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Abstract: For the underwater long baseline (LBL) positioning
systems, the traditional distance intersection algorithm simpli-
fies the sound speed to a constant, and calculates the underwa-
ter target position parameters with a nonlinear iteration. How-
ever, due to the complex underwater environment, the sound
speed changes with time and space, and then the acoustic
propagation path is actually a curve, which inevitably causes
some errors to the traditional distance intersection positioning
algorithm. To reduce the position error caused by the uncertain
underwater sound speed, a new time of arrival (TOA) intersec-
tion underwater positioning algorithm of LBL system is pro-
posed. Firstly, combined with the vertical layered model of the
underwater sound speed, an implicit positioning model of TOA
intersection is constructed through the constant gradient acous-
tic ray tracing. And then an optimization function based on the
overall TOA residual square sum is advanced to solve the posi-
tion parameters for the underwater target. Moreover, the parti-
cle swarm optimization (PSO) algorithm is replaced with the tra-
ditional nonlinear least square method to optimize the implicit
positioning model of TOA intersection. Compared with the tradi-
tional distance intersection positioning model, the TOA intersec-
tion positioning model is more suitable for the engineering prac-
tice and the optimization algorithm is more effective. Simulation
results show that the proposed methods in this paper can effec-
tively improve the positioning accuracy for the underwater target.
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speed profile, constant gradient acoustic ray tracing, time of arrival
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1. Introduction

With the requirement of underwater vehicle navigation,
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ocean exploration, ocean engineering, etc., it is necessary
to locate the underwater target accurately [1-3]. The
global navigation satellite system (GNSS) is the position-
ing system mainly based on the electromagnetic waves
propagation. However, the electromagnetic waves attenu-
ate quickly in the underwater environment, which cannot
satisfy the requirement for the underwater positioning.
Acoustic wave is the main form to be capable of long-dis-
tance underwater propagation, and the underwater propa-
gation attenuation is much smaller than that of electro-
magnetic waves. Therefore, at present, the underwater
acoustic positioning is the most widely used for the
underwater target positioning [4].

According to the baseline length, underwater acoustic
positioning systems mainly include the long baseline
(LBL) positioning system, the short baseline (SBL) posi-
tioning system and the ultra-SBL (USBL) positioning
system [5]. Due to the advantage of the long baseline, the
higher positioning accuracy with the LBL system can be
obtained for a relatively wide range [6]. Therefore, the
LBL system is often used for higher-accuracy position-
ing for the underwater target. The time of arrival (TOA)
of the acoustic signal propagation between the underwa-
ter target and the LBL system can be measured. The tra-
ditional positioning algorithm takes the underwater sound
speed as a constant and multiplies the TOA and the sound
speed to calculate the straight distance between the buoy
and the underwater target [7—9], and then the underwater
target position parameters can be calculated by using the
optimal estimation methods [10—12].

Obviously, the main factors affecting the positioning
accuracy of the LBL system include the buoy position
error, the TOA measurement error and the sound speed
error. The buoy position error and the TOA measurement
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error can be compensated and corrected by means of the
pre-calibration [13]. Due to the complex underwater envi-
ronment such as seawater temperature, static pressure and
seawater salinity, the underwater acoustic speed changes
with time and space. Therefore, the sound speed error is
the key factor to affect the positioning accuracy of the
LBL system for the underwater target [14,15].

For the certain time, the sound speed mainly changes
with water depth. The sound speed at different water
depths can be measured directly by the sound velocity
profiler (SVP) or calculated by the empirical formula
with conductivity, temperature and density, etc. [16]. The
change of underwater sound speed causes the actual propa-
gation path of the underwater acoustic wave to be a
curve. If the sound speed is simplified to a constant and
the acoustic propagation path is simplified to a straight
line, the sound speed error will directly affect the under-
water target positioning accuracy of the LBL system.

Therefore, the sound speed correction is an effective
means to improve the underwater positioning accuracy.
At present, the researches on the sound speed correction
mainly includes the following methods: weighted sound
speed method, effective sound velocity table (ESVT)
method [17], equivalent sound speed profile (ESSP)
method [18,19], and ray tracing method [20,21], etc.

The weighted sound speed method calculates the sound
speed by weighting the sound speed at different water
depths according to the sound speed profile (SSP), and
then obtains the straight distance according to the TOA,
and finally solves the underwater target position parame-
ters. This method is simple and also make the acoustic
propagation path into a straight line. In addition, refe-
rence [22] assumed that the underwater sound speed is an
unknown constant and uses unscented Kalman filter
(UKF) algorithm to both estimate the underwater target
position and the sound speed. However, this method is
still based on the constant sound speed and the improve-
ment for the positioning accuracy is limited.

The effective sound velocity (ESV) is the ratio of the
straight distance between the two underwater points to
the TOA. With the introduction of ESV, the curved propa-
gation path is also equivalent to a straight line. The ESVT
method is to establish the ESV as an ESVT related to the
water depth distance and the horizontal distance between
two underwater points according to the SSP. By measur-
ing the depth and the TOA between the underwater tar-
get and the buoy, the underwater target position can be
obtained by the interpolation and iteration algorithm. This
method needs to build an ESVT in advance, and the

underwater target depth also needs to be known. In addi-
tion, reference [23] presented a method for fitting the
ESV without the SSP. This paper also assumed that the
buoys are in the same horizontal plane and the underwa-
ter target depth is also known and then the ESV is fitted
to a cubic polynomial related to the horizontal distance
between the underwater target and the buoy. This method
also required the underwater target depth to be known.

The ESSP method replaces the complex measured SSP
with a simplified SSP. This method simplifies the mea-
sured SSP into an equivalent SSP with a constant gradi-
ent. In this way, the acoustic propagation path is simpli-
fied as an arc. The ESSP method is essentially an approxi-
mate model to the underwater sound speed. This model is
simple and the applicability is poor when the incident
angle of acoustic line is much larger.

The ray tracing method uses the SSP to track the
acoustic signal propagation. The interval between two
measured depths is called the layer. According to the dif-
ferent processing methods of the intra-layer sound speed,
the acoustic ray tracing includes the constant speed
acoustic ray tracing and the constant gradient acoustic ray
tracing. The constant speed acoustic ray tracing assumes
that the sound speed in each layer is constant, and the
constant gradient acoustic ray tracing assumes that the
sound speed in the layer varies linearly with the water
depth. The acoustic ray tracing method can be used to
achieve higher-accuracy underwater positioning. How-
ever, the ray tracing method requires the incident angle of
acoustic line to be known, so it cannot be directly applied
to the underwater positioning.

The traditional distance intersection positioning model
regards the underwater sound speed as a constant, and
there is an inevitable sound speed error to calculate the
straight distance, which directly affect the positioning
accuracy for the underwater target. In addition, the acous-
tic ray tracing method requires a known incident angle,
which cannot be directly applied to the underwater posi-
tioning. Aiming at the above problems, with the SSP in
the test area and the constant gradient acoustic ray trac-
ing, this paper proposes a new TOA intersection position-
ing algorithm of underwater LBL system based on parti-
cle swarm optimization (PSO).

The main contributions of this paper are as follows:

(1) The TOA measured by the LBL system is estab-
lished as an implicit function related to the two underwa-
ter points (the underwater target and the buoy) and the
SSP with the constant gradient acoustic ray tracing.
Therefore, the traditional distance intersection position-
ing model is converted to a TOA intersection positioning
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model. Different from the traditional distance intersec-
tion positioning model, this model directly uses the TOA
to solve the position parameter for the underwater target
without the straight distance, which avoids the sound
speed error, thereby improving the positioning accuracy.
In addition, the proposed TOA intersection positioning
model can locate the underwater target without the
known incident angle of acoustic ray.

(i1) An optimization function of the implicit position-
ing model is constructed based on the TOA residuals
square sum to calculate the optimal estimation for the
underwater target position parameters. According to the
implicit function of TOA positioning intersection model,
the TOA calculation data between the buoy and the
underwater target at each moment is obtained. The TOA
residuals square sum is calculated by making the diffe-
rence between the TOA calculation data and the TOA
measurement data.

(iii) Due to the optimization function is an implicit
expression, the traditional least square method is not suit-
able. Therefore, an intelligent optimization algorithm is
adopted to solve the implicit function. The decreasing
inertia weight based on Gaussian function is adopted to
avoid the PSO algorithm falling into the local optimal
solution. The function can be minimized to obtain the
optimal position estimation for the underwater target.

The rest structure of this paper is as follows: Section 2
introduces the principle of LBL positioning system, and
presents two traditional distance intersection positioning
algorithms. Section 3 presents the TOA intersection posi-
tioning model based on constant gradient acoustic ray
tracing, and theoretically analyzes the feasibility of the
implicit positioning model. Section 4 constructs an opti-
mization function based on the overall TOA residuals
square sum, and get the optimal position estimate for the
underwater target through the PSO algorithm. The simu-
lation is conducted in Section 5. Finally, the conclusions
are drawn in Section 6.

2. LBL positioning system based on distance
intersection

2.1 LBL system measurement principle

The coordinate system is established, as shown in Fig. 1.
A point within the detection range of the LBL system is
set as the origin O =[0,0,0]" with the ox axis towards
east and the oy axis towards north, the oz axis completes
the triad. Assume that there are n (n>3) buoys arranged
on the sea surface. Suppose X; = [xi,yi,zi]T(i =1,2,---,n)
are the corresponding positions in this coordinate system,
and X = [x,y,z]" is the position of the underwater target.
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Fig. 1 LBL system

Each buoy is equipped with an acoustic receiver to
obtain the acoustic signal, and the underwater target is
equipped with an acoustic emitter. Assume that the
receiver and the emitter are time-synchronized, and the
time of the acoustic signal emitted by the underwater tar-
get is known. According to the time that the buoy
receives the acoustic signal, the TOA 1 of the acoustic
signal propagating from the underwater target X to the ith
buoy X; can be measured.

2.2 Positioning model based on weighted
sound speed

According to the TOA ¢; of the LBL system, the straight
distance R; from the underwater target X to the buoy X;
can be written as

R,‘ :Cti (1)

where c is the underwater sound speed.

According to the SSP, the sound speed ¢ in (1) can be
calculated by the weighted sound speed method, and (2)
is the expression of the weighted sound speed.

1 = (Cf+Cf+])(hj+] —hj)
= ) ) 2
¢ HZ > @)

where H is the sea depth as shown in Fig. 2, and ¢; is the
sound speed at the water depth £;.
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Fig. 2 Diagram of SSP
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Combined with (1) and (2), the straight distance R;
between the underwater target and the ith buoy can be
calculated through the geometric relationship between the
underwater target X and the buoy X;, which is expressed
as

R = \/(x—xf)2+(y—y;)2+(z—zi)2- 3)

According to (1) and (3), the positioning model based
on the weighted sound speed can be written as

ch = \/(x—x1)2+(y—y1)2+(z—zl)2
cth = \/(x_x2)2+(y—Y2)2+(Z—Zz)2

4)

Cly = \/(x —x)’ + (=)’ + (@ -z

The geometry relationship consisting of the points that
the distance to the buoy X; is R;, which is a sphere whose
center is X; and the radius is R;. When the number of
buoys is more than three, the unique underwater target
position can be calculated as shown in Fig. 3.
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Fig.3 Distance intersection model

The sound speed is considered as a constant sound
speed in the weighted sound speed method. However, due
to the complex environment under the sea, the underwa-
ter sound speed changes with time and space. Although
this method uses the SSP, the weighted sound speed is
still an approximation of the underwater sound speed,
which inevitably contains the sound speed error.

Therefore, the positioning model based on the identifi-

cation of the sound speed error needs to be constructed.
The positioning accuracy of the distance intersection
model can be improved through identifying the sound
speed error contained in (4).

2.3 Positioning model based on sound speed error
identification

Due to the variety of the underwater sound speed, the
sound speed error is inevitable in the positioning model
when the weighted sound speed is taken as the underwa-
ter sound speed. Assume that the sound speed error in the
positioning model (4) is Ac and the corresponding dis-
tance error is AR;(i =1,2,---,n). Note that the number of
buoys in this model should be more than four to ensure
that the model can be solved. According to (1), the dis-
tance error can be obtained.

AR,’ = AC[,' (5)
where ¢; is the TOA measurement data related to the buoy
Xl .

Assume that the distance measurement data is R, and
the real distance is R;, the geometric relationship between

the underwater target X and the buoy X, can be
expressed as

R, =R, +AR,. (6)

According to (1) and (6), the positioning model with
the sound speed error identification is as follows:

ch = \/(x—xl)2+(y—y1)2 +(z—21)* + Acty
¢t = \/ (x=20)" +(=32)" + (2= 2)" +Act,

(7

Etn = \/(x_ -xn)z + (}’ _yn)z + (Z _Zn)z + ACtn

The identification error is added in this model, which
can improve the positioning accuracy. Besides, the com-
putational complexity is basically the same compared
with the weighted sound speed method. However, the
positioning model based on the identification of the
sound speed error still essentially assumes the sound
speed to be a constant. Therefore, the improvement of the
positioning accuracy in this distance intersection model is
also limited.

2.4 Solution by Gauss-Newton method

It is evident that the model (7) is nonlinear and the under-
water target position parameters can be solved through
the Gauss-Newton method.

Let that

R = [RlsRZ" o 9Rn]T9 (8)
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f: [El +AR1’§2+AR2"“ ’En +ARn]T’ (9)

e=R-f. (10)

Then the Jacobian matrix of f can be denoted as J,
which is written as follows:

((x—x) OG-y) (@—z1)
R, R, R
(x—-x) G-y @-2) .
J=| R R, R, ’ (11)
(x=x) O-y) (@—z)
R, R, R, "]

where R; denotes the straight distance between the buoy
X; and the underwater target X.

Assume that 8= [x,y,z,Ac]", and the expression of the
function F is as follows:

F(ﬂ+Aﬂ)=%eT(ﬂ+Aﬂ)e(ﬂ+Aﬁ). (12)

In order to obtain the gradient vector AB to make
F(B+AB) descent faster, the partial derivative of
F (B + AB) with respect to AB is calculated through

0
WF(B+A,B):—JTe+JTJA,B. (13)
And then the gradient descent direction AS can be
obtained:

AB=A(J"J) JTe, a>0. (14)

The accuracy &, and the maximum iteration number
knax can be set in advance. By substituting the approxi-
mate initial value (x,yo,z0,Acy) into (14), the optimal
estimation for B8 can be obtained.

If the initial value is inappropriate, the iteration will
not converge or converge to the wrong solution. There-
fore, selecting an appropriate initial value is the premise
to ensure the iteration converge to the correct solution.
The least square method is relatively simple and has low
computational complexity whose accuracy is sufficient
for solving the initial value. Therefore, the least square
method is adopted to obtain the initial value.

The initial value (x,,y0,z0) of the underwater target
position parameters can be calculated through the least
square method.

Equation (3) can be transformed as

R=x—-x)+G-y)+E-z), (15)
R =(x—x)+0-n)+z-2)

: (16)
erl = (x_xn)Z + (y_yn)2 +(Z_Zn)2

1323

If the buoys are not on the same horizontal plane, the
quadratic term of the unknown parameter can be elimi-
nated by making the difference between (15) and (16).
Thus, the following simplified equation can be obtained:

T

X —X; X 1
yi=ve ||y | =5 (R -R+IXIF-IXIF).  (17)
31— % Z
Denote that
Xi—=X2 Yi—=Y: Zi—2
X1—=X3 YVi1—Ys 21—
A=| | : P (18)
LX1 — X, }’1—)’;1 21— Zn
[ R — R} +1X, 1P — 1X |
1| B-R+IXP - 11X]°
Y= ) (19)
2 :
| R} — R} +I1X, 1P - 11X,
And then (17) can be rewritten as
AX =Y. (20)
Then the least square estimation for (20) is
X=(A"A) A"Y. 1)

Note that if the detection range of the LBL system is
small, the curvature of the sea surface can be ignored.
Under this condition, all the buoys are on the sea surface,
that is, z; = z;(i # j), and then the coefficient matrix A is
rank-deficient. In this case, (17) is shown as

X1—=X2 Y1—=)2
Xp=X3 Yi=Y3 [ X }

: v
X1 —=Xp V1= Wn

2 P2, 2.2 2.2
R5—Ri+x{+y;—x5-Y;
2 P2y 24222

1| B3—Ri+xi+yi—x5-Y;

3 : . (22)

2 2 2 2 2 2
Rn_R1+xl+y1_'xn_yn

Similarly, the least square estimation (x,,y,) for (22)
can be obtained. Further, the water depth z, of the under-
water target can be calculated by substituting (x,,y,) into
(3), and the initial value (x,,yy,zo) can also be obtained.

Remark 1 The premise of the distance intersection
positioning algorithm of the underwater LBL system is to
assume that the underwater sound speed is a constant and
the acoustic propagation path is a straight line. However,
due to the variety of sound speed caused by the complex
underwater environment, the acoustic propagation path
from the underwater target X to the buoy X, is a curve as
Fig. 4.
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If the sound speed is regarded as a constant, the sound
speed error will be inevitable in the positioning model
based on the distance intersection. Therefore, in this
paper, an implicit TOA intersection underwater position-
ing model is constructed based on the SSP and the con-
stant gradient acoustic ray tracing. Different from the dis-
tance intersection positioning model, this positioning
model directly uses the SSP and the TOA to calculate the
underwater target position without calculating the straight
distance from the underwater target X to the buoy X;,
thereby avoiding the position error caused by the sound
speed error.

3. TOA intersection positioning model of
LBL system

3.1 Acoustic ray tracing

The sound speed underwater has two characteristics: the
vertical distribution and the horizontal distribution. In
open water, the change of the sound speed in the vertical
direction is 2—3 orders of the magnitude faster than that
in the horizontal direction. In the small test area, the
change of the sound speed in the horizontal direction
usually is small. Therefore, it can be assumed that the
sound speed remains constant at the same water depth.
For the certain time, assume that the sound speed only
changes with the water depth, and the sound speed
remains constant at the same water depth. In other words,
the sound speed is a function of the water depth, and it is
called the vertical layered model. The vertical layered
model is an approximation to the change of the sound
speed in the sea and it is the basic assumption to solve the
problem of the long-range acoustic propagation. In the
vertical layered model, the variety of the sound speed
along the vertical depth is the SSP. The SSP is generally
complex and changes with the underwater environment.
The sound speed change causes the refraction of the
acoustic ray, so that the actual acoustic propagation path

Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

is a continuously changing curve. Effectively eliminating
the influence of the acoustic ray refraction can improve
the underwater positioning accuracy. When the SSP is
known, the acoustic ray tracing is an effective way to
eliminate the acoustic ray refraction.

At present, there are two methods of the acoustic ray
tracing, namely, the constant speed acoustic ray tracing
and the constant gradient acoustic ray tracing. The first
method assumes that the sound speed in the layer remains
unchanged, and the second method assumes that the
sound speed in the layer changes linearly with the water
depth. Although both of the above ray tracing methods
are the approximations of the SSP, the constant gradient
acoustic ray tracing is more in line with the change of the
sound speed, whose accuracy is also higher. However, the
incident angle of the acoustic ray is usually unknown in
the underwater positioning test, so the ray tracing meth-
ods cannot be directly applied to the underwater position-
ing. Therefore, with the SSP and the constant gradient
acoustic ray tracing, an implicit TOA intersection under-
water positioning model is constructed to obtain the
underwater target position.

3.2 Implicit TOA intersection positioning model

Assume that the sound speed in the sea satisfies the verti-
cal layered model. Suppose [/;,h;,,] is the interval of the
water depth in the jth layer, and [c;,c;,,] is the interval of
the sound speed in [A;,h;,,]. The acoustic ray incident
angle is assumed as 0,(j = 1,2,---,m), as shown in Fig. 5.

T
Gl N

. <c
C<Cj.

Fig.5 Refraction of the acoustic ray

According to Snell’s Law of the ray acoustics [4], the
sound speed and the incidence angle satisfy:

sinf, sin6, sin 6,

0 e T P ®
where p is an unknown constant, and the incident angle
0; is the angle between the vertical direction and the
propagation direction of the acoustic ray at the water
depth #;.

According to Snell’s Law, (23) can be deduced as fol-
lows:
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in 6
&Zp:;,dsing:p.dczcose.dezp.dc=>
C
dh do dc
ds PrEC= 45 = Pan 29

where s is the length of the acoustic propagation path,
and £ is the water depth.

Thus, the curvature of the acoustic propagation path in
the jth layer is as follows:

de dc
— =p—. 25
ds dh (25)

Assume that the sound speed in the layer changes with

a constant gradient, and dc/dh = (cj.1 —c¢;) /r(hj —h)) =

g; is a constant in the jth layer. The radius r; of the path
is shown as

_ds 1

=== 26
r/ de pgl ( )

That is, the curvature of the acoustic propagation path
is a constant and the acoustic propagation path is an arc in
the jth layer.

As shown in Fig. 6, the horizontal distance /; and the
vertical distance h; of the acoustic propagation path in
the jth layer are (27) and (28), respectively.

Fig. 6 Constant gradient acoustic ray tracing

1
n;j=—1(cos6;—cos 6,,,), (27)

J

1
{;=—{(sin6;,, —sin6;). (28)
129]

According to the geometric relationship between the
ith buoy X, =[x;y:,z]" and the underwater target X =
[x,.z]", we can obtain the following equations:

V=5 + G-y = Y 0, (29)
Ve-2=)"¢; (30)

The propagation time of the acoustic signal in the jth
layer can be written as

ds

Due to the propagation path of the acoustic ray in the

jth layer is an arc, the length of the acoustic propagation

path in the layer can be expressed as (32) by using (23)
and (26).
s;=r;(0;:1 —0;) = r;[arcsin(pc) — 6;] (32)
In the jth layer, the interval of the sound speed c is
[(sin 6,)/p,(sin 6;,1)/p], and (31) can be written as
‘= I(Siﬂ0,+1)/p Rp
I (sin6;)/p c [1 _pZCZ

Further, let &=pc, then the interval of ¢ is
[sin 6;,sin 6;,,]. Equation (33) can be rewritten as

de. (33)

sin 6 Rp
tj_LinQ, § [l_é‘:Zdé:_
1+ /1 —sin’6

Do (tan 2 ) - 1n f1an 2 34
éTj[n(tanT)— n(tani)]. (34)

If the SSP and the positions of two underwater points
(the buoy X; and the underwater target X) are known, the
incident angle of the acoustic ray can be calculated
according to (29) and (30), and moreover, the TOA of the
acoustic propagation can be calculated according to (34).
Thus, the TOA is an implicit function related to the SSP
and the positions of two underwater points (the buoy X;
and the underwater target X), which is expressed as fol-
lows:

Ti:f(c(hl’hb'“’hm)’X’Xi) (35)

where c(hy,h,, - ,h,) is the SSP in the test area, and f
is the implicit function.

According to (35), combined with the measurement
data of the LBL system, the implicit TOA intersection
positioning model of the LBL system for the underwater
target is constructed as follows:

T, = f(c(hi,hy,--- 1), X, X))

T2 = f(C(hl,hz,“‘ ’hm)’X’XZ)
: (36)

Tn =f(C(h1,h2,“‘ ahm)’van)

where T; is the TOA measured by the ith buoy
X;(i=1,2,---,n), and n is the number of buoys in the
LBL system.

When the number of buoys is more than three, the
unique underwater target position can be determined, as
shown in Fig. 7. Unlike the distance intersection model,
the geometry in the TOA intersection model is not spheri-
cal and the expression is implicit.
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Fig. 7 TOA intersection model

Remark 2 Due to the complex underwater environ-
ment, the underwater sound speed changes with time and
space, and the acoustic propagation path is a curve. The
distance intersection model regards the underwater sound
speed as a constant, and assumes the acoustic propaga-
tion path to be a straight line, resulting in poorer position-
ing accuracy. The TOA intersection positioning model
proposed uses the vertical layered property of the sound
speed in the sea, and calculates the TOA of the acoustic
propagation between two underwater points with the SSP.
Compared with the traditional distance intersection posi-
tioning model, the TOA intersection positioning model is
more suitable for the engineering practice.

4. Position parameters solution with PSO
4.1 Optimization criteria construction

In Section 3, we construct a TOA intersection position-
ing model based on the constant gradient acoustic ray
tracing. Different from the traditional distance intersec-
tion positioning model, the time parameter in the TOA
intersection positioning model is an implicit function
related to the SSP, the underwater target position and the
buoy position. Thus, the underwater target position can-
not be solved by the traditional least square method, but it
can be solved by the intelligent optimization algorithms
that not rely on an explicit function.

Similar to the traditional distance intersection position-
ing model, when the number of buoys in the TOA inter-
section positioning model is more than three, the unique
underwater target position can be obtained. Therefore, the
overall TOA residual square sum is constructed as the
optimization index and the underwater target position
parameters are the corresponding variables to be opti-
mized. The optimization algorithm is used to iterate con-
tinuously to reduce the overall TOA residual square sum.
When the overall TOA residual square sum is the small-

est, the solution is the optimal estimation for the under-
water target position parameters.

The TOA measurement data between the underwater
target and the buoy X; at the gth moment is denoted as
Ty, and the TOA calculation data is denoted as 77 . The
TOA residuals square sum at the gth moment is

RSS, = " |, -T; " (37)
i=1

The TOA residual square sum of N moments is
denoted as a vector RSS.

RSS =[RSS,,RSS,,--- ,RSSy] (3%)

Then the optimization function (the overall TOA resi-
dual square sum) is expressed as

N
g(X) =[IRSS| = | > RSS}. (39)
q

Since T;, in (37) is an implicit function related to the
SSP and the positions of two underwater points, the opti-
mization function cannot be solved by the traditional least
square method. The PSO algorithm is simple to imple-
ment with higher accuracy, which can be used to solve
the position parameters of the underwater target. There-
fore, this paper uses the PSO algorithm to solve the opti-

mization function.
4.2 Principle of PSO

The PSO algorithm is proposed by Eberhart and Kennedy
[24], which originated from the research on the predation
of birds. It uses the information sharing of individuals in
the group to make the particle swarm evolve from disor-
der to order in the search space, so as to obtain the opti-
mal solution to the problem.

The PSO algorithm uses the iterative method to search
for the optimal solution of the particles in the search
space and finds the global optimal solution by iterating
the current optimal value. The PSO algorithm is simple to
implement with high accuracy in a high convergence
speed. In recent years, the PSO algorithm has been
widely studied and developed, and it has shown its supe-
riority in solving different optimization problems [25,26].

The PSO algorithm is based on the iter,,, iterations of
solving a large number N,,, of the random particles in the
search space. Each particle has position ¥, (o=1,
2,--+). Npso and velocity v, and is a candidate solution to
the optimization problem. The overall TOA residuals
square sum is called the fitness value, and all of the parti-
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cles have a fitness value. Denote Pb:j is the particle best
position, which is the best solution of the pth particle has
achieved so far in k iterations. Denote Gb" is the global
best position, which is the best solution obtained by the
whole swarm in k iterations. The particle updates its posi-
tion and velocity by tracking the particle best position and
the global best position in the iteration. The particle ite-
rates in the search area. If the particle position parameter
is outside the search area, the particle position parameter
is replaced by the corresponding boundary value. The
equations of the PSO algorithm in the kth iteration are as
follows:

P p

Vel = wvk 4 e, (PBE = W) + 00, (GDF — PF
{ o s (P e (O -8)
Y’p =Y’p+vp

where w denotes the inertia weight, which reflects the
influence of the velocity of the previous iteration and
weighs the local search and the global search capabilities
of the particle, and y,,u, are the learning factors that are
non-negative constants, and ¢;,¢, are random number that
uniformly distributed within [0, 1].

When using the PSO algorithm to solve the TOA
intersection model, the initial positions of the particle
swarm are randomly selected in the search area. The par-
ticle position in (40) represents the underwater target
position to be iterated in the search area. And the velo-
city is the position iteration step size in the optimization
process.

The inertia weight controls the influence of the histori-
cal velocity on the current velocity. When the inertia
weight obeys the normal distribution, the global search
ability of the algorithm can be improven and the algo-
rithm can be prevented from falling into the local opti-
mal solution. Therefore, the PSO algorithm with decreas-
ing the inertia weight based on Gaussian function is used
to optimize the TOA intersection model [27], and the
expression of the inertia weight in the kth iteration is
shown as

N SR
w (t) = (Wmax - Wmin) € @i + Wiy (4 1)

where ¢ is the expansion constant, which leads to the
change rate of the inertia weight, and wy.,, W, are the
maximum inertia weight and the minimum inertia weight,
respectively.

The flow chart of the TOA positioning algorithm of the
LBL system for the underwater target based on the PSO
algorithm is shown in Fig 8.

N2

Input the SSP, the buoy positions
and the TOA
N
Set the search area based on
distance intersection results
v
Initialize the position and the velocity
of each particle
v
’ Calculate the fitness value of each particle %
v
’ Update the Pb and the Gb ‘
N2
Update the position and the velocity
of each particle

Whether satisfy the criterion? No

J,Yes
Output the optimal estimation for
the target position parameters

End

Fig. 8 Process of the TOA positioning algorithm of LBL system
based on PSO

5. Simulation

In this section, we construct an offshore measurement
scene of the LBL system. The random errors are added to
the TOA and the buoy positions in the scene to imple-
ment two numerical simulations.

The first simulation is to solve the underwater target
trajectory. In order to verify the effectiveness of the algo-
rithm proposed in this paper, the result of TOA position-
ing algorithm (named M3) is compared with that of the
two distance intersection positioning algorithms, i.e., the
distance intersection positioning algorithm based on the
weighted sound speed (named M1), the distance intersec-
tion positioning algorithm based on the identification of
the sound speed error (named M2) in Section 2.

The second simulation is to analyze the positioning
accuracy in the test area. By using the algorithm pro-
posed in this paper, the solution errors calculated by (42)
at different positions can be obtained, and the positioning
accuracy in the test area can be analyzed.

IAXI = G+ G-y +G=2  (42)

where [£,9,2]" is the optimal estimation for the underwa-
ter target position parameters [x,y,z]".

5.1 Numerical simulation 1 (positioning accuracy
comparison)

(1) Set the test scene: eight buoys of LBL system are
arranged on the sea surface, and the positions are shown
in Table 1.
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Table 1 Buoy positions
Buoy x/m y/m z/m
1 100 100 -1
2 100 —-100 -1
3 -100 100 -1
4 —-100 —-100 -1
5 50 0 -1
6 0 50 -1
7 =50 0 -1
8 0 =50 -1

In this simulation, due to the short movement time of
the underwater target, a cubic polynomial can be used to
constrain the underwater target trajectory. The constraint
equation is as follows:

x=a;f +at’ +a,t+a,
y=bs +b,t* +bit+by . (43)
2=+ +oit+c

The spatial relative relationship between the buoys and
the underwater target trajectory is shown in Fig. 9.

z/m

50

100\\—//
0

5, ~100-100 50 0 50 100

x/m
(a) Buoy positions and the target trajectory

720 -

=50
12
10 —
Ly, 8 19 20 21 22
x/m
(b) Target trajectory
+: Buoy positions; ——: Target trajectory.

Fig. 9 LBL system and the target trajectory

Assume that the buoys and the underwater target are
time-synchronized, and the errors caused by time asyn-

chrony can be ignored. The frequency of the acoustic sig-
nal sent by the underwater target is 50 Hz, and the time of
sending the signal is known. The buoy can measure the
TOA of the acoustic signal from the underwater target to
the buoy by receiving the signal.

(i1) Measurement data simulation: the SSP used in the
simulation is shown in Fig. 10, and the TOA of the
acoustic signal from the underwater target to the buoy can
be calculated by (35). Suppose that random errors of the
TOA and the buoy position obey the normal distribution
with zero-mean and the standard deviation is 30 ps and
0.1 m, respectively.

—50 F

—60 - L L L L L L
1440 1450 1460 1470 1480 1490 1500 1510
Sound speed/(m's™")

Fig. 10 Sound speed profile

(iii) The distance intersection positioning algorithm
based on the weighted sound speed: using (2) with the
SSP, we can calculate the weighted sound speed is
1477.7 m/s. According to the TOA measurement data,
the straight distance R; between the underwater target X
and the buoy X; can be calculated by (1). The initial
value of the underwater target position X, can be calcu-
lated according to (21), and the underwater target posi-
tion parameters X, can be obtained by using the Gauss-
Newton method.

(iv) The distance intersection positioning algorithm
based on the identification of the sound speed error: the
weighted sound speed and the TOA measurement data
are used to calculate the straight distance measurement
values R;. The initial value of the underwater target posi-
tion XO can be calculated, and the initial value of the
sound speed error is assumed to be 0. The underwater tar-
get position parameters X, and the sound speed error Ac
can be obtained by using the Gauss-Newton method.

(v) The TOA intersection positioning algorithm: the
underwater target position parameters X, that obtained by
the distance intersection positioning algorithm based on
the identification of the sound speed error are the initial
values, and the search space is selected around the initial
values. 50 initial particles are randomly selected in the
search space. Using the SSP and (35), the fitness value of
each particle can be calculated. Iterate the particle posi-
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tion continuously to find the particle with the minimal of
the overall TOA residuals square sum, that is, the opti-
mal estimation X; for the underwater target position
parameters X.

According to the above simulation process, the trajec-
tories obtained by different positioning algorithms are
shown in Fig. 11.
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—40 b
e
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% 9195 200 205 210 215
X/m
—: Ture trajectory; ‘M1 :M2; : M3.

Fig. 11 Trajectories solved by each algorithm

Let the solution error in the x,y,z direction be
Ax,Ay,Az, respectively and the position error be AX.
Fig. 12 shows the errors for different algorithms.
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Fig. 12 Errors of each algorithm

The statistical error results of each positioning algo-
rithm are presented in Table 2.

Table 2 Statistical error results of each algorithm

Algorithm JAx]/m 1Ay|/m JAz]/m IAX]|/m
M1 0.5778 0.1869 2.6452 2.7210
M2 0.1757 0.0858 1.0234 1.0506
M3 0.0944 0.0211 0.0593 0.1233

Fig. 13 shows the change of the overall TOA residual
square sum in the iteration of the PSO algorithm.

From the simulation results, it can be seen that:

(1) In the presence of the random errors in the TOA and
the buoy positions, M1 has the worst accuracy, and the
average position error is about 2 m. After identifying the
sound speed error, the average position error of M2 is
reduced to about 1 m. M3 proposed in this paper has a
much better performance and the average position error is
about 0.1 m. Compared with M1 and M2, the positioning
accuracy of M3 is greatly improven.

(i1) As shown in Fig. 13, at the beginning of the itera-
tion, the overall TOA residual square sum decreased sig-
nificantly, and after 15 iterations, the overall TOA resi-
dual square sum decreased slowly and tended to be stable.
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Fig. 13 Change of the ||RSS||; in the iteration

5.2 Numerical simulation 2 (accuracy space of the
test area)

(i) Set the test scene: as in the numerical simulation 1,
eight buoys are arranged on the sea surface. The water
depth z of the test area is —50 m, and x,y € [-150 m,
150 m]. The underwater targets are selected evenly
within the test area. The LBL system can measure the
TOA of the acoustic ray propagates from the underwater
target to the buoy by receiving the acoustic signal.

(i) Measurement data simulation: generate measure-
ment data. In this simulation, the SSP used is shown in
Fig. 10. According to the underwater target position and
the buoy positions, the TOA can be calculated by using
(35), and the random errors are the same as the errors in
numerical simulation 1.

(iii) Calculate the positioning accuracy: the position
error in the test area can be calculated by the M1, M2,
and M3. Repeat the above process 50 times to get the
average position error.

According to the above process, the positioning accu-
racy (accuracy space) of each positioning algorithm in the
test area can be calculated and the results are shown in
Fig. 14.
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Fig. 14 Positioning accuracy at the water depth of —50 m

The average position error results of each positioning
algorithm are presented in Table 3.

Table 3 Average position error of each algorithm

Algorithm  jAx|/m 1Ay/m JAzl/m [IAX]|/m
M1 0.5384 0.5377 0.5146 0.9186
M2 0.2166 0.2169 0.3720 0.4820
M3 0.0288 0.0288 0.0507 0.0650

From the simulation results, it can be seen that:

(1) In the test area, the average position error of M1 is
about 0.92 m, which is the largest among the three algo-
rithms. After identifying the sound speed error, the ave-
rage position error of M2 is reduced to about 0.48 m. M3
proposed in this paper has the highest positioning accu-
racy and the position error is about 0.07 m.

(i1) When x,y € [-100 m, 100 m], the underwater tar-
get position errors of M1, M2 and M3 within this area are
about 0.53 m, 0.29 m and 0.05 m, respectively; when the
underwater target is outside the deployment range of the
LBL system, the underwater target position error increa-
ses rapidly, especially for M1 and M2. Therefore, M3 is
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more stable. Besides, in the underwater target position-
ing test, it should be ensured that the underwater target is
within the deployment range of the LBL system in order
to obtain the high-accuracy underwater target position
parameters.

According to the results above, it can be concluded that
identifying the sound speed error can reduce the solution
error in M1. However, M2 still regards the underwater
sound speed as a constant, which is also an approxima-
tion of the underwater sound speed, so the improvement
for the positioning accuracy is still limited. M3 approxi-
mates the underwater sound speed as a vertical layered
model, and uses the constant gradient acoustic ray trac-
ing to calculate the TOA of the acoustic signal between
two underwater points. The new positioning solution has
the highest accuracy, which coincides with the theoreti-
cal analysis.

6. Conclusions

Due to the variety of the underwater sound speed, the
acoustic propagation path is a curve and the traditional
LBL positioning algorithm brings the inevitable system
error with constant sound speed, resulting in poor posi-
tioning accuracy. A TOA intersection positioning model
based on the constant gradient acoustic ray tracing is built
to reduce the change of the underwater sound speed on
the positioning accuracy, and the feasibility of the model
theoretically is analyzed. Moreover, the overall TOA
residual square sum is constructed as the optimization
function and the PSO algorithm is used to obtain the opti-
mal estimation for the underwater target position parame-
ters. Compared with the distance intersection positioning
algorithm, the TOA intersection positioning algorithm
can effectively improve the positioning accuracy of the
LBL system from the simulations, which can provide a
valuable reference for the underwater positioning test.
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