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Abstract: Effective bearing fault diagnosis is vital for the safe
and reliable operation of rotating machinery. In practical applica-
tions, bearings often work at various rotational speeds as well as
load conditions. Yet, the bearing fault diagnosis under multiple
conditions is a new subject, which needs to be further explored.
Therefore, a multi-scale deep belief network (DBN) method inte-
grated with attention mechanism is proposed for the purpose of
extracting the multi-scale core features from vibration signals,
containing four primary steps: preprocessing of multi-scale data,
feature extraction, feature fusion, and fault classification. The
key novelties include multi-scale feature extraction using multi-
scale DBN algorithm, and feature fusion using attention mecha-
nism. The benchmark dataset from University of Ottawa is
applied to validate the effectiveness as well as advantages of
this method. Furthermore, the aforementioned method is com-
pared with four classical fault diagnosis methods reported
in the literature, and the comparison results show that our pro-
posed method has higher diagnostic accuracy and better
robustness.
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1. Introduction

Bearing is one of the most critical components in rotat-
ing machines. Nearly 40% to 50% of all rotating machi-
nery failures are in connection with bearing faults [1].
Accurate diagnosis and prognosis of rotating machinery
is vital for maintaining the safe and reliable operation of
rotating machinery. The fault diagnosis of bearings under
constant operating conditions has been extensively stu-
died [2]. However, in practice, bearings often run under
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multiple conditions along with different rotational speeds
and external loads. Bearings running under multiple con-
ditions are prone to various failures. Therefore, there is an
urgent need for reliable multi-working condition diagno-
sis methods, however, there is little in-depth research on
bearing fault diagnosis under multi-working conditions [2].

With the massive data collected in many systems, data-
driven fault diagnosis methods are faced with the chal-
lenges of big data processing and complex working con-
ditions. Different from the shallow neural network me-
thods, deep learning methods have remarkable ability to
process a vast amount of data, which are attracting more
and more attention.

In recent years, great progress has been made in fault
diagnosis using deep learning methods [3—11]. For
instance, some interesting results based on vibration sig-
nal processing using deep learning methods have been
reported in [12—21]. Deep belief network (DBN) [22] as a
widely used deep learning technique [23—25], can unify
feature extraction, feature reduction as well as pattern
recognition. In addition, it is able to extract representa-
tive information and sensitive features automatically. In
the context of massive data, DBN is a proper algorithm
for bearing fault diagnosis.

As discussed previously, bearings often run under mul-
tiple conditions, with their signals being unstationary. If
the deep learning algorithm is used for blind training of
vibration signals collected from different conditions, the
obtained features may have serious divergences even for
the same fault type [2]. Such divergence leads to the fact
that those bearing fault diagnosis methods developed for
constant running conditions are unsuitable for multi-con-
dition cases. Thus, it is the primary requirement for suc-
cessful data-driven bearing diagnosis methods under vari-
ous conditions to obtain comprehensive intrinsic charac-
teristics. Many researchers have been committed to fault
diagnosis using multi-scale method, and have achieved
some positive results [26—28]. Obviously, vibration sig-
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nals at different scales can provide diversified informa-
tion. Using a multi-scale resampling technique, different
features of vibration signals at different scales can be
obtained. Nevertheless, the features at different scales
often have different contributions to bearing fault diagno-
sis. It is important to eliminate redundant features to
enhance the performance of fault diagnosis. The atten-
tion mechanism will be adopted for such a purpose.

The attention mechanism [27-29] has been success-
fully applied to different research tasks. The main advan-
tage lies in that it can highlight the pivotal features.
Inspired by this idea, numerous researchers have begun to
apply the attention mechanism to fault diagnosis to obtain
favorable performance. In [29], an attention mechanism
was introduced into fault diagnosis in an efficient way.

In this regard, in this paper, a multi-scale DBN model
based on attention mechanism is proposed, which can be
used for fault diagnosis of bearings under multiple condi-
tions. Firstly, the vibration signals are processed to obtain
different scales. Then, multi-scale features are extracted
by DBN. Next, the combined scales with the highest
diagnostic reliability are selected. On the basis of the
principle of attention mechanism, the contributions of dif-
ferent scale features are calculated to assign the scale
weights. Based on the weighted features, multi-scale fea-
tures are fused for fault diagnosis.

The rest of this paper is described below. The basic
theory of the proposed method is introduced in Section 2.

Section 3 describes the multi-scale DBN model inte-
grated with attention mechanism. In Section 4, a bench-
mark dataset for bearing fault diagnosis under multiple
conditions is used to validate the effectiveness of the pro-
posed method. Moreover, some comparative results with
other fault diagnosis methods are provided. Finally, Sec-
tion 5 summarizes this paper.

2. Basic theory
2.1 Multi-scale data processing

Bearings often work at different rotational speeds and
load conditions. In this paper, the bearing fault under
multiple conditions is mainly considered, in which the
vibration signals of bearing failure will be more compli-
cated. The multi-scale vibration signals can be obtained
by down-sampling frequency.

As is known to all, the micro-scale data can reflect the
detailed characteristics, while the large-scale data can
describe the global characteristics. In general, the macro-
scale characteristics are able to provide more comprehen-
sive information for fault diagnosis.

Set X={x;,x,--*,X,,"--, xy} as the input of multi-
scale data input layer, where N denotes the initial length
of the vibration signals data, x, is the nth value of the
sampling point of the original vibration signal. Thus, the

corresponding data length is ——. As illustrated in Fig. 1,

the data form with different scale numbers (s = 1,2,3).
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Structure of multi-scale DBN method based on attention mechanism

Fig. 1

Due to the limitations described in Section 1, the final
scale number is not arbitrarily given. The larger the num-
ber of the scales, the longer the training time. To ensure
the timeliness of fault diagnosis, it is necessary to pre-
determine the number of scales, which will be discussed
in detail in Section 4.

2.2 DBN

DBN generally consists of multiple restricted Boltzmann

machine (RBM) [22]. Each RBM is composed of a visual
layer and a hidden layer. Fig. 2 shows the structure of
DBN. The feature extraction for fault diagnosis is rea-
lized through the iteration of RBM and fine-tuning using
the backpropagation (BP) neural network. In order to
solve the training problems of DBN, connection weights
of networks are optimized through layer by layer greedy
learning.
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2.3 Attention mechanism

To enhance the fault diagnosis performance, the attention
mechanism is applied to DBN, concentrating on the char-
acteristics that have a great impact on fault diagnosis.
Fig. 3 shows the structure of attention mechanism. On the
basis of attention mechanism, this paper adopts the stra-
tegy of “feature recalibration” [30]. According to the con-
tribution of each channel to the fault diagnosis, the atten-
tion mechanism assigns different weights to the final out-
puts of the hidden layer of each channel.

| DBN, | | DBN, |
0, 0,
0,0, IZIZI a0,

| Feature fusion |

| The new characteristic matrix 6’ |

Fig. 3 Feature fusion process of attention mechanism

Different scale features extracted from each channel
exert different influence on the fault diagnosis results.
The key is how to assign weights to different scale fea-

tures.
Set 6,, 6,, -, 8, -+, 8,to be the output matrix of hid-
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den layer for the ith scale (i =1,2,---,s), and there are k
hidden layer output nodes. Then, 8, can be given by

0, =[6:(1),6,(2),---,6:(k)]
)

0 = [6:(1),6,(2),--- ,0:(k)]
On the other hand, the average accuracy rate of fault
diagnosis in each scale can be regarded as confidence

level (noted as ej,ey,---,e; (i=1,2,---,5)). Thus, the
weight of each channel can be determined by

€ .
= ————— i=1,2,-,s
ert+e+---+e ) )

o tay+-ta,=1
Ultimately, the new characteristic matrix @' can be
updated by
0 =[a,0,(1) +@,0,(1) +--- + a,0,(1) ,
a,0,2)+ a,60,2) + -+ a,0,(2), -,
a,0,(k) + a,0,(k) + - - - + a,0,(k)]

g = 2 «;0;
i=1

3. Multi-scale DBN model integrated with
attention mechanism

3)

The diagnosis flow of the proposed multi-scale DBN
method integrated with attention mechanism is shown in
Fig. 4, which consists of four modules:

(1) The multi-scale data input layer, which is used for
receiving the vibration signals in different scales;

(i) The multi-scale feature extraction layer, which
aims to extract the features of each scale;

(iii) The attention mechanism layer, which is applied to
obtain multi-scale features using the attention mecha-
nism;

(iv) The diagnosis results output layer, which utilizes the
fused multi-scale features to achieve fault classification.
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Fig. 4 Diagnosis flow of multi-scale DBN method based on attention mechanism
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The multi-scale vibration data are input to the DBN,
and the process of training the data of each scale is called
a channel. Different from single-scale DBN training, after
multi-scale DBN iteration, the hidden layer output char-
acteristics of each channel are included in the attention
mechanism. The details of attention mechanism are dis-
cussed in Subsection 2.3.

As shown in Fig. 3, every scale has a channel, and
DBN is used for feature extraction. The weights are
assigned according to aforementioned principles, and a
new characteristic matrix @' is obtained.

With the obtained fused multi-scale features, a “soft-
max” activation function, which can generate the condi-
tional probability of each type of output, is employed to
realize the multi-class fault classification.

Bearing vibration
singnals

Multi-scale data processing

White Gaussian
noise

Data preprocess
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Specifically, as shown in Fig. 5, the fault diagnosis
process based on DBN with attention mechanism is
described as follows. Firstly, the multi-scale vibration
signals are obtained using the multi-scale method. Sec-
ondly, the multi-scale features are obtained through mul-
tiple RBMs with different channels. Thirdly, the atten-
tion mechanism is used to recalibrate the features of dif-
ferent channels. Subsequently, the fault diagnosis is real-
ized by using the “softmax” activation function in the
classification layer. It should be pointed out that the pro-
posed multi-scale DBN model with attention mechanism
can handle multiple time-varying conditions. Since the
multi-scale method can weaken random noise to some
certain extent, the influence of noise on fault diagnosis is
also considered.

Different sampling
frequencies

Multi-scale data

Multil-scale

Bearing fault

Classification . .
diagnosis

Fault diagnosis

feature

DBN training

Fig. 5 Fault diagnosis process based on DBN with attention mechanism

4. Experimental validation
4.1 Data introduction

In this section, the bearing vibration data under multiple
conditions provided by University of Ottawa is applied to
verify the performance effectiveness of the proposed
method.

Fig. 6 demonstrates the experimental platforms.
Table 1 introduces the dataset, and four variable speed
conditions are used for fault diagnosis, including the
increasing speed (marked as IS), decreasing speed
(marked as DS), increasing and then decreasing speed
conditions (marked as IDS), as well as decreasing and
then increasing speed (marked as DIS). In addition, in
order to highlight the superiority of this method, the
results of diagnosis are compared with four existing fault
diagnosis methods. In practice, considering that the vibra-

tion signals are polluted by noise, the Gaussian noise is
added to the bearing vibration data so as to verify the
robustness of this method.

/ g |

/ 1

Healthy bearing  Accelerometer

Fig. 6 Experimental set-up [31]
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Table 1 Introduction of bearing dataset
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4.2 Multi-scale data processing

Speed varying Bearing health Training Testing . . . .
conditions condition  FAPel st dataset As mentioned earlier, multi-scale data can provide more
Healthy 1 10 500 4500 comprehensive information for fault diagnosis. The multi-
IS Inner race fault 2 10 500 4500 sc?ale .data. are obt.ame(% by multi-scale proc.essn.1g of
vibration signals. Fig. 7 illustrates the overall situation of
Outer race fault 3 10 500 4500 ) X . A . A
vibration signals after processing six scales. According to
Healthy 4 10500 4500 Fig. 7, the vibration data obtained synchronously have
DS Inner race fault 5 10500 4500 different data lengths due to the reduction of the sam-
Outer race fault 6 10 500 4500 pling frequency. Moreover, the vibration signals obtained
Healthy 7 10 500 4500 are different with different sampling frequencies. In this
DS Inner race fault 8 10 500 4500 figure, the area around 1 000 000 sampling points of the
Outer race fault 9 10 500 4500 raw data is marked in red. As the scale increases, it can
be seen that the position of the point is changing. The
Healthy 10 10 500 4500 . . P P gmng
bearing signals from one to three scales are used as the
DIS Inner race fault 11 10 500 4500 . . . .
signals, while Fig. 8 merely shows the multi-scale pro-
Outer race fault 12 10 500 4500

cess of the first 4 000 samples.
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4.3 Scale selection and fault diagnosis results

Information contained in different scales has differ-
ent contributions to fault diagnosis. There are some
invalid scales affecting the timeliness of diagnosis.
Therefore, it is necessary to select a reasonable scale for
fault diagnosis. In order to select the appropriate scale,
fault diagnosis should be carried out on a single-scale,
and the scale with good diagnosis should be preferred.
Fault diagnosis is conducted on the vibration data of dif-
ferent scales. The accuracy, stability and time of fault
diagnosis are taken as the measurement standard. To
eliminate random factors, 20 trials are collected for each
scale. The results of fault diagnosis with scales from 1 to
5 under single time-varying condition (with increasing
speed) is shown in Table 2. It can be seen that the accu-
racy and stability of fault diagnosis have been improved
at scale 3.

Table 2 Fault diagnosis results at different scales

Number of Average Average standard  Average diagnostic
scales accuracy/% deviation time/s
1 96.26 2.041 311.594
2 96.48 0.749 538.051
3 98.73 0.153 767.237
4 98.48 0.166 1006.977
5 98.55 0.166 1226.475

Compared with the first two scales, the accuracy and
stability of diagnosis have not changed significantly with
the increase of scales in later stage, but the time required
for diagnosis is increasing. Thus, the number of scales is
set to 3.

4.4 Comparative experimental results

To highlight the advantages of the proposed method,

four other methods (single-scale DBN algorithm,
support vector machines (SVM) algorithm, back
propagation neural network (BPNN) algorithm

and probabilistic neural network (PNN) algorithm for
fault diagnosis based on the same datasets) are
used for comparisons. The multiple conditions inclu-
ding single time-varying condition and mixed time-
varying conditions are taken into consideration. Addition-
ally, the influence of noise on fault diagnosis is consi-

dered.

Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

4.4.1 Results of Experiment 1

The bearing vibration data under single time-varying
conditions (including the IS condition, DS condition,
IDS condition and DIS condition) are used for fault diag-
nosis. Figs. 9—11 list the diagnostic accuracy of 20 exper-
iments of several algorithms under different condi-
tions, respectively. According to Figs. 9—11, the average
accuracies as well as standard deviations of 20 fault diag-
noses under three conditions are listed in Table 3, respec-
tively.

100

st Nt ¥ veved Navees

Accuracy/%

75 - - - - - - - - - )
0 2 4 6 8 10 12 14 16 18 20
Number of experiments
—e—: The single-scale DBN; : The multi-scale DBN;
—+—:SVM; —+—: BP;

s B

Fig. 9 Diagnostic accuracy of two fault diagnosis experiments
under increasing speed conditions
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B

Fig. 10 Diagnostic accuracy of fault diagnosis experiments under
decreasing speed conditions
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Fig. 11 Diagnostic accuracy of fault diagnosis experiments under
increasing then decreasing speed conditions
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Speed varying condition

Increasing then

Combo time-varying

I i d D i d
Method TICTeasIng spee ccreasing spee decreasing speed rotational speed conditions
Average Standard Average Standard Average Standard Average Standard
accuracy/% deviation accuracy/% deviation accuracy/% deviation accuracy/% deviation
Multi-scale DBN 98.73 0.153 99.041 0.178 99.886 0.083 96.593 0.515
Single-scale DBN 96.48 0.749 93.131 0.190 92.739 0.693 89.177 0.527
SVM 92.77 0.190 90.986 3.673 90.082 2.118 85.368 2.861
BPNN 84.79 2.341 89.499 2.413 87.717 3.231 85.202 3.588
PNN 86.13 1.390 91.686 1.817 91.517 1.611 81.900 2.366
As shown in the figures, compared with the clas- 100
sical four methods, the proposed method has better ! 00000000
. . o 2 [0 0000000 o0fM°
diagnostic effect and stability. It can be seen from %0
. . . .. 0 0 0O 0 0 0 0 0 0 O
Table 3 that in 20 experiments under different conditions, 3t
. . 410 0 0 00000000 70
the average accuracy of this method is higher, and the 0 0 00 o o o BBo
.l . .o . . 5 3.73 :
stability of diagnosis is better in terms of standard devia- 5 f 60
. 2 6|0 0 0 0 O 0 0 0 0.690
tion. - _t 50
5 7(0 0 0 0 0 O 067 0 0 8.050
4.4.2 Results of Experiment 2 T gfo 000 0 0 0 257 164 6o 100 |40
. . . . . . 90 0 0 0 0 0 O O 0 0 0 30
Bearing vibration data under combo time-varying condi- oho 0 0000000
tions (including IS, DS, IDS and DIS conditions) are used 20
. . 10 0 0 0 0 0 0 0 O 10
for fault diagnosis. The average accuracy and standard 2lo 06000000000
deviation of 20 fault diagnoses are listed in Table 3, and S I s s e 0
1 2 3 4 5 6 7 8 9 10 11 12

the diagnostic accuracy of 20 experiments of several
algorithms is shown in Fig. 12.
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—a—: PNN.

18 20

Fig. 12 Diagnostic accuracy of fault diagnosis experiments under
mixed time-varying rotational speed conditions

As can be seen from Table 3, the average accuracy of
the proposed method is higher in 20 experiments under
combo time-varying conditions, compared with the other
four methods. Moreover, the proposed method has a bet-
ter performance in diagnostic effects, and the diagnostic
results are also stable, as shown in Fig. 12. In addition, it
can be observed that the accuracy rate of mixed working
conditions is less than that of single time-varying rota-
tional speed condition in Fig. 13.

Predicted label

Fig. 13 Confusion matrix for fault diagnosis

4.4.3 Results of Experiment 3

The strong noise in the actual environment can easily
interfere with the bearing vibration signal. However, the
data collected from the experimental platform may be
less disturbed by strong noise. The multi-scale process-
ing method is used to filter out high-frequency interfer-
ence and random noise partly. To verify the robustness of
the proposed method, white Gaussian noise is added to
the bearing vibration data (under the condition of increas-
ing and then decreasing the speed). The signal to noise
ratio (SNR) is expressed as

signalpower

SNR = 10lg )

noisepower

The vibration signal under time-varying conditions
mixed noise of =4 dB to 10 dB is used to verify the
robustness of the proposed method. Fig. 14 shows the
original signal and the vibration signal of 10 dB mixed
noise. The single-scale DBN algorithm, the SVM algo-
rithm and the PNN algorithms are utilized to diagnose the
faults with the same datasets. The results of fault diagno-
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sis is shown in Fig. 15. It can be seen from Fig. 15 that
the multi-scale method based on attention mechanism has
a higher diagnostic accuracy than the single-scale
method, the SVM method and the PNN method. Espe-
cially, when SNR=4, the obtained accuracy rate is greater
than 98%.
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Fig. 14 Original signal and vibration signal of 10 dB mixed noise
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Fig. 15 Fault diagnosis results under noise conditions

5. Conclusions

In this study, to develop the bearing fault diagnosis
method under multiple conditions, a multi-scale DBN
method based on attention mechanism is proposed. The
multi-scale vibration signal is obtained by multi-scale
method, and multi-scale features are obtained by the mul-
tiple RBMs in different channels. The features are recali-
brated by using the attention mechanism. At the classifi-
cation level, the “softmax” activation function is used to
realize fault diagnosis. Since the multi-scale method can
weaken random noise to a certain extent, the influence of
noise on fault diagnosis is also considered.

Experimental results demonstrate that the multi-scale
DBN method based on attention mechanism has higher
diagnostic accuracy and stability in fault diagnosis under

Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

mixed time-varying conditions, compared with single-
scale of DBN, SVM and BPNN algorithm. In addition,
this proposed method has better diagnostic recognition
rates and stronger robustness under different noise condi-
tions.
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