thus complex feature representa-
tions can be learned automatically without the use of
handcraft feature engineering [3—5]. Expected detection
and classification results can be obtained without thresh-
old tuning. It is demonstrated that the CNN-based radar
meteorology detection has a promising application.

Wang et al. [1] proposed a CNN algorithm to firstly
extract useful features from the polarimetric measure-
ments of dual-polarization Doppler weather radar, then
the extracted features were classified by Softmax classi-
fier, and the precipitation particles were finally divided
into rain, snow, ice crystals, hail, and other categories.
The experimental results were in good agreement with
the ground observation data. Han et al. [2] examined an
end-to-end DL nowcasting method using three-dimen-
sional (3D) radar images and reanalysis data, where the
nowcasting problem was transformed into a classifica-
tion problem. Guang et al. [3] discussed a deep recurrent
neural network model for predicting image sequences of
weather radars and proposed a new adaptive loss to train
the model. Meanwhile, image discriminators were
designed to ensure the continuity of sequences and visual
quality of images. Gurung et al. [4] employed a DCNN to
detect hailstorm events in a large collection of radar
images, where the effectiveness of training and classifica-
tion was discussed using different activation functions
and different pooling methods in network layers. Evalua-
tion results of the proposed DCNN showed high classifi-
cation accuracy in comparison with existing hailstorm
detection approaches. Considering the problem that the
scattering echo image of the new generation Doppler
meteorological radar is reduced by noise, Yang et al. [5]
proposed a DCNN-based method for semantic segmenta-
tion of meteorological radar noise image, and experimen-
tal results showed that the proposed method had better de-
noising effects on meteorological radar images than the
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optical flow method and the fully convolutional net-
works (FCN).

Inspired by [1-5], the meteorology target detection and
ground clutter suppression problem in weather radar
images is similarly transformed into an image semantic
segmentation problem in this paper. We present a DCNN-
based method to carry out meteorology target detection,
where the weather radar images and DEM images are all
employed as multi-channel input to feed to the DCNN
together. Operationally produced airborne weather radar
data from different regions and different weather condi-
tions is used to train the proposed DCNN and to evaluate
its performance. Experimental results on the real mea-
sured images demonstrate that our method has the state-
of-the-art performances.
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3. Methodology

As shown in Fig. 1, we give an overview of the proposed
end-to-end DL approach for meteorology target detection
and ground clutter suppression of weather radar. The
meteorology target detection is considered as a target
classification problem in images. In the data preprocess-
ing, the radar echo images are first transferred to the
reflectivity factor (RF) images. Meanwhile the corre-
sponding DEM images of the radar beam scanning
regions are extracted from a DEM dataset. Then these
images are fed as the multichannel input to our proposed
CNN model for training. Finally, the trained model is
employed to detect actual meteorology targets and also
suppress ground clutters at the same time.

Meteorology
detection and

Fig. 1 Flowchart of our proposed DL approach for meteorology detection and ground clutter suppression

3.1 Preprocessing

Often, the Doppler weather radar transmits waves to
obtain the RF [1], which is defined as

Z= [Ny dy (1)

where 7 is the precipitation particle diameter, 77, denotes
the maximum diameter, 7 refers to the projection of 7 in
horizontal or vertical polarization direction, and N(-) is
the drop distribution function of precipitation particles.
When 7 is the horizontal projection, Z is the horizontal
RF. When 7 is the vertical projection, Z denotes the verti-
cal RF. It is seen that RF is related with the particle dia-
meter, drop distribution, and dielectric constant. For the
rainfall, the effect of particle diameter on RF is greater, and
the larger particle size produces the larger RF [1]. In
addition, for hail, raindrops, and other different types of
precipitation particles, the RF is also affected by the
dielectric constant. Therefore, we can infer the meteoro-
logy target type based on the difference in RF characteris-

tics.
3.1.1 Meteorology RF calculation

Consider that an airborne Doppler weather radar system

is equipped with a non-uniform array and emits a distinct
waveform to a meteorology region. The azimuth and ele-
vation angles of radar beam are denoted as 6 and ¢,
respectively. When the radar transmitted power is P,, the
transmitted and received gains are denoted as G,,G,, and
the radical range between meteorology target and weather
radar is represented as R, we can calculate the meteoro-
logy RF Z [29] based on the received echo power P, by
7o 1 024311n2 _ RAL,L, R 2
T P.G,G.Opct ¢|K|*

where A is the wavelength, L, is the round-trip attenua-
tion factor of radar waveform, £ <1 denotes the filling

factor, c is the speed of light, L, is the system loss,
K= @ is a constant calculated by the complex
m>+2
refractive index m of meteorology. We set the water at
0°C—-20°C as an example, |K > = 0.93. Meanwhile, for ice
at all temperatures, |[K|* = 0.197. When the beam is filled
with meteorology scatters, & = 1, otherwise & < 1. Thus,
we can get the RF distribution images from the radar
echo images based on (2), which can show the reflecti-

vity intensity of meteorology target.
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To visually display the meteorology caution areas for
pilots, the RF distribution images are often normalized
and marked with different colors. Fig. 2 is a typical nor-
malized RF image, where the red, yellow, and green rep-
resent the large, middle and small RFs, respectively. Due
to the downward-looking or head-up looking of airborne
weather radar, the expected meteorological echo is often
severely affected by various ground clutters. It is demon-
strated that Fig. 2 can not only show the RF distribution
of precipitation particles in atmosphere, but also provide
the RFs of ground clutters. Thus it is vital to effectively
suppress ground clutters for the meteorology target detec-
tion and further meteorology caution area warning.

Fig.2 A calculated RF image

3.1.2 DEM image obtainment

In this work, the DEM images are employed to train the
network for ground clutter feature learning and distin-
guishing. As shown in Fig. 3, we first calculate the scan-
ning line-of-sight (SLOS) of current radar beam with
azimuth angle 6 and elevation angle ¢, based on the lon-
gitude, latitude, and height of carrier. More details can be
found in [30,31].

Radar beam 1}1

l

Fig. 3 Visible region of airborne weather radar beam

0

We set the current radar beam in Fig. 3 as an example.
It is shown that the region between P, and P,, and the
region between P; and P, are radiated by the radar beam,
while the region between P, and P; is shaded. Mean-
while, it is noticed that the extracted DEM data must
match the radar beam radiation regions. Therefore, the
corresponding shaded regions and radiated regions are
assigned 0 and 1, respectively. Then, the extracted DEM
data becomes a binary image. A typical DEM image cor-
responding to Fig. 2 is depicted as follows, where the

employed DEM dataset is the NASA open earth data and
can be obtained from https://search.earthdata. nasa.gov/.

3.1.3 Labeling

In the semantic segmentation field, the corresponding
labels of input images are often artificial-made on basis
of the prior knowledge. Unfortunately, for the meteoro-
logy target, it is difficult to accurately label, even for the
meteorology professionals. Herein, we select the final
meteorology detection results of actual airborne weather
radar as the labels, which are obtained followed by a
series of processing, such as the classical meteorology
target detection, DEM-based clutter suppression, color
quantization, and so on. Fig. 5 is the airborne weather
radar’s final output result of Fig. 2 and is selected as the
label.

3.1.4 Cropping images

It is well known that many input samples are necessary to
fed to a CNN model for effective training. However, the
actually measured RF images and matched DEM images
of the same airborne weather radar are usually not
enough. Similar to [4], the trick of cropping image is
adopted to increase the input images and also decrease
the network complexity. Herein we set the height and
width of cropped window as 160 pixels and 180 pixels.
To make the cropping and following restituting process-
ing sufficient, we slide the cropping window in original
images by the step of 80 pixels along the width direction
and 90 pixels along the height direction, respectively.
Then an original image can be divided into 13 cropped
patches. We set the cropped images of Fig. 2, Fig. 4, and
Fig. 5 as examples, which are shown in Fig. 6.

Fig. 5 The label of Fig. 2
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(a) RF images

(b) DEM images

(c) Label images

Fig. 6 The cropped images

3.2 The proposed DCNN

3.2.1 Network architecture

Inspired by ResNet [10], ENet [32] and SegNet [33],
the proposed CNN architecture is depicted in Fig. 7,
which is composed of one initial block, five stages,
and one full convolutional (conv.) layer. In the initial
block, there are a convolution with 13 filters and a Max
pooling (pool.) layer. Their feature maps are concate-

Encoder

nated together. Stage 1—3 complete the encode process-
ing, while the decoder is comprised of Stage 4 and Stage 5.
Stages 1—-3 contain five different bottleneck modules,
while Stage 4 and Stage 5 consist of three different bot-
tleneck modules. Finally, the previous generated features
are embedded into a feature space in a bare fully con-
nected (FC) layer as the last module of the network,
which alone takes up a sizeable portion of the decoder
processing time.

Decoder

Prediction
—

FC block

Initial

Regular Downsample
block bottleneck bottleneck bottleneck bottleneck bottleneck

Block illustration

gope

Dilated Asymmetric Upsample FC block

Fig. 7 Our proposed DCNN architecture

As shown in Fig. 7 and Fig. 8, bottleneck modules can
be regular, dilated, asymmetric, down-sampling, and up-
sampling. For regular bottleneck in light green, there are
three conv. layers: a 1x1 projection that reduces the
dimensionality, a main 3Xx3 conv. layer, and a 1x1
expansion. We place batch normalization (norm.) [34]

and parameter rectified linear unit (PReLU) [35] between
all conv., and spatial dropout [36] at the end of conv.
branches, as shown in the left of Fig. 8 before addition.
For dilated bottleneck in gray, the dilated conv. [24] is
employed to replace the main conv. layer of regular bot-
tleneck to avoid overly down-sampling the feature maps,
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and also have a wide receptive field. For the down-sam-
pling bottleneck in light purple, a 2 X2 Max pool. layer is
complemented to the left main branch and the 1x 1 pro-
jection of regular bottleneck is modified as a 2x2 conv.
layer. For the up-sampling bottleneck in light brown, a
1x1 conv. layer, a Batch norm. layer and a Max unpool.
layer are complemented to the branch together, in the
right before the addition. For the asymmetric bottleneck,
the main conv. of regular bottleneck is replaced with two
asymmetric convolution operators. Herein, we set a 33
conv. as an example, which can be decomposed of a
sequence of 3x 1 and 1 X3 conv. operators.

3 Batch norm. !
PReLU i
Mo unpoo.

PReLU

PReLU
Spatial dropout

PReLU h 4

+
PReLU

Fig. 8 Bottleneck module

It is shown that our proposed network mainly per-
forms in two stages: first the encoder is only trained to
categorize down-sampled regions of the input images,
and then we append the decoder and train the network to
perform up-sampling and pixel-wise classification. Simi-
lar to SegNet [33], the semantic segmentation of input
image completes the down-sampling by saving indices of
elements chosen in Max pool. layers and using them to
produce sparse up-sampled maps in the decoder. Many
input samples are fed to the network for training, which is
regarded as an iterative process that progresses neurons
during the forward pass, and updates the network parame-
ters during the backward pass until the calculated loss is
minimized. Then the trained network with optimized
parameters (e.g., the conv. layers’ weights) is employed
to classify the meteorology targets, meanwhile the classi-
fied ground clutters would be suppressed.

3.2.2 Forward pass feature extraction

In the forward pass progress, the features are extracted in
each network layer, followed with convolutions. The
conv. layer convolves feature maps with a set of learn-
able filters, which can transform the previous input fea-
ture space into appropriate codes of representation. These
filters are randomly initialized with Gaussian noise. After
the convolution processing, the output feature map can be
depicted as

j=1

where B refers to the jth feature map of the gth layer,
x;f’_') is the Ath input feature map of the (g—1)th layer, m,
is the number of fed feature maps, w’j’.h and b represent
the filters and biases to be trained in the gth layer, respec-
tively. o(-) is the nonlinear activation function.
x denotes the convolution operation. For the goal of
learning the negative slope of non-linearity, the PReLU
[35] is employed to replace the traditional ReLLU as the
activation function, and is given by

me e

(g-1) q q (g=1) q q
E x, Wl + b7, E x, Wy +b7>0
Jj=1 j=1

- m,
(g-1) q q
k(Zx,, *wjh+bj], else
J=l

where 0<k<1 is an additional parameter. Especially,
when k=0, PReLU is transformed to ReLU.

The Max pool. layer is designed to down-sample the
feature maps and also keep the feature shifting, rotational
and scaling invariance. The Max pool. operator com-
putes the maximum response of the previous feature map
in a window, which can be formulated as

Bip.q) = Bi(p+u,g+v) 6)

B 4)

max

O<u<w;,0<v<w,

where w; and w, are the pool. window sizes. That is the
maximum neuron value in the pooling window is selected
and others are disregarded. Meanwhile, overlapping and
non-overlapping are two pool. tricks. In this work, we
adopt the overlapping pool. operator.

In the FC layer, the previous generated features are
embedded into a feature space for better separation of dif-
ferent classes. Let the input of FC layer be a vector x“",
whose dimension is m;, then the output is expressed as

mg
B=c (Z X+ wi + b‘j] (6)
j=1
where g7 is the jth output unit of the gth FC layer, x Y

is the ith element of x“", w% and b? constitute the
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trainable parameters. A spatial dropout method is used to
sparse the neurons and avoid over-fitting [36].

3.2.3 Backward pass network optimization

To obtain the excepted convergence effects of the trained
network, Softmax function is used to calculate the error
between the predicted results and the actual input labels.
The error can be employed to update the network parame-
ters during the backward pass. Then the weights w', and
biases b can be optimized quickly. In this work, the
binary cross entropy (BCE) loss function is used as the
loss function. To simplify the parameter notation, let @
denote the parameter combination of the whole network,
including the weights and biases. Fy is represented as the
nonlinear transformation with @. Then the BCE loss
function is given by

N

E(FelS,Y)= —Nl Z(yflns,.+(1 —y)n(-s)) (7

ey

where S =[s,5,,--,8y] is the input training samples,
Y =[y,y2 - ,¥n] 1s the corresponding label vector.
Adaptive moment estimation (Adam) algorithm with mini-
batch [18] is adopted to optimize the BCE loss function
and learn the network parameters @ in Fg. Suppose that
the parameter vector of the th iteration is @,, then the
parameter vector of the (#+1)th iteration is updated as

0E(FglS,Y
6111 =0, e ®)

dE (FolS,Y)

00
change rate of network parameter vector.

where y is the learning rate, represents the

4. Experiments and analysis

In this section, the proposed method is evaluated quanti-
tatively and qualitatively on actually measured meteoro-
logy echo of airborne weather radar. We first introduce
experimental data and training strategy in Subsection 4.1.
Then, evaluation factors are depicted in Subsection 4.2.
The effectiveness of the proposed network is demon-
strated by comparisons with another two methods in Sub-
section 4.3. The counterparts include the traditional FCN
[18] and SegNet [27]. In Subsection 4.4, we also evalu-
ate the effects of parameter setting on network perfor-
mances.

4.1 Experimental data and training strategy

Followed with cropping processing, the input image size
(as shown in Fig. 5) is 480x360. For the sake of concise
exhibition, the normalized reflectance of meteorological
targets can be divided into four classes, according to three
thresholds given by 1 =0.14, 1, =0.5, and # =0.7.
When the transmitted ground is a mountain with larger

height in DEM images, the calculated RF would be larger
with red. A total of 12740 cropped images are obtained,
which are divided into two datasets in a ratio of 8:2 for
training and testing, respectively.

As depicted in Table 1, to train the network effectively,
an adaptive moment estimation optimizer is used with the
initial learning rate w=0.0005, which declines 90%
every 100 epochs. A total of 300 epochs are imple-
mented with batch size equalling to 10. Empirically, the
parameter k of PReLU is set to 0.25 and the optimizer
parameters (8,,5,) are 0.9 and 0.999. The total parameter
number and the flops of our proposed network are 360 K
and 3.5 G, respectively.

Table 1 Parameter configuration of our training network

Parameter Value
Learning rate u 0.0005
Decline factor of learning rate 0.1
Epoch 300
k of PReLU in (4) 0.25
Batch size 10
Optimizer parameter (81, B2) (0.9, 0.999)

4.2 Evaluation factors

The confusion matrix is employed to statistically analyse
the performances of the trained CNN model. Pixels in
label images and predict results are divided into fore-
ground and background by a threshold equalling to 0.14.
The foreground contains the actual meteorology targets
and is considered positive, while the background is con-
sidered negative. Thus the correctly classified pixels are
categorized in true positive (TP) and true negative (TN),
and the misclassified test images are denoted in false po-
sitive (FP) and false negative (FN). The classified perfor-
mances are evaluated by the precision, probability of
detection (POD), false alarm ratio (FAR) and critical suc-
cess index (CSI), which are calculated as

TP

Precision =
recision TP+TP’ 9

P
POD = ————— =recall, (10)

TP+FN
FP ..
FAR = TPrFP - 1 — precision, (11)
TP
= ——«——. 12

s TP +FP+FN (12)

In addition, let the expected output image and the
actual output image be denoted as I and I?, and the cor-
responding pixels at position (7, j) are written as pixel, ;
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and pixelfj. Then, the intersection of union (IOU) and
image correlation are also adopted as evaluation indica-
tors:

10U = % (13)
Z (pixelf - pixel, j)
Corr = il , (14)
\/ Z (pixelf j)z . Z (pixeli. /.)2
ij ij

where N and U represent the intersection and union ope-
rators, respectively. It is illustrated that if the evaluation
only considers POD, the trained model may over-predict
the meteorological targets. If the evaluation consider only
FAR, the model may under-predict the ground clutter.
Especially, the perfect model would have POD=I,
FRA=0, CSI=1, Corr=1, and IOU=1 based on the label

measurcs.
4.3 Results and comparisons

Table 2 and Table 3 show the evaluation results of coun-
terparts in the training and testing stages. It is shown that
the evaluation indicators of the proposed network are the
best among the candidate networks. Herein, we set the
testing results as an example. The precision achieves 0.88
and the CSI is 0.81. There are separately more than 0.2
improvements in comparison to those of SegNet [33].
FCN [22] achieves a high FAR (0.31), a low POD (0.56)
and a low CSI (0.45), because more TP and TN are mis-
classified than other approaches. It is observed that the
Corr (0.90) and IOU (0.41) indicators of the proposed
network are the highest, which means that our network
output images are closer to the final meteorology detec-
tion images (labels) after ground clutter suppression,
comparing with other networks.

Table 2 Evaluation result comparisons in the training

Network Precision POD FAR CSI Corr 10U
FCN [18] 0.73 0.59 027 048 0.66 0.30
SegNet [27] 0.84 0.80 0.16 0.69 0.82 0.30

Our proposed network 0.89 096 0.11 086 0.93 043

Table 3 Evaluation result comparisons in the testing

Network Precision POD FAR CSI Corr 10U
FCN [18] 0.69 0.56 031 045 062 0.29
SegNet [27] 0.80 0.72 020 0.61 0.76 0.30

Our proposed network 0.88 091 0.12 0.81 0.90 041

In comparison to the architectures of FCN and SegNet,
it is obvious that other different types of bottlenecks,

Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

except for the regular bottleneck, are designed to extract
the image features in different stages of the proposed
DCNN, such as the dilated bottleneck and asymmetric
bottleneck. Benefiting from the unique bottleneck mo-
dules, our proposed DCNN has a better ability to capture
the feature differences between the actual meteorology
targets and clutters from the DEM images and weather
radar images.

With the above cropped criterion and sub-image index,
the output cropped images can be spliced together. Fig. 9
is the meteorology detection result of the proposed net-
work, where the input is Fig. 2 and Fig. 4, and the corre-
sponding label is Fig. 5. Fig. 10 is another typical net-
work-based meteorology detection result. As shown in
Fig. 5, Fig. 11, and Fig. 12, the high intensity areas in
yellow and red are well preserved in terms of their size
and texture details by using the proposed approach.

Fig. 9 DCNN-based meteorology detection result, in comparison
to the label in Fig. 5

(a) Final meteorology detection
result of airborne weather radar
(i.e., the label)

Fig. 10 Another typical meteorology detection comparison

(b) The proposed network’s
output
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Fig. 11 Runtime comparisons of different counterparts
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——:PReLU; ——: ReLU; ——: Tanh; ——: Sigmoid.

Fig. 12 Network loss and Corr factor comparisons with different
activation functions

All the experiments are implemented in the python
environment on a Dell T7910 workstation with TITAN
RTX GPU and 128 GB memory. Fig. 11 shows the train-
ing and testing runtime of different counterparts on the
same datasets. Due to more network layers and fine fea-
ture extraction processing, our proposed network con-
sumes more runtime. However, there are more obvious
advantages on the evaluators as shown in Table 2 and
Table 3.

4.4 Analysis of network parameter setting

To validate the feasibility and effectiveness, we also carry
out two different comparison experiments. The proposed
network with different activation functions and lapping
function are further evaluated, respectively.

4.4.1 Evaluation of activation function

In this subsection, the performances of our trained net-
work with different activation functions are evaluated and
compared. PReLU, ReLU, sigmoid, and tanh activation
functions are adopted in (3), respectively. The loss and
Corr factor comparisons are shown in Fig. 12. It can be

observed that models trained with PReLU and ReLU per-
form better than others. The trained network loss with
PReLU is the smallest and the Corr factor is the largest.
Especially, when the epoch number is more than 150, the
loss is about 0.03 and the Corr factor is about 0.9.

4.4.2 Evaluation of overlapping and non-overlapping
pooling

We also compare the performances of the trained net-
work with overlapping and non-overlapping pooling,
where PReLU is employed. The results are shown in
Fig. 13 and we can find that the use of the overlapping
pooling operation results in better performances. The
trick of overlapping pooling is adopted in the proposed
network.

0.08

0.07

0 50 100 150 200 250 300
Epoch

(a) Network loss

0 50 100 150 200 250 300
Epoch
(b) Corr factor
——: Training with overlapping pooling;
——: Training with non-overlapping pooling.

Fig. 13 Network loss and Corr factor comparisons with overlap-
ping and non-overlapping operation

5. Conclusions

In this work, a DCNN for meteorology target detection in
airborne weather radar images is designed and evaluated.
For each weather radar image, the corresponding DEM
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image with the same spatial domain is obtained and also
employed to train the DCNN together for the meteoro-
logy target detection and ground clutter suppression. In
each bottleneck module of DCNN, the features of air-
borne radar images and DEM images are learned based
on conv., norm., pool./unpool. and dropout processing.
Comprehensive evaluations of our proposed network are
provided based on actually measured airborne weather
radar images and DEM images. The experimental results
show that our proposed DCNN outperform the conven-
tional FCN and SegNet methods in terms of six evalua-
tion factors. It demonstrates the feasibility and effective-
ness of DL in the meteorology detection application of
weather radar. The proposed DCNN can also be
employed to detect other types of meteorology without
minimal efforts on network variables or parameter
changes.

Future research may be directed in two directions. The
optimization and acceleration algorithm of the proposed
model is first planned to develop. Meanwhile, the explo-
ration of additional meteorological elements is consi-
dered further to make the prediction model more accu-
rate.
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