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Abstract: To solve the path following control problem for
unmanned surface vehicles (USVs), a control method based on
deep reinforcement learning (DRL) with long short-term memory
(LSTM) networks is proposed. A distributed proximal policy opti-
mization (DPPO) algorithm, which is a modified actor-critic-
based type of reinforcement learning algorithm, is adapted to
improve the controller performance in repeated trials. The LSTM
network structure is introduced to solve the strong temporal cor-
relation USV control problem. In addition, a specially designed
path dataset, including straight and curved paths, is established
to simulate various sailing scenarios so that the reinforcement
learning controller can obtain as much handling experience as
possible. Extensive numerical simulation results demonstrate
that the proposed method has better control performance under
missions involving complex maneuvers than trained with limited
scenarios and can potentially be applied in practice.
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1. Introduction

As a small surface platform for operation, unmanned sur-
face vehicles (USVs) offer several advantages such as
low cost, high speed, intelligence, and no casualties. It
has broad application prospects in military applications,
scientific expeditions, commercial development, hydro-
graphic surveys, search and rescue, relay communica-
tions, etc. [1]. Motion control is the core of the tech-
niques used for USV autonomous navigation, which can
help a USV to smoothly complete the tasks.
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USV path following has always been a popular but dif-
ficult topic in the relevant research fields. It is defined as
the process in which a USV is driven by a control system
without considering temporal constraints to depart from
any initial position and reach the expected path while
eventually arriving at the designated destination along
with the path [2]. A USV with no side thruster or per-
haps with a side thruster fails during high-speed naviga-
tion, which is common in a typical underactuated system.
This type of system is complex to some extent because
the number of control inputs is lower than the number of
degrees of freedom (DOF) to be controlled.

Many researchers have developed various control algo-
rithms to address the path following needs of underactu-
ated USV. The research methods for path following
mainly include the Lyapunov direct method [3,4], feed-
back linearization [5], sliding mode control [6,7], the
back-stepping method [8,9], active disturbance rejection
control [10], robust control [11], and model predictive
control [12,13]. These conventional control methods
often need to consider the prior knowledge of an USV
dynamic model and cope with strong coupling, comple-
xity, and uncertainty of the system. Reinforcement learn-
ing (RL) is the opposite of the feedback evaluation of
optimal control theory since it is mainly based on valua-
tion and can operate when the system model is unknown
[14]. Unlike optimal control theory, RL is based on eva-
luative, rather than being instructive; feedback comes in
different forms, which may or may not include partial
knowledge of the environment or the system. With the
continuous progress in the field of artificial intelligence,
RL has become an important branch of machine learning
and made remarkable progress in the field of control and
decision [15—18].

There have been plenty of attempts to implement deep
RL (DRL) techniques in path following control for
unmanned vehicles [19,20]. Among them, the conver-
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gence performance of RL controller has received the
most attention. Typically, path following controller is
composed by a cascaded system of a guidance law and a
low-level controller. One promising approach is to have
DRL controller acting as both of them [21,22]. DRL net-
work output the speed and steering command according
to the USV’s cross-track error and heading error relative
to the desired path, as well as the kinematic parameters of
the platform. Although the techniques to ensure the
robustness to disturbances were adopted such as the Orn-
stein-Uhlenbeck process in control actions [23], the con-
vergence of the DRL controller wasn’t strictly proved.
The other approaches input DRL network with guidance
law [24], such as line-of-sight (LOS) [25] and vector field
guidance (VFG) [26], which do not impose complex
proof of stability on the path following control. However,
these studies were only verified in single cases or limited
scenarios.

Although USV can effectively converge in the simula-
tion with a DRL controller, as a black-box method, the
lack of interpretability makes its security questioned. It is
of vital importance to avoid catastrophic safety accidents
in engineering practice. Hence, improving the security
while ensuring convergence with the USV path follow-
ing control is of great concern.

In order to bridge the aforementioned research gap, a
path following method for underactuated USV with the
feature of both convergency and security is proposed.
Firstly, dynamics and kinematics models of USV are
established, and then the LOS guidance law and USV
motion states are combined as the DRL controller’s input.
Inspired by training deep learning networks with massive
data sets, the concept of data sets for path following is
established, which allows a distributed stochastic sam-
pling of the problem’s domain that enhances the genera-
lization of the task at the cost of a larger training process.
Furthermore, the long short-term memory-distributed
proximal policy optimization (LSTM-DPPO) algorithm is
designed to process large-scaling training work by dis-
tributed computing. In addition, considering that path fol-
lowing control is a strong time-relevant problem, the
LSTM network layer is introduced in the neural network.
The performance of the proposed method was evaluated
using simulation experiments in various scenarios. The
analysis results demonstrate that our method is effective
for path following control of USVs.

Salient contributions in this paper can be summarized
as follows.

(i) The concept of path dataset is proposed for the first
time by generating a variety of possible path combina-
tions to cover the USV sailing scenarios, which helps the
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DRL controller adaptable to the critical situation.

(i) A distributed proximal policy optimization rein-
forcement learning method with the LSTM layer is
designed to meet the requirements of extensive training
and time-relevant control.

The rest of this paper is organized as follows. Section 2
presents the USV dynamics model, guidance method, and
reward functions design. Section 3 introduces the path
dataset and simulation environment. Section 4 gives theo-
retical background and technical implementation details
of the LSTM-DPPO method. Section 5 discusses the vali-
dation and comparative analysis of the proposed method.
Finally, Section 6 presents the main conclusions and
potential for future work.

2. USV path following

Fig. 1 presents the USV path-following control process.
The process can be regarded as the transfer of data
between three modules, including the USV dynamic
model, USV virtual environment, and controller. A USV
dynamic model can use the control input to estimate the
state at the next moment and send kinematics parameters
to the virtual environment. Subsequently, the virtual envi-
ronment determines the position of the USV on the map
in a real-time manner and calculates the guidance parame-
ters based on the mission path.
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Fig.1 Diagram of a USV path following control

Depending on the principles of feedback control used,
controllers require different inputs. For instance, RL con-
trollers such as LSTM-DPPO or multilayer perceptron
version of proximal policy optimization (MLP-PPO)
mainly require state and reward input, whereas conven-
tional control methods like proportion-integral-derivative
(PID) controllers only need state data. Thanks to the
graphical simulation environment of OpenAl, a joystick
controller can compete with an artificial intelligence (AI)
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algorithm. In this case, the controller only requires
images as input, and a closed-loop of feedback exists.
This process is similar to someone playing a video game.

The dynamic process of USV path following requires
the use of a USV dynamic model to calculate the
response under a given control. Meanwhile, a guidance
system should be designed to determine the expected
heading to evaluate whether the USV effectively follows
the desired route. The rest of this section provides
detailed information about the components of the USV
path following system.

2.1 USV dynamic model

Path following by a USV focuses on motion in a two
dimensional (2D) plane. Therefore, this paper ignores the
concepts of heave, roll, and pitch but uses the 3-DOF
kinematic model [25], which can not only address the
problems of accuracy and network generalization during
the path following in a plane but also meet the require-
ments for providing a convenient calculation method.

The coordinate system used in this work is shown in
Fig. 2.
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Fig.2 Coordinate system of a USV

In Fig. 2, X and Y are the East and North direction; u
and v stand for surge and sway; ¢, 8, and y denote head-
ing angle, side slip angle, and course angle respectively;
USV position can be described as n= [x,y,¥]", and
speed as v = [u,v,r]". The 3-DOF USV kinematic model
can be described as

1= R(nyv (h
where R(7;) is a rotation matrix from the body-fixed
frame to the Earth-fixed inertial frame.

cosyy —siny O
R(m)=| singy cosy O (2)
0 0 1

The horizontal planar dynamic motion equation of the
USV can be expressed as

My+Cyyw+DOyw=1.+7, 3)

where M is the mass matrix, C(v) is the Coriolis and cen-
tripetal matrix, D(v) denotes the damping matrix.
7. = [1,,0,7,]" denotes the control inputs, 7, is the surge
force, 7, is the yaw moment. T, = [Tey,Ter,Ter]! i the
environmental forces due to wind, waves, and ocean cur-
rents. T.,, Tey, Ter denote the disturbances of the surge,
sway, and yaw, respectively.
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2.2 Guidance

The guidance module aims to guide the USV along the
desired path by calculating the current position of the
USV and defining its relationship with the given path. As
shown in Fig. 3, the USV virtual environment module can
upload the desired path task P(w) as needed and the gui-
dance sub-module calculates the desired course angle
Xxa(t) and cross-track error y,(#) using the LOS guidance
method. As for speed control, this paper focuses on path
following, which is different from trajectory tracking and
does not need to take temporal specification into account
[27]. Therefore, the guidance module does not include
speed interference. In our opinion, USV speed control
could be directly achieved by the controller network with
inputs such as speed error u,(f) =u,(¢) —u(f), heading
error (), and cross-track error y.(f), which will be
detailed in the subsequent sections.
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Fig.3 Diagram of guidance module for a RL-based controller

LOS is a type of classical and effective navigation
algorithm that reflects the helmsman’s specific behavior
in the accurate control of vessel navigation. A LOS vec-
tor is the line connecting a point mapped as seen from the
current position of a vessel onto the tangent line of the
desired path from that point to the current position of the
vessel [28]. By keeping the vessel’s resultant speed in
alignment with LOS vector, the vessel is guided to
approach the desired path. LOS guidance is independent
of dynamics control, does not rely on any mathematical
model, and needs few designed parameters. Moreover, it
is insensitive to high-frequency white noise and uses the
desired path and the vessel’s real-time position only to
determine the desired heading angle. In this way, the
desired heading angle can be calculated efficiently in real-
time.

This paper uses a LOS guidance algorithm based
on the look-ahead distance to calculate the desired
heading angle. The guidance principles are as shown in
Fig. 4.

p

P (1)

(), yd@)) X

Fig. 4 LOS guidance based on the look-ahead distance

The LOS guidance algorithm is defined as

Xa(t) = ¢, (w) +arc tan(— A ®)

where y,(¢) is desired course angle; P(f) is the actual
position of the USV; (x,(w),ys(w)) is desired position of
the USV; ¢,(w) denotes the angle formed by the tangen-
tial line of the desired position on the desired course and
X-axis; A is the look-ahead distance; P, (f) is a virtual
guidance point; y,(7) is the cross-track error, such as the
deviation of the current position of USV from the desired
course. Therefore, the desired heading angle v,(?) is

V(D)
A )—ﬁ(t)- (6)

Ualt) = () = B(E) = U1 () +arc tan (_

The heading angle error is

Yo(1) = a() —§(1). (7

LOS guidance can be used for both straight and curved
paths. Woo et al. [29] analyzed the switching principles
of LOS guidance for a straight path. The switching prin-
ciples were improved to achieve a smooth switch
between straight and curved paths based on this guidance.
If the USV mission path consists of several linked sub-
paths of various lengths and shapes such as straight lines
and arcs, the USV path following task follows the adja-
cent straight or curved sub-paths one by one. Moreover, it
is assumed that this process is irreversible. In other
words, the task does not return to the previous sub-path
following even if USV turns back to the starting point.

It is assumed that from the starting point, the ith sub-
path Path; starts at w,_;(x,_;,y,.;) and ends at w;(x;,y;),
i€ N*. When Path; is straight, the USV will follow the
straight path Path;. At any point, the desired course angle
could be displayed in a vector field, as shown in Fig. 5.

Fig. 5 Diagram of a straight LOS guidance vector field

Equation (5) can be used to calculate the desired course
angle y, and the corresponding virtual guidance point
P,,,. When the USV enters a circle with the origin w; and
aradius ¢, it is believed that the task of following the cur-
rent sub-path is completed, and it switches to the state of
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following the next sub-path. To ensure that the USV can
be guided to the proximity of where the sub-path ends
under extreme conditions, it is therefore defined that, if
the virtual guidance point Py, is on an extension of a line
segment w,_w;, the virtual guidance point P, of the
USV will be fixed at the position where the sub-path
ends w;.

When the USV follows a curved path, guidance princi-
ples are slightly different based on the sector in which the
USV travels. As shown in Fig. 6, if the USV follows the
curved path Path;,,, the desired course angle at any point
can be presented vividly in the vector field. Let O, be the
origin of the arcs that the sector formed by /w;0.w;,; is
defined as Sector B, while the remaining area is divided
equally into Sector A and Sector C with the origin O..
Normally, the USV is in the normal state of path follow-
ing when it is in Sector B. Considering that RL control
could not be stable at the initial stage of learning, all pos-
sibilities must be taken into account to ensure the correct
guidance for the USV at any position.

Fig. 6 Diagram of a curved LOS guidance vector field

The policy for different conditions is as follows: when
the USV is in Sector A, LOS guidance is implemented to
guide the USV along a sub-path path,; when the USV is
in Sector B and the virtual guidance point P, is in Sec-
tor B, LOS guidance is conducted to guide the USV along
the current sub-path path,,;; when USV is in Sector B
and virtual guidance point Py, enters Sector C, a virtual
guidance point will be fixed at the position where the sub-
path ends w,;,;; when USV is in Sector C, the virtual
guidance point P, will be also fixed at w;,;.

The guidance module will output the heading angle
error ,(f) and cross-track error y.(f). Moreover, ¥,(f)
can be calculated with (7), while the value of y,.(f) could
be calculated considering the geometrical relationship at
any time.

When the USV follows a straight path or is in Sector A
or Sector C of a curved path, y,(f) is the Euclidean dis-
tance from the USV to the straight line.

ye(t) = \/ (1) = xy(W))* + (1) = ya(w))* ®)
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When the USV follows a curved path and is in Sector B,
let the radius of the arc be r, and the origin O.(x,,y,), SO
that y,(¢) is the shortest Euclidean distance from USV to
the arc:

30 =r= JGO-x) +6O -y . (9)
2.3 Reward function

The reward function defines the target in RL [30]. In each
time step, the environment assesses the performance of
the USV in the execution of the path following task, and
give a reward output. The objective of the RL controller
is to maximize the total reward for the long term. Hence,
the reward function requires clearly defines the quality of
the USV state, and plays a significant role in RL. On this
basis, several independent performance indices have been
designed, including heading reward, distance reward, and
speed reward, to measure the effect of path following,
respectively. Moreover, these indices are weighted
according to actual needs to achieve comprehensive
assessment.

Index 1 Heading reward. To make the USV move
forward in the correct direction, a maximum heading
reward is obtained when the absolute value of the USV
heading angle error || is 0, but the heading reward
should decrease rapidly when [¢,| deviates from 0. The
heading reward is defined as

ry, = 2e™W 1 (10)

where r, €(-1,1], and k, is an adjustment coefficient
used to determine the steepness of the reward at the peak.

Index 2 Distance reward. To make the USV move
along a given path, a distance reward r, is proposed. A
distance reward is defined as

P, =2e™ 1 (11)

where r, € (=1,1], and k, plays a role in similarly adjust-
ing the reward curve.

Index 3 Speed reward. To ensure the movement of
the USV at the desired speed, a speed reward r,, is pro-
posed as

ru, = prul +(1 _p)ruZ
Fa = 2e7hld 1 (12)
Fio = D HulucosWe)—ul _

where r, € (—1,1] and r, consists of r,, and r,,, respec-
tively. p is a weight coefficient and p € [0, 1]. k,; and k,»
are the adjustment coefficients of r, and r,, respec-
tively. Among them, r,; is used to constrain the speed of
the USV and ucosy, in r,, indicates the projection of the
USV speed onto the desired course; the speed can reach
the maximum only if the projection speed on the desired
course is identical to the desired speed.

The original function of speed reward r, is consistent
with (10) and (11) such as r, =2e™*I—1, but some
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shortcomings were noticed in the definition during the
training. The above equation can only achieve a con-
straint on USV speed. Compared with the required accu-
racy of heading and course following, speed control is
easier to achieve. Therefore, the controller often gives
priority to speed reward at the initial stage of training, but
overlooks heading and distance rewards. Meanwhile, the
USV controller normally has an unstable output of rud-
der angle during the initial stage of training. In addition to
the influence of USV steering inertia, it is more difficult
to achieve r, and r,, which allows the controller net-
work to become trapped by a local optimal reward easily.
To resolve this problem, the speed reward r, is con-
nected with the heading reward to ensure a similar diffi-
culty in obtaining r,,, r,,, and r,,.

After such improvement, speed reward r, can reach
the peak only if the USV moves forward along the
desired heading at the desired speed.

Composite index Reward function. In summary, the
final reward expression is given as

F=Wyly, + Wiy +W, 7, (13)

where wy, w,, and w, are the weights of r,,, r,,, and r,,,
respectively. These indices could be adjusted dynami-
cally according to the actual needs of a mission to evalu-
ate the reward of the action comprehensively.

3. USV path dataset

As an important part of RL, environment modeling is the
simulation of the environment response mode [30]. Never-
theless, researchers often do not conduct extensive envi-
ronment modeling because complex and varying tasks
exist in path planning. Studies related to RL control with
marine vessels normally focus on the simple paths
[22,29]. Moreover, these test scenarios are generally
mentioned in parts of simulations in the papers.
Researchers placed an agent in a fixed scenario and then
trained an RL controller from scratch (the RL controller
was trained separately for each test scenario). The con-
trol errors at different stages of training were compared to
verify the effectiveness of the RL algorithm [31]. But an
RL controlled trained in a single scenario may easily
cause over-fitting and lead to network degeneration. For
engineering applications, such limited navigation experi-
ence for DRL controller is far from enough. When facing
extreme scenarios, the controller network’s output is
likely to be unpredictable without enough training experi-
ence. It will cause uncertainty and hidden safety prob-
lems in the engineering applications

There has to be a balance between the performance and
the generalization of the environment. When training to a
few particular environment variations, the deep policy
tends to overfit and loses the ability to generalize to dif-
ferent paths. Therefore, it must be mentioned that the ran-

dom generation of paths, allows a distributed stochastic
sampling of the problem’s domain that enhances the gene-
ralization of the task at the cost of a larger training pro-
cess. A path dataset was constructed to satisfy the needs
of multiple tasks.

When considering the needs of a USV RL control, it is
necessary to construct a variety of USV mission paths,
which must cover as many path scenarios as possible and
serve as a baseline for comparing the performance of dif-
ferent algorithms. Therefore, two types of path datasets
were constructed, the random path dataset and the stan-
dard path dataset.

First, the random path dataset plays the role of provid-
ing all kinds of task scenarios for RL controller training,
which meet the following requirements:

(1) It can be generated quickly with an automation
script.

(i) Paths should contain straight lines and curves
simultaneously, and the boundary between paths should
be continuous.

(iii) Paths must not go beyond the given boundary and
be easy to display visually.

Second, the standard path dataset must meet the fol-
lowing requirements:

(1) The path should be typical and cover a variety of
conditions.

(i1) The dataset should contain a single straight line,
curved and mixed paths, and facilitate the quantitative
and comparative control analysis of diverse paths.

A flowchart of the automated path generation algo-
rithm designed in this paper is shown in Fig. 7 and Fig. 8,
and Fig. 9 shows the instance diagram of the random path
dataset.

Input: the path length L, boundary
parameters B, the curve path ratio .,
straight line/curve path parameters

| Generate an initialstraight line path |

Random
number>r.2

Yes
Generate a random Generate a random
curve path straight line path

[ Output: a random path j

Fig. 7 Flowchart for generating a random path
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Input: the type of last sub-path,
endpoint of last path P,;, minimum sub-
path length L, boundary parameters B

min>

Previous
path is curve?

Yes

Starting from Point P,;, make a straight line and
find the angle range /" satisfying the line's length
greater than L, and not out of the boundary.

v

Randomly select an angle y within the angle
range [ as the track angle of a straight line path

‘min

Select the track angle of the endpoint of the
previous curve path as y

g
Calculates the distance d, which from the point
P, to the boundary with track angle y

v

Randomly select the path length d
in the range of [L,;,, d,]

[ Output: straight-line path parameters]

(a) Detailed implementation of
random straight-line path

‘min>
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Input: endpoint of the last sub-path P,
track angle of the last sub-path y,
minimum sub-path radius rmin, minimum
turning angle a,,,, boundary parameters B

v

Calculates the distance d, which from the
point P, to the boundary with track angle y

v

Randomly select arc radius J,,
in the range of [7,,, d,/2]

‘min>

min>

Randomly select turning angle o
in the range of (—180°, —a,,;,]

Randomly select turning angle o
in the range of [a,;,, 180°)

‘min>

-

\ 4

Output: curve pathparameters

(b) Detailed implementation of
random curve path

Fig. 8 Detailed implementation of the random straight-line path and random curve path

Fig. 9 Instance diagram of random path dataset

To meet the above requirements, 14 different mission
paths are designed (Fig. 10), including seven polygonal
paths (paths A—Q), three curved paths (paths H—J) and
four mixed paths (paths K—N). Each polygonal path was
comprised of sub-paths of equal length, which are con-
nected with a fixed steering angle. Among them, Path G
is a back-and-forth path on a straight line. A curved path
is formed by an arc or spiral, while a mixed path is com-
posed of straight lines and arcs connected alternately.
Based on this, paths were mirrored to form 28 types of
horizontally symmetrical routes, eventually measuring an
RL controller’s performance more comprehensively.

Hor Jy K L M

Fig. 10 Dataset of 28 standard paths

To thoroughly test each type of path, all standard paths
were set to depart from the lower-left corner along a start
line in red and then repeat the closed path many times
until the accumulated distance reached the preset mileage
of each path. The average performance index of each
control algorithm with the same reference path was com-
pared to objectively and comprehensively evaluate these
algorithms.

Fig. 11 details the composition and interaction of mo-

dules under the step function in the Gym environment
customized in this paper.
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infor-

reward, USV state, realtime image

Fig. 11 Composition and interaction of modules under a step function in a customized Gym environment

4. DRL based controller

As an important part of machine learning, reinforcement
learning means an agent learns the action policy needed
to fulfill the mission through continuous interaction with
the environment. While performing a mission, the agent
interacts with the environment to generate a new state,
while the environment grants a reward. An RL algorithm
uses an action policy to interact with the environment,
generate a reward, and then apply the reward in modify-
ing the action policy. After several iterations, the agent
will learn the action policy needed to complete the mis-
sion.

The traditional RL approach is often limited to a finite
and discrete action space and sample space. This makes it
difficult to process more complex missions close to the
actual conditions, often involving the continuous and
high-dimensional state spaces and action spaces. DRL
combines RL with deep learning capability to process
high-dimension data, while deep Q networks (DQN) must
be the first successful product of such a combination [31].
Scholars have extensively studied the RL approach in
recent years and proposed more and newer DRL methods
such as asynchronous advantage actor-critic (A3C) [32],
deep deterministic policy gradient (DDPG) [33], and PPO
[34].

USV path following requires considering paths of com-
plex shapes; the entire process of guidance is highly
sequential and involves interconnected trajectories.
Therefore, this paper combines the PPO framework [35]
with the LSTM with a strong ability to process temporal
data and then proposes a LSTM-DPPO based path plan-
ning algorithm, which allowed several environments to
gather the experience at the same time by parallel central

processing unit (CPU) process, and the training work is
divided among the GPUs.

4.1 PPO Algorithm

PPO is a model-free, on-policy, actor-critic, policy-based
method. As an improved algorithm, it originated from a
trust region policy optimization (TRPO) algorithm [36].
The standard solution of a TRPO algorithm requires an
enormous amount of calculation, but PPO is a first-order
approach and simplifies the optimization process, which
reduces the calculation effort considerably and achieves a
good effect.

In the process of training, the state of the agent at the
time ¢ is denoted by s,. PPO uses stochastic policy, so
that the policy 7 could be modeled as n(als); that is, the
probability distribution of a at the state s. In this paper, 7
is the LSTM controller network, whose parameter is
denoted by 6. The controller network 7, input the state of
the agent s, and outputs a gaussian probability distribu-
tion of actions. Sampling is further conducted to obtain
a;. Meanwhile, the environment will grant a reward based
on s, and a,, that is, r,(s;,a,). The objective of RL is to
find the optimal policy 7* to maximize the accumulated
discount reward R, as

— 2 3 k
Ri=ra+yrot+yraa+y rt+4+"'=Z)’ Ti+1 (14)
k=0

where 7 is a discount factor and y € [0, 1].

The policy = is evaluated by two pecspective, the state-
value function V*(s) and action-value function Q7(s,a).
V7(s) is the expected return when starting in s and fol-
lowing 7 thereafter. Meanwhile, Q"(s,a) is the expected
return starting from s, taking the action a, and thereafter
following policy 7:
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V*(s) = E;[R/|s] =E;

Zykrm,}, (15)
k=0

Q(sina)) = Ef[Rs.a,] = E; [Z ykrkﬂls,,af]. (16)
k=0

An advantage function A"(s,a)can be used to deter-
mine the advantage achieved by choosing an action a at
the state s when compared with other actions. If the
action a is a better choice.

A'(s,a) = Q" (s,a,) = V'(s,) (17)

The PPO algorithm offers a truncated version of genera-
lized advantage estimation [37] to estimate an advantage
function, which could significantly reduce the variance
while maintaining a tolerable level of bias. Therefore, A,
is defined as the estimator of the advantage function at
the timestep ¢, and T represents the number of time steps
taken continuously under the policy x in an episode (7 is
much shorter than the episode). The expression of A, is as
follows:

A= =V(s)+ryrat+y ey V(sp). (18)

A policy gradient algorithm is an RL algorithm for po-
licy-based search. It estimates a policy gradient and
applies it in a stochastic gradient ascent. Meanwhile,
LP9(0) represents the policy gradient loss, and E, serves
as empirically obtained estimates of the expectation. The
expression is as follows:

L™(6) = E,[logmy(a,ls,)A,. (19)

However, empirically, the gradient obtained by using
the expression above is likely to lead to too large policy
updates. By optimizing the surrogate objective function
L(6), TRPO could constrain the amplitude of the policy
update.

~ [ molails) ¢ ] 20)

L(O) =E
© ' ﬂeo.d(ar|sr) '

On this basis, PPO includes two simpler realizations,
i.e., clipped surrogate objective and adaptive KL penalty
coefficient. The former has a better effect, so that method
is employed in this paper. Its objective function is
LCLIP(G).
mo(a|s:)

Ratio,(0) = ,
Moo (ails,)

2

LY (9) = E,[min(Ratio,(9)A,, clip(Ratio,(6),
1 —-&, 1 +8)At)]’ (22)

where Ratio,(f) is probability ratio, and ¢ is a hyper-
parameter. The clip function is used to restrict the
Ratio,(#) within the interval of [1 —&,1+¢&]. Therefore,
the degree of policy gradient update is effectively con-
strained from the TRPO first-order approach.

4.2 LSTM-DPPO network framework

DPPO is a distributed version of PPO [38]. Multiple
workers have used to collect experience in USV virtual
environments independently. The mission path in each
virtual environment is sampled from a random path
dataset so that DPPO could effectively prevent the corre-
lation of experience, achieving a significantly better
learning effect for DPPO than for PPO.

Meanwhile, LSTM-DPPO is based on the actor-critic
algorithm, including policy and value networks with sim-
ilar network structures. The policy network has state
space sequence S as its input and a probability distribu-
tion parameter of action as its output. In the process of
training, a policy gradient is employed to learn the con-
trol policy m, with parameters 6. The value network has
the same input as the policy network, but outputs V,(S),
the estimated value of the state space sequence S. In
practice, sample rollout is often conducted to approxi-
mate the parameter ¢ of the value network V™ (S). The
specific definition is given as follows: State and action
spaces at the time ¢ are defined as S, ={ ' 'i,,yi,,y'g,uﬁ,}
and A, = {a’p,ag}, respectively. The meanings and ranges
are presented in Table 1.

Table 1 Constraints and ranges for variables in state and action
spaces
Variable Meaning Range

Ye Heading angle error [-180,180]

Ye Heading angle error derivative (=00, +00)

Ye Cross-track error (=00, +00)

Ye Cross-track error derivative (=00, +00)

Ue Speed error [-20,20]

ap Power output [-1,1]

as Steering output [-1,1]

The sequence of state space within the range in T
timesteps starting from the time ¢ is defined as
S={8,S_1,82,-,8. r+1}. The diagram of policy net-

work structure is presented in Fig. 12.
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Fig. 12 Diagram of the policy network structure.

Fig. 12 demonstrates how a policy network outputs a
probability distribution parameter. It is defined that 7 is a
trajectory formed by a USV performing a path following
mission in the S Si_1s
a,_1,S,,a;). At the time ¢, T past state space sequences S
are intercepted forward. The elements in S are input into
the LSTM network in chronological order. After repeat-
ing for 7T times, the output of recurrent neural networks
hr is obtained. h; is a group of one-dimension arrays
with the length /, and [ is the number of LSTM elements
in the network. After passing the fully connected (FC)
layer, h; outputs the distribution of action. It is assumed
that the action is subject to a normal distribution, and the
network output distribution has its average defined as
M = [u,, u;] and variance as 6 = [6,, 6,]. In the process of
training, the action value of an agent is selected through
action distribution sampling, so as to ensure that the
action of an agent is selected in a random and explorative
way. In the progress of training, the network converges
with the variance 6 decrease gradually. After network
training is completed, the variance 6 will be ignored in
the practical configuration of the controller, but average
p is used as the action value.

The LSTM layer and a fully connected layer of a value
network have the same structure as a policy network, but
the output layer outputs only a single variable, i.e., a state
sequence value V,(S).

The proposed LSTM-DPPO algorithm consists of
workers and a master. The workers have several
instances, which run in separate processes. The workers
are responsible for collecting data from experience, cal-
culating the gradients of the policy and value networks,
updating the network weights locally, transmitting local

environment  (s,,d;, S2,da," "

weights to the master, and receiving the network weights
from the master to replace the old local weights. This pro-
cess is repeated continuously until the end of the training.
The master assumes the responsibility of scheduling and
managing workers, summing up the weights transmitted
from workers, calculating their average weights as the
global weights, and sending the latest global weights to
the workers. Algorithm 1 and Algorithm 2 describe the
realization process of LSTM-DPPO.

Algorithm 1 LSTM-DPPO (Master)
Input:

Number of epochs »; the number of workers W

Output:

Policy network parameter 6, value network parameter ¢
1: Initialize the global policy network m, and value net-
work V,; with empty weights.

2:forie {1,2,---,N} do

3: forje {1,2,---,W} do

4: Collect the weights 6; and ¢; by worker j

5: end for

6: Calculate the averaged weights 8 and ¢ from wor-
kers’ weights

7: Assign averaged weights to global policy network
7y and value network V,

8 forje {1,2,---, W} do

9: Assign weights of networks to worker j

10:  end for

11: end for

Algorithm 2 LSTM-DPPO (Worker)

Input:

Number of epochs N; rollout size R; time step size T; dis-
count factor y; the number of sub-iterations with policy
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and value updates Ny, Ny, respectively; learning rate ;.
Output:

Weights of local policy network 6 and value network ¢.
1: Initialize the USV environment, load the path data set,
randomly initialize the local policy network m, and value
network V, with weights 6 and ¢.

2:forie {1,2,---,N} do

3: Receive network weights mguew, Vpnew from the
master, assign weights to the local network: 7y < 7gnew,
V05 — V¢new

4. forje{12,---,R/T} do

5: Run policy n, for T time steps in the USV Gym

environment, collecting { s,,a,,r,} for te{(j—DT,---,
JT-13

JT-1
6: Calculate return R, = Z YU+ y V(s i)
=(j-1)T
7: Calculate estimated advantages A, = R, — Viy(s,)
8: Store partial trajectory information

9: end for
10: my, «my
11: for pe { 1,2,---,N,} do
12:  Ratio,(0) = my(a,ls,)/m,,(als,)
13: LO%(f) =
E, [min(Ratio,(¢)A,, clip(Ratio,(6), 1 — &, 1 +£)A,)|
14: Calculate gradient V,L" and update 6 with the

learning rate /,
15: end for

16: for ve { 1,2,---,Ny} do

T
A 2
17 PHg) == D (R~ Vi(s)
=1
18: Calculate gradient V,LP" and update ¢ with learn-
ing rate /,
19: end for

20: Send local weights 6 and ¢ to master
21: end for

5. Simulations

To verify the proposed USV path following algorithm,
the random path dataset was employed to train the LSTM-
DPPO controller network. First, the LSTM-DPPO con-
troller at different training stages is extracted to analyze
the algorithm’s self-learning capability; then, the path fol-
lowing performance of the controller is tested in the stan-
dard path dataset. Subsequently, the angle and distance
errors, as well as the average rewards, are calculated to

compare the LSTM-DPPO algorithm with other control
algorithms in terms of tracking performance. Ultimately,
to verify the contribution of the path dataset to the con-
trol performance, the LSTM-DPPO algorithm is studied
with different volumes of the dataset. Various scales of
path samples are intercepted from the random path
dataset to train the controller network from scratch, which
is tested by the standard path dataset.

The USV controller is trained in a server with two ES-
2678 V3 CPUs and four RTX 2080Ti GPUs. The para-
meters for the LSTM-PPO algorithm are configured as fol-
lows. The number of workers is eight (two working pro-
cesses for each graphic card). The number of training epo-
chs was set to 1000; the rollout size is selected as 8 192.
The LSTM input time step range 7 is selected as 30. A
discount factor was selected as 0.99. The number of sub-
iterations with policy and value updates is set to the
default value of ten. For the network training, an Adam
optimizer is used to train both the policy and value net-
works. The learning rate is set to 10 *. The USV environ-
ment parameters are configured as follows: simulation
timestep is defined as 0.1 s (10 Hz). The path length L is
set to 2 km. The boundary length is selected as 400 m.
The curved path ratio r, is selected as 0.4. The sample
size of the random path dataset is set to 1000. The desired
speed in each training epoch was generated randomly
between 2—8 m/s. Reward adjustment coefficients k,, k,,
k., and k, are 0.1, 0.1, 0.2, and 0.2, respectively.
Reward weights w,,w,,w,, and p are 1/3, 1/3, 1/3, and
0.7, respectively.

1200 O 0
M = 0 1500 O
[ 0 0 450 ]
400 O 0 ]

0 600 O
0 0 300

D=

Fig. 13 presents the training curves of the LSTM-
DPPO controller with a random path dataset. The accu-
mulated reward in the first 230 epochs increased mono-
tonically in an S-shaped curve after smoothing, and
soared from —1420 to 810. Subsequently, it oscillated
around 800. The accumulated reward does not become
stable at the late stage of training, but constantly oscil-
lates within a favorable interval. Through the USV visua-
lized environment, it can be seen that the desired speed
stochastically causes the oscillation of the accumulated
reward. When the desired speed is lower, it is easier to
control the USV, and the path following error is smaller.
In contrast, if the desired speed is larger, the USV needs
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to frequently adjust the state for path following under the

limited maneuverability, causing a more significant path

following error, so that the accumulated reward is poorer.
1 500
1 000
500
0

=500

Accumulated reward

—1 000

—1500

0 200 400 600

Training epoch

Fig. 13 Training curve of the LSTM-DPPO

800 1000

To analyze the self-learning capability of the LSTM-
DPPO algorithm, the weights of the policy network at
different stages of training are extracted to test for all the
standard path dataset. Square and rounded rectangular
paths are taken as the typical polygonal and curved paths
for analysis and illustration. The test parameters are set as
follows: USV initial position is (—30,—30); desired speed
is 5 m/s; the initial heading angle is given randomly; the
maximum operation epoch is 3 000 steps.

Fig. 14 and Fig. 15 present the path following trajec-
tory of the LSTM-DPPO algorithm on typical polygonal
and curved paths at different stages of training. Fig. 14(a)
and Fig. 15(a) show the result at the beginning of train-
ing, that is, the USV turned in a circle at the origin. As
the training epochs increases, the USV learns to follow
the mission path stably, but can not control its speed
accurately. The speed is so low that the USV can not
reach the endpoint of the path within the specified time
steps in the episode (see Fig. 14(b) and Fig. 15(b). After
200 training epochs (see Fig. 14(c) and Fig. 15(c)), the
USV can travel to a farther position along the mission
path, but large errors could be still observed at the turn-
ing position of the polygonal path (see Fig. 14(c)). Com-
pared with the polygonal path, the curved path has a
much smaller following error (see Fig. 15(c)). It can be
explained that the curved path is smooth and continuous,
causing the continuous variation of the USV heading
error angle, but the discontinuity of the polygonal path
caused an abrupt change of the USV heading error angle,
resulting in a large tracking error for the USV at the turn-
ing positions of the polygonal path. After 1000 training
epochs, the USV can finish all the paths within the speci-
fied time steps, and the tracked trajectory reached the
ideal state (see Fig. 14(d) and Fig. 15(d)). After observ-
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ing Fig. 14(d), it is found that the USV had a more con-
tinuous and accurate trajectory at the turning position.
Fig. 16 and Fig. 17 present the heading angle error and
cross-track error curves corresponding to the typical
polygonal and curved paths, respectively. The conver-
gence rates of both heading angle errors and cross-track
errors have been significantly improved along with the

increase of training epochs.
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ing the typical curved path following experiments with various
training epochs

To further analyze the advantages and disadvantages of
the LSTM-DPPO algorithm when compared with other
algorithms, three control methods were selected for com-
parison, including an MLP-PPO algorithm (with LSTM
layer deleted but other parameters unchanged compared
with LSTM-DPPO algorithm), a classic PID control algo-
rithm, and a human player using a joystick for USV con-
trol. Fig. 18 and Fig. 19 present four different trajectories
of following the typical polygonal and curved paths. The
trajectories of path following with four methods includ-
ing LSTM-DPPO, MLP-PPO, PID and human player, are
indicated in red, purple, yellow, and green, respectively.
As revealed in Fig. 18, these four control methods can
ensure the stable following of a straight path, but their
differences exist mainly in the control of turning perfor-
mance. The enlarged detail in the upper right corner of
Fig. 18 clearly shows that a well-trained LSTM-DPPO
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controller has the best performance since it could achieve
rapid convergence of trajectory error. The MLP-PPO
controller had a slower response and larger trajectory
error. The PID controller faces overshoot and oscillatory
convergence in the trajectory. The joystick is used to
manipulate the USV throttle and rudder angle for manual
path following control along each path in the standard
path dataset. As shown in the green trajectory in Fig. 18,
the human player can achieve a good effect by control-
ling the USV under the brain-image-joystick feedback
mechanism. Fig. 19 shows the effect of following vari-
ous control methods on a curved path. After observing
the trajectories of following a curved path, it is found that
LSTM-DPPO and MLP-PPO could control the cross-
track error to a small range; the PID algorithm lag behind
to some extent, and its trajectory is normally at the exter-
nal edge of the turning position. Control of following the
curved path was fairly challenging when using a joystick,
which had the most significant path following error.
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Fig. 18 Trajectories of following the typical polygonal path with
four control methods
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Fig. 20 and Fig. 21 contain the heading angle and cross-
track error curves of the four control methods with regard
to the two typical paths. The LSTM-DPPO algorithm
could control the angle and distance errors faster than the
other methods, and reach the ending point within the
shortest period.
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Fig. 20 History of the heading angle and cross-track errors dur-
ing the typical polygonal path following experiments with four con-
trol methods

Table 2 shows the performance indices of various con-
trol methods in the path following test with a standard
path dataset. There are three test conditions: a polygonal
path, a curved/mixed path, and a combination of all paths
above. The test indices include the root mean square
(RMS) of heading angle error (H.A.E.), cross-track error
(C.T.E.), and corresponding average reward (accumu-
lated reward/simulation step size). The bolded item in
each row represents the optimal value which is the mini-
mum error. As revealed in Table 2, the average reward of
the LSTM-DPPO method goes up constantly with the
increase in training step size. Compared with the three
other control methods, LSTM-DPPO performed better in
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all the performance parameters under a polygonal path
test condition. In the curved/mixed path, the average
reward was basically consistent among the LSTM-DPPO,
MLP-PPO and PID methods. It can be interpreted that the
training dataset is a combination of curves and straight
lines, including sudden turns and even reversals. These
features are similar to the polygonal path in the test
dataset, so a better simulation result can be obtained in
the polygonal path. However, the curved/mixed path in
the test dataset is dominated by smooth and continuous
curves, which are different from the training dataset in
terms of path features, but the DRL controller still per-
forms at a good level even though its performance is
slightly inferior to PID controller. From the perspective
of all the standard path dataset, the proposed algorithm
has the remarkable capability to adapt to different paths
and achieve the superior control performance of path fol-
lowing.
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Fig. 21 History of the heading angle and cross-track errors dur-

ing the typical curved path following experiments with four control
methods

Table 2 Comparison results of the RMS for H.A.E. and C.T.E. during the path following validation

Performance indices using standard path LSTM-DPPO100

LSTM-DPPO 200 LSTM-DPPO 1000

MLP-PPO PID Joystick

datasets epochs epochs epochs
RMS H.A.E/(°) 20.27 20.63 11.19 16.57 1991 21.11
Polygonal path RMS C.T.E/m 3.78 3.38 3.12 380 449 526
Average reward 0.59 0.65 0.78 0.70  0.72 0.65
RMS H.A.E/(°) 10.46 9.56 23.92 13.49 11.07 23.34
Curved/mixed path RMS C.T.E/m 3.35 3.81 3.55 378 390 5.28
Average reward 0.62 0.66 0.73 0.73  0.74 0.69
RMS H.A.E/(°) 17.46 17.47 14.83 1491 17.39 21.56
All paths RMS C.T.E/m 3.66 3.50 3.24 3.79 432 527
Average reward 0.6 0.65 0.76 0.71 0.73 0.67
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To verify the path dataset’s contribution to control per-
formance, 1, 10, 100, and 1000 random path samples are
intercepted from a random path dataset to form a training
set. With the other training parameters unchanged, the
LSTM-DPPO controller network is trained from scratch
and tested with the standard path dataset. The results are
given in Table 3. It is found that an increase in path train-
ing sample size improves the error and average reward of
the controller. Moreover, the table reveals that if the
training sample size is 100, the controller has a better per-
formance index on the curved/mixed path, but a poorer
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performance index on the polygonal path when com-
pared with the size of 1 000. It is assumed to be that con-
troller adjusts the learning policy in the process of self-
learning to cope with various paths. When the control
policy is completely fitted with the polygonal path, it will
sacrifice a certain degree of fitting with the curved/mixed
path. Hence, when the volume of learning samples
increases, the controller could gradually learn how to ba-
lance the control policy through reinforcement learning
while taking into account different paths to improve the
comprehensive control performance constantly.

Table 3 Comparison results of the RMS for H.A.E. and C.T.E. in the varis scale of data set

Performance indices for standard path datasets one sample 10 samples 100 samples 1000 samples
RMS H.A.E/(°) 21.28 21.60 19.05 11.19
Polygonal path RMS C.T.E/m 4.85 4.37 4.36 3.12
Average reward 0.69 0.654 0.74 0.78
RMS H.A.E/(°) 13.23 9.09 8.70 23.92
Curved/mixed path RMS C.T.E/m 4.90 3.80 2.95 3.55
Average reward 0.69 0.71 0.77 0.73
RMS H.A.E/(°) 18.98 18.02 16.09 14.83
All paths RMS C.T.E/m 4.87 421 3.96 3.24
Average reward 0.69 0.67 0.75 0.76

6. Conclusions

This paper proposes a path following control method for
USV with LSTM-DPPO based deep reinforcement learn-
ing. To enhance the controller’s generalization and practi-
cality, a path dataset is constructed, and the correspond-
ing LSTM-DPPO algorithm is developed to meet the
requirements of model training. The simulation results
show that the proposed LSTM-DPPO method could
improve the performance of the path following, lower the
heading angle and cross-track errors, and increase the
average reward along with the increase of training
epochs, which is superior in the most cases to other con-
trol methods including MLP-PPO and PID. Additionally,
the contribution of the path dataset to control perfor-
mance is also verified in the test. This reveals that having
diversity in the training environment for reinforcement
learning could be beneficial to the controller’s network
generalization performance. Future work will focus on
the application of the LSTM-DPPO method in the USV
in real.
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