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Abstract: In this paper, we study scene image recognition with
knowledge transfer for drone navigation. We divide navigation
scenes into three macro-classes, namely outdoor special scenes
(OSSs), the space from indoors to outdoors or from outdoors to
indoors transitional scenes (TSs), and others. However, there are
difficulties in how to recognize the TSs, to this end, we employ
deep convolutional neural network (CNN) based on knowledge
transfer, techniques for image augmentation, and fine tuning to
solve the issue. Moreover, there is still a novelty detection prob-
lem in the classifier, and we use global navigation satellite sys-
tems (GNSS) to solve it in the prediction stage. Experiment
results show our method, with a pre-trained model and fine tun-
ing, can achieve 91.3196% top-1 accuracy on Scenes21
dataset, paving the way for drones to learn to understand the
scenes around them autonomously.
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1. Introduction

Humans can perceive and understand the scenes around
them because of their vision, it is one of the most natural
and magical things for adults to recognize the scene at a
glance. In the past, drones only paid attention to their
coordinates but not the “scenery” around them. With the
development and application of convolutional neural net-
work (CNN) and graphics processing unit (GPU), it has
become possible for drones to recognize the environment
around them like humans. The corresponding goal of
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computer vision is to achieve scene recognition, object
detection, and image segmentation through digital me-
thods that can reach to a similar effect of human vision.
In the past, extensive research has been conducted by scho-
lars and significant advancements have been achieved. Li
and Hu [1] proposed a distributed CNN architecture and
pre-training approach for remote sensing image target
classification. Lu et al. [2] proposed a novel channel
called the I-channel based on conventional red green blue
(RGB) images to enhance the performance of object
recognition. In addition, the object detection frameworks
based on deep learning that have a profound impact
include Fast R-CNN [3], Faster R-CNN [4], Yolov3 [5],
Y0lo9000 [6], Sdcnet [7], etc. It has made huge progress
in object detection tasks stems from the rise of CNN and
the public datasets recently [8—10]. In the domain of
scene recognition, a divide and conquer clustering stra-
tegy based on scene perception is proposed to cluster the
motion crowd [11]. Yang et al. [12] proposed a novel
latent topic model to learn and recognize scenes and
places . Eslami et al. [13] proposed the generative query
network (GQN), a framework without human labels or
domain knowledge. Furthermore, the impact of convolu-
tional network depth on its accuracy in large-scale image
recognition settings has also been investigated. The stu-
dies have shown that when the depth of weight layer
reaches 16—19, significant enhancements can be achieved
compared to existing techniques [14]. However, these
studies have revealed a paucity of research studies on the
application of scene recognition for the navigation of
drones [15—17]. For object detection, we only need to
recognize the objects in the images or videos, but for
scene recognition, we also need to analyze which cate-
gory it belongs to according to the ambient content, lay-
out and context reasoning, e.g., if an animal appears in
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the woods, the scene may belong to “mountain forest”,
“z00” or “forest path”, a bed inside a room may belong to
a family or a hotel. In other words, the object detection
focuses on the foreground (positive samples, objects) of
the image, while scene recognition focuses more on the
background (negative samples), this is one of the thorny
problems of scene recognition. Although there is much
literature on scene recognition in the past, there is still no
research on scene recognition for drone navigation. Con-
sequently, the research motivation of this paper is to
explore a scene recognition that is suitable for drone navi-
gation. Generally, we can apply vision-based simultane-
ous localization and mapping (SLAM) or light detection
and ranging (LiDAR)-based SLAM for drone navigation
in indoor scenes, and global navigation satellite systems
(GNSS) for drone autonomous navigation in outdoor
scenes. The signal of GNSS performs well in outdoor
scenes, but there is no signal in indoor scenes, the worst
case is that the signal is discontinuous in the transitional
scenes (TSs), which is fatal to the drone. If the drone can
perceive the flight scene in advance, and then switch dif-
ferent navigation modes in time, e.g., visual-based SLAM
navigation, LiDAR-based SLAM navigation or multi-
sensor fusion navigation mode, it will greatly improve the
flight safety of the drone.

Firstly, we train the model based on CNN backbone
with transfer learning on our dataset Scenes21 which is
based on [18]. Secondly, we judge whether the result of
the test stage is correct through the novelty detection
module. The certain category will be output directly if its
probability is high, otherwise, we will make further judg-
ment through the signal strength of the GNSS. The key
contributions of this paper are as follows: First, we
employ a knowledge transfer method [19] based on
ResNet [20] and ResNeXt [21], use the pre-trained
weights to initialize the network, then modify the classi-
fier and retrain the model with fine-tuning. Second,
dataset Scenes21 is created based on Places365 dataset
[18], we reclass the dataset into three macro-classes
according to the drone navigation task, namely outdoor
special scenes (OSSs), TSs and others, especially rede-
fine the TSs category. In addition, we expand some
classes of the dataset with data augmentation. Finally, we
use GNSS to assist in solving the problem of scene classi-
fication novelty detection and other scenes recognition in
the evaluation stage.

Next, we present the method details of this paper in
Section 2. In Section 3, we describe the experimental
platform and model training details. The experimental
results are analyzed in Section 4. In Section 5, we give
the conclusions and look forward to future work.
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2. Method

The method of scene image recognition is shown in
Fig. 1.
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Fig. 1 Method of scene image recognition

2.1 Novelty detection

The dataset is a set of image samples x; with correspond-
ing class labels w,;. Bayes decision rule is an important
method of pattern recognition [22], which can be written
as

xew; & P(xlw) P(w) > P(xlw,) P(w)), Yj#i (1)

where P (x|w;) is referred to as the likelihood function of
w; with respect to x, P(w;) is the a priori probability,
P(xlw;) and P(w;) are the same as above [23]. The
Bayes decision rule in (1) assigns every sample x; to one
class w;. The scene classifications in the dataset are only
part of the scenes we may encounter, and the reality
scenes are more complex, the drone may encounter
scenes that do not belong to any training dataset when it
is flying, how to divide this scene is what we call novelty
detection, the next problem is how to estimate P (x|w;).
Theoretically, we can solve this problem by calculating
the histogram of sample feature vectors of the training
dataset, however, due to the so-called curse of dimension-
ality, this method cannot be used in practice. The single-
layer perception classifiers are simple, but their classifi-
cation capabilities are very limited. As described in [22],
the multilayer perceptron (MLP) and CNNs are inhe-
rently incapable of novelty detection, it is usually neces-
sary to collect samples to form an explicit rejection class
to equip MLP and CNNs with the capability of novelty
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detection. To solve this problem, a dataset and CNN-
based model are required, which will be discussed in
Subsection 2.2 and Subsection 2.3.

2.2 Datasets with image enhancement

All classifiers need a method to obtain probabilities or
segmented hypersurfaces, to achieve this purpose, a train-
ing dataset is needed [22]. In the paper, we propose a
trimmed dataset named Scenes21 based on the Places365
dataset [18] according to the task of drone navigation.
The dataset Scenes21 is divided into three macro-classes:
0SSs, TSs, and others, there are about 100 000 images in
the Scenes21 dataset after reclassification. The “TSs”
include doorway, exterior, interior, building facade and
porch. The key features of “TSs” is the sudden disappea-
rance or sudden appearance of GNSS signals, because the
drone is flying from indoor to outdoor, or from outdoor to
indoor, so the signals in these areas are unstable. The
“OSSs” include 16 categories, e.g., airfield, alley, forest
path and street, indoor and other scenes are classified as
others. As mentioned earlier, the problem of multi-path
signals of GNSS in urban canyon areas, such as alleys,
skyscrapers, viaducts [24]. Besides that, the signal of
GNSS is weak or unstable in the OSSs, e.g., forest path,
broadleaf, and forest road. We discover in the Places365
dataset that a scene image can depict multiple indepen-
dent categories such as “building facade” and “exterior”.
We reclassified the two categories into one category
named “transition exterior”. In addition, we assign OOSs,
indoor and other unpredictable scenes to the others uni-
formly. The key features of the “OOSs” are wide space,
good vision, and good GNSS signal, and there is no
GNSS signal for the drone in indoor scenes. The indoor
scenes and the “OO0OSs” can be judged according to the
signal quality of GNSS in the prediction stage. The
detailed classification of Scenes21 is shown in Fig. 2.

1311

Exterior

Others

i ‘ 1

Fig. 2 Scenes21 dataset

The datasets we use often have noise due to the influen-
ce of random error and the error in the measuring camera.
We can expand the scale of training datasets and reduce
the influence of noise through the techniques for image
enhancement that can reduce the dependence of the
model on some attributes of images, to improve the gen-
eralization ability of the model. An image is composed of
a limited number of pixels, which reflect the brightness at
a specific position of the image, so we can reduce the
sensitivity of the model to contrast by adjusting the
brightness. In addition, the common techniques include
flipping images horizontally or vertically, clipping, color
transformation, expansion and rotation. The left figures
show the data enhancement results of the middle-upper
figure, and the right figures show the data enhancement
results of the middle-lower image in Fig. 3.

0 100 200 0

Fig.3 Raw image and the images are processed by combining multiple techniques for image augmentation
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2.3 Knowledge transfer

The scene image classification for drone navigation is the
focus of this paper. Currently, the public largescale scene
training model Places-CNN and ImageNet-CNNs (e.g.,
visual geometry group (VGG), ResNet, Inception-v3,
ResNeXt, Wide ResNet) cannot fully meet our require-
ments. Moreover, due to the limitation of computing
capability for our GPU, it takes a lot of time to retrain the
model on the public large-scale datasets. This paper tries
two transfer learning methods on our newly classified
Scenes21 dataset, one is to train only the full connection
layer after freezing all weights for all other networks, the
other is to train all parameters after loading the weights of
the pre-trained model. We compare the error and recogni-
tion accuracy of the two methods respectively. Then, we
retrain two types of backbones based on the transfer
learning method with good performance, one based on
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ResNet, and the other based on ResNeXt, and analyze the
performance of the Scenes21-ResNet by comparing its
error and accuracy with the Scenes21-ResNeXt back-
bone in this paper.

The detailed architecture of Scenes21-ResNet with
ResNet-101 is shown in Fig. 4, bl represents the bottle-
neck without shortcut convolution and stripe=1,
b2 stands for the bottleneck with shortcut convolution
and stripe=1, b3 stands for the bottleneck with shortcut
convolution and stripe=2, bottleneck block was origi-
nally proposed in [20]. The bottleneck has three convolu-
tion layers, and the convolution kernel size is 1x1, 3x3,
and 1x1. The number of input and output channels of the
3x3 convolution layer is less than that of 1x1, to realize
efficient calculation. The full connection lay is changed
from 1000 to 21 categories based on our dataset
Scenes21.

Conv4
Conv5

Fully conected
layer

Fig. 4 Detailed architecture of Scenes21-ResNet with ResNet-101

2.4 GNSS-aided

We discussed that the classifier model based on CNN
itself does not have the capacity for novelty detection
[22] in Subsection 2.1. In addition to the method of
adding an anomaly class others introduced above, this
paper also relies on the GNSS to assist novelty detection.
In the prediction stage, firstly, we obtain the confidence
of the scene classification based on the trained model. If
the classification belongs to the OSSs or TSs, we set
M =1, in other cases, we set M,=0.

1, w;€0SSsorw; €TSs
M, = (2)

0, others

Secondly, we simulate the GNSS signal strength of the
actual scenes to assist the decision-making. When the
number of satellites received by the GNSS receiver is less
than A;, we set M, =1, and when the number of satel-
lites is higher than A;, we set M, = 0, the threshold of A;
is usually set to 13.

1’ Nstar < /lT
M, = 3)
09 Nslar > AT

Then, we perform OR logic operates for M, and M,,
the output is either 0 or 1. If the output M = 1, it means
the navigation is based on LiDAR and SLAM or Visual-
SLAM. If it is 0, it means navigation based on GNSS.
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The corresponding truth table for the OR operation is
given in Table 1. By doing so, when the scenes belong to
the OSSs or belong to the TSs, even if the GNSS signal is
good, the navigation mode will immediately switch to
LiDAR-SLAM or Vision-SLAM, which can avoid drone
crashes or safety accidents.

Table 1 Truth table for OR operates

M, M, M(OR) Mode
0 0 0 GNSS (BDS/GPS/GLONASS)
0 1 1 LiDAR-SLAM or Vision-SLAM
1 0 1 LiDAR-SLAM or Vision-SLAM
1 1 1 LiDAR-SLAM or Vision-SLAM

2.5 Loss function and optimization algorithm

The loss function is also called the cost function, which is
applied to measure the error of the model. The smaller the
value of the loss function is, the better the model and
parameters conform to the training dataset. Therefore, the
process of training the model is the process of optimizing
the loss function. The research goal of this paper is to
classify scene images, we assume that the number of
samples in the training dataset is N, so we use the cross-
entropy loss function

N M
D> wdlogi () @)

i=1 k=1

J=-

=z =

where M is the number of label classifications, y, (i) rep-
resents the one-hot encoding of the k label of sample i. If
the label given by the training datais k(k =0,1,--- ,M - 1),
then y, (i) = 1, and the others are 0. ¥, (i) represents the
prediction probability that sample i belongs to category
k. In order to transform ¥, (i) into a probability distribu-
tion that lie in the range [0, 1] and sum to 1, we use Soft-
Max function [25], given by

exp (z; (1)
M

D exp (@)

k=0

j}k (l) = (5)

where z; (i) is the output of classification k& of sample i.
We can use the optimizer to optimize the model based on
the loss function. This article uses momentum based
stochastic gradient descent (SGD). The momentum calcu-
lation method [26,27] is expressed as

{mt+l =ym, —§Vf(.],)

i1 = J +myy

(6)

where £ is the learning rate, y € [0, 1] is coefficient of the
momentum, and Vf(J,) is the gradient at J,. In addition

to the SGD optimization algorithm, we also use the adap-
tive moment (ADAM) [28] estimation algorithm. In the
early training stage, ADAM algorithm is used in the early
stage of training, then we switch to the SGD optimiza-
tion method after getting better parameters.

3. Implementation details

Our implementation is based on [20,21] and the publicly
available code [18] in the deep learning framework
PyTorch. On the trimmed Scenes21 dataset, the input
image is 224x224 randomly cropped and flipped horizon-
tally from a resized image using the scale and center.
Firstly, we change the fully connected layer to 21 cate-
gories. One method is to freeze the parameters of all lay-
ers except the fully connected layer, initialize with the
parameters of the ResNet network, and train only the
parameters of the fully connected layer. Another method
is to initialize with the parameters of the ResNet model,
retrain all layers. Then we compare the errors of the two
methods, select the method with the smaller error for
retraining. We use SGD optimization method [26,27]
with a batch size of 64 on one GPU (RTX 2080 Ti) for
ResNet-18 and ResNet-34, a batch size of 32 for ResNet-
50 and ResNeXt-50, and compare which optimization
method is better. The weight decay is 0.0001 and the
momentum is 0.9. We start from a learning rate of 0.1,
and then decayed it by 10 every 30 epochs in the training
[18]. Then we retrain by adjusting the initial learning rate
to 0.01 and 0.001. Based on the ADAM optimization
method, we train ResNet-34 with initial learning rates of
0.01 and 0.001, respectively, and ResNet-50 with initial
learning rates of 0.001 and 0.000 1, respectively. We also
consider the fusion use of ADAM and SGD optimization
algorithms, for example, we first use ADAM with an ini-
tial learning rate of 0.0001 and then use SGD optimiza-
tion algorithm with an initial learning rate of 0.001 for
ResNet-34 and ResNet-50. We first use ADAM optimiza-
tion algorithm for training, obtain better parameters, and
then switch to SGD with momentum optimization method
to achieve the best performance. Finally, we retrain the
model based on the ResNeXt [21] with the ADAM opti-
mization algorithm and transfer learning method, and get
which method and model has smaller error and a higher
accuracy.

4. Experimental results
4.1 Scene image classification on Scenes21 dataset

We conduct comparative experiments on the 21-class
Scenes21 classification task based on [18]. We follow
two methods to compare the error base on 18-layer, 34-
layer and 50-layer residual networks. One method is to
freeze the parameters of all layers except the fully con-
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nected layer, and train only the parameters of the fully
connected layer, the other method is to train all layers.
Both methods are initialized with the parameters of pre-
trained model ResNet. We can get the experiment results
shown in Fig. 5 after training.
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Fig. 5 Training on Scenes21 dataset with different transfer learn-
ing method
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In Fig. 5, we show the training results based on the
Scenes21 dataset, and all models are trained using only
the SGD optimization algorithm. The weight decay is
0.0001 and the momentum is 0.9. We start from a learn-
ing rate of 0.1, and then decay it by 10 every 30 epochs in
the training stage. The blue dashed line, the red dashed
line and the cyan dashed line represent the errors and the
accuracy of top-1 and top-5 based on ResNet-18, ResNet-
34 and ResNet-50 with only the fully connected layer is
trained, respectively, while the blue solid line with trian-
gles, the red solid line and the cyan solid line represent
the errors based on ResNet-18, ResNet-34 and ResNet-
50, respectively, and all layers are trained. We have
found that training all parameters of the model has
smaller error and higher accuracy from the experimental
results. In the following experiments, we train all parame-
ters of the model and compare the error and accuracy of
different optimization methods. The experimental results
are shown in Fig. 6.

Loss

02
0 5 10152025303540455055606570758085

Epochs
(a) Training error

Top-1 accuracy/%

45 —— L S . —
0 510152025303540455055606570758085
Epochs

(b) Training accuracy of top-1



DU Hao et al.: Scene image recognition with knowledge transfer for drone navigation 1315

100

98

96

92 |

Top-5 accuracy/%

90

88

86 L— L ; : . s :
0 510152025303540455055606570758085
Epochs

(c) Training accuracy of top-5
—o— : ADAM ResNet-34; -+ : SGD ResNet-34;
—+ : ADAM+SGD_ResNet-34; -e- : ADAM_ResNet-50;
-&- : SGD ResNet-50; -+- : ADAM+SGD_ResNet-50.
Fig. 6 Training on Scenes21 dataset with different optimization
method

We apply the optimization algorithms of SGD, ADAM
and the fusion of ADAM and SGD based on ResNet-18,
ResNet-34 and ResNet-50, and compare which method is
better. In Fig. 6, the solid red lines with circles, triangles
and crosses represent the errors of using ADAM, SGD
and a fusion of ADAM and SGD optimization algo-
rithms and training based on ResNet-34 network, respec-
tively. The blue dashed lines with circles, triangles and
crosses represent the errors and the accuracy of top-1 and
top-5 of using ADAM, SGD and a fusion of ADAM and
SGD optimization algorithms and training based on
ResNet-50 network, respectively.

In Fig. 7, we show the training results based on the
Scenes21 dataset with ResNet and ResNeXt, and the
backbones are trained using only the ADAM optimiza-
tion algorithm. We start from a learning rate of le—4,
betas = (0.9, 0.999), eps = 1e—8. The blue solid line with
circles and the red dashed line with circles represent the
errors and the accuracy of top-1 and top-5 based on
ResNet-50 with ADAM optimization, respectively. The
error of the ResNet-50 and ResNeXt-50 with ADAM is

0.3488 and 0.2567. The experimental results show that
the ResNeXt backbone has smaller error and higher accu-
racy.
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Fig. 7 Training on Scenes21 dataset with the backbone of ResNet
and ResNeXt

In order to analyze the experimental results of Fig. 6
and Fig. 7 more clearly, we show the results and training
parameters in Table 2.

Table 2 Error and accuracy of the trained model based on Scenes 21 dataset

Method Batch-size Learning rate Error Top-1 acc/% Top-5 acc/%
ResNet-34 with ADAM 64 0.001 0.4333 85.1582 98.5694
ResNet-34 with SGD 64 0.001 0.3939 86.604 8 98.8251
ResNet-34 with ADAM + SGD 64 ADAM:1e—4, SGD:1e—3 0.3498 88.0166 98.9125
ResNet-50 with ADAM 32 0.0001 0.3488 88.0570 98.9162
ResNeXt-50 with ADAM 32 0.0001 0.2567 91.3196 99.2593
ResNet-50 with SGD 32 0.3599 87.6350 99.9191
ResNet-50 with ADAM + SGD 32 ADAM:1e—4, SGD:1e—3 0.3913 86.4732 98.8608
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In Table 2, the model trained based on ResNet-50
backbone with ADAM optimization algorithm has less
error and higher accuracy (acc) than that trained based on
ResNet-34 backbone with ADAM, SGD and a fusion of
ADAM and SGD optimization algorithm. The model
trained based on ResNet-50 with ADAM has a smaller
error and higher accuracy of top-1 than that trained
by other optimization methods. The model trained based
on ResNet-50 with SGD has higher accuracy of top-5
than that trained by other optimization methods, so we only
apply the ADAM as the optimization algorithm based on
the ResNeXt-50 backbone. The model trained based on
ResNeXt-50 with ADAM optimization algorithm has
smaller error and higher accuracy of top-1 and top-5 than
the model trained based on ResNet-50 with ADAM opti-
mization algorithm. In short, the model trained based on

ResNeXt-50 backbone with ADAM optimization algo-
rithm has the smallest error and the highest accuracy.

The results of Scene images which are predicted by the
model trained on the Scenes21 dataset with ResNeXt-50
backbone is shown in Fig. 8. The three images on the left
all belong to the category “OSSs”, and their ground-truth
labels are skyscraper, forest road, and alley, respectively.
The three images in the middle belong to the “TSs” cate-
gory, and their ground-truth labels are all transition/exte-
rior. The three images on the right belong to the “others”
category, and their ground-truth labels are all others,
which contain indoor scenes and outdoor open scenes.
Labels and the top-5 predictions are shown, and the num-
ber in each bracket represents the prediction confidence.
We can see that most of the top five responses are very
relevant to the scene description.
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s transition/intcrior (0.001)
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Fig. 8 Images from the validation set are predicted based on the Scenes21-ResNeXt

4.2 Novelty detection based on GNSS

The class “others ” includes outdoor open scenes and
indoor scenes, which can be distinguished according to
GNSS in the evaluation stage, and some errors or ambi-
guities can also be corrected based on the GNSS, the spe-
cific method is introduced in Subsection 2.4. The number
of satellites in different environments is shown in Fig. 9.
The real-time signal of GNSS in different scenes is
shown in Fig. 9. The abscissa represents time, and the
ordinate represents the number of satellites. In the range
of 0—153 s, GNSS is in the initialization stage (INIT), and
in the range of 154-311 s, the number of satellites is sta-
ble above 14, which means that the signal is very good, it
is in an outdoor open environment. In the range of
312-529 s, the number of signals fluctuates between
7—14, which is very unstable and is in the transition state
from indoors to outdoors or outdoors to indoors. In the
range of 530—570 s, the number of satellites is close to 0,
which means it is in an indoor environment.
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Number

0 100 200 300 400 500 600
Time/s

Fig. 9 Number of GNSS satellites in indoor scenes, outdoor scenes,
and TSs
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5. Conclusions and future work

This article does not propose a new backbone for scene
recognition, but trains the model based on the existing
ResNet and ResNeXt backbone and a transfer learning
method. The Scenes21 dataset proposed in this paper is
based on Places365 dataset, but has been cut into 21 cate-
gories according to the flight scenes of the drone, and the
scene images collected by our drone are also added.
Although the dataset contains a novelty detection class,
the drone may still encounter scene problems that do not
belong to the Scenes21 dataset in real-time flight, that is,
novelty detection problems. In this paper, we combine the
scene recognition results with the simulated GNSS signal
in real-time scene to solve the novelty problem, and pave
the way for real-time scene recognition in the future. Due
to the influence of computing power, we train the model
based on ResNet-18, ResNet-34 and ResNet-50 back-
bones with ADAM, SGD and fusion of ADAM and SGD
optimization algorithm for respectively, and only train the
model based on ResNeXt-50 backbone with ADAM. It is
found that based on the Scenes21 dataset, the model
trained with ResNeXt-50 backbone and ADAM optimiza-
tion algorithm has the smallest error and the highest accu-
racy. In the future work, we will continue to improve the
dataset according to the common scenes of the drone. In
addition, we will perform real-time scene recognition in
flight by loading the model on the computing platform of
the drone and be able to realize autonomous navigation in
various scenes.
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