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Abstract: The key advantage of unmanned swarm operation is
its autonomous cooperation. How to improve the proportion of
cooperators is one of the key issues of autonomous collabora-
tion in unmanned swarm operations. This work proposes a stra-
tegy dominance mechanism of autonomous collaboration in
unmanned swarm within the framework of public goods game. It
starts with the requirement analysis of autonomous collabora-
tion in unmanned swarm; and an aspiration-driven multiplayer
evolutionary game model is established based on the require-
ment. Then the average abundance function and strategy domi-
nance condition of the model are constructed by theoretical
derivation. Furthermore, the evolutionary mechanism of parame-
ter adjustment in swarm cooperation is revealed via simulation,
and the influences of the multiplication factor r, aspiration level
a, threshold m and other parameters on the strategy dominance
conditions were simulated for both linear and threshold public
goods games (PGGs) to determine the strategy dominance char-
acteristics; Finally, deliberate proposals are suggested to pro-
vide a meaningful exploration in the actual control of unmanned
swarm cooperation.
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1. Introduction

Continuing advances from a third wave of artificial intel-
ligence (Al) has resulted in the development of “swarm
evolutionary intelligence” from “individual autonomous
intelligence”, which has become one of the key character-
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istics of Al 2.0. In particular, unmanned combat swarms
(unmanned land vehicle swarms [1—3], unmanned sur-
face warship swarms [4—6] and unmanned aerial vehicle
(UAV) swarms [7—-10]) have received unprecedented
attention in the military domain. For example, the US
military considers swarm operations to be a disruptive
technology that can change combat rules.

Unmanned swarms are currently primarily controlled
in centralized and autonomously cooperative ways. Cen-
tralized control relies on orders from the ground station
and pre-programming of UAVs, whereas autonomously
cooperative control requires a swarm to make
autonomous decisions based on specific situations.
Unmanned swarms are faced with the extreme difficulty
of maintaining communication and a sharp increase in the
probability of communication failure in a complex elec-
tromagnetic environment, especially when going deep
behind enemy lines [11]. As centralized control can fail
under these circumstances, unmanned swarms must be
able to carry out a targeted emergency response based on
the status of both the enemy and our own forces, the bat-
tlefield environment and other factors, while continuing
to fulfil the military missions depending on intra-swarm
self-organization and self-collaboration.

The global optimal allocation of resources is an essen-
tial component of the autonomous collaboration of
unmanned swarms and profoundly impacts the combat
effectiveness. However, the individual interests/payoff of
each intelligent unit need to be balanced against the
global operational requirements of the entire swarm. Con-
sidering a fire strike as an example, intelligence enables
each combat unit to make independent decisions. Units
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ensure battlefield survivability by carefully controlling
the amount of ammunition fired or launched. However,
the higher the firepower support one unit provides, the
more beneficial the overall combat effectiveness of the
swarm is. A conflict between the swarm and individual
units can result in a “tragedy of public resources” [12].
This conflict is a difficult and urgent issue for both
swarm control and practical training/operations and war-
rants the design of a reasonable mechanism for the
autonomous collaboration of swarms.

The essence of swarm self-collaboration is the unity of
opposites among individuals, that is, attaining the equilib-
rium of payoff. Evolutionary game theory [13,14] has
opened the door to realizing swarm self-collaboration.
Specifically, the public goods games (PGGs) [15] pro-
vides a theoretical framework within which the mecha-
nism of self-organization can be elucidated to effectively
control swarm conflicts. Research on methods to improve
the proportion of collaborators in the game and obtain a
strict strategy dominance condition is an important pre-
requisite to resolving the “tragedy of public resources”
and realizing the autonomous collaboration of unmanned
swarms.

A research team led by Professor Nowak at Harvard
University [16,17] used mathematical derivations and
simulations to develop an evolutionary dynamics-based
strategy dominance condition of the multiplayer game
under a weak selection intensity. Antal et al. [18] pro-
posed a strategy dominance condition for a two-player
game that was subsequently used to determine the stra-
tegy dominance conditions under any selected intensity
for a multiparty game based on imitation dynamics
[19,20], thereby extending the results of Nowak et al.
However, Nowak et al. considered evolutionary dynamics
[16,21], Roca et al. determined the strategy dominance
condition for an aspiration-driven updating rule [22]. Du
et al. applied the results of Tarnita et al. [23] in conjunc-
tion with a statistical analysis and computer simulation to
find that the average abundance was independent of the
aspiration level under a weak selection intensity [24].
Furthermore, Du et al. extended this theoretical result to
determine the strategy dominance condition for the multi-
player game under a weak selection intensity [25,26].

The aforementioned studies have laid a solid founda-
tion for studying self-organization and self-collaboration
of swarms. However, the results of these studies prima-
rily apply to common evolutionary game models and not
the PGGs, which is the basic theoretical framework for
investigating the strategy dominance condition of
unmanned swarms and addressing the “tragedy of public
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resources ”. In addition, no studies with military appli-
cations have been performed. Existing PGGs mostly
apply to environmental pollution [27], urban public
resource development [28], cultural evolution [29], etc.
Given the unique attributes of the military and the no-
velty of warfare mode of unmanned swarm, few results of
the aforementioned studies are relevant to military appli-
cations.

We have also conducted an exploration on the self-col-
laboration mechanism of unmanned swarm. We have theo-
retically derived the average abundance function for a
multiplayer PGGs and analyzed the influences of rele-
vant parameters on the average abundance, and the rele-
vant achievements can be referred to [30—33]. On the
basis of the average abundance function in [31], we fur-
ther derive the strategy dominance conditions of linear
and threshold PGG. Furthermore, the influences of the
multiplication factor, aspiration level, threshold and other
parameters on the strategy dominance conditions were
simulated in this research. The collaborative of unmanned
swarms was modeled in this study based on the aspiration-
driven updating rule and the multiplayer evolutionary
game framework. The average abundance function was
then used to derive the collaborative strategy dominance
condition of the multiplayer evolutionary game, and the
strategy dominance conditions of linear and threshold
PGGs were obtained. The corresponding characteristics
were analyzed, and the results were used to make the re-
commendations for preventing the “tragedy of public
resources” and implementing the autonomous collabora-
tion of unmanned swarms.

The innovative work of this study includes that the
analytical framework for autonomous collaborative
behavior in unmanned swarms is put forward, relation-
ship between the concepts of the unmanned swarm and
the multiplayer public goods game is proposed and the
strategy dominance conditions of linear and threshold
PGGs are obtained respectively.

2. Military requirements

The autonomous collaboration of unmanned swarms
involve three key components, i.e., emergent intelligence,
the construction of information network and the design of
coordination mechanism. These three components form
the basic framework of the autonomous collaborative
behaviour of unmanned The relationship
between these three components is shown in Fig. 1. The
construction of information network is not a central con-
sideration in this study and is only described briefly with
grey font.

swarms.
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Fig. 1 Analytical framework for autonomous collaborative behaviour in unmanned swarms

The emergent intelligence of a swarm from indivi-
duals provides the internal motivation for the autonomous
collaborative behaviour of the swarm. The information
network is the space in the swarm where information
interactions take place and the carrier of autonomously
collaborative behaviour. The coordination mechanism is
the ultimate pathway to realize swarm self-collaboration.
Emergent intelligence and the coordination mechanism
are discussed in detail in the following sections.

2.1 Emergent intelligence

In unmanned swarm, units with “intelligence” not only
passively accept preset instructions, but most importantly,
they optimally coordinate and organize their own
resource, cost, behavior and other factors through the pro-
cesses of unmanned autonomy, senior driven, collabora-
tive interaction, utility optimization, capability genera-
tion and so on. At the swarm level, higher-level intelli-
gence beyond individual intelligence emerges, and finally
realizes the optimization of the overall utility of the
swarm.

Intelligence includes the “single intelligence” of indi-
viduals and the “emergent intelligence” of swarms and is
a prerequisite for the distributed autonomous control of
swarms. Using unmanned swarms to carry out military
missions based on a predetermined plan has inherent
shortcomings. The complex battlefield environment cor-
responds to a continuously changing scenario. Imple-
menting micromanagement on a single unmanned plat-
form can severely strain resources such as communica-
tion. That is, the responsive control of many unmanned
platforms is beyond the current technology, cognition and
decision-making capabilities of human beings, with a
high probability of leading to the failure of combat opera-
tions. Hence, more decision-making and action rights

must be transferred to the autonomous control system of
unmanned swarms to enable an unmanned platform to
independently coordinate its own decision-making to pro-
mote behaviours that enable the swarm to realize its ope-
rational goals.

The Defense Science Board of the US Department of
Defense identified intelligence and autonomy as the core
capabilities of the U.S. military’s unmanned systems and
analyzed the benefits of intelligence and autonomy to
UAVs, unmanned ground systems (UGSs), unmanned
marine vehicles (UMVs) and unmanned space systems
(USSs) [34]. Unmanned swarm operation systems will
require a high level of perception, analysis, planning,
decision-making and execution capabilities in the future
to autonomously perceive a battlefield situation, plan
combat missions, carry out combat actions, coordinate
combat actions and evaluate combat effects.

Although the individual in swarm has intelligence,
the achievement of the optimal overall utility at the
swarm level is not made overnight, but an iterative and
self-organizing evolution process. Individuals must
modify and improve strategies through a large number
of repeated game processes, learning, imitation and trial
and error, so as to constantly adapt to the external envi-
ronment and finally achieve the optimal overall utility of
the swarm. In the military field, from the long-term
development of war form, the generation of intelligence
and its impact on combat is also a long-term develop-
ment process. Unmanned combat utilizing a remote-con-
trol mode for human-computer interaction has pro-
gressed to a collaborative mode characterized by man-
machine integration and is developing towards an
autonomous collaboration mode featuring human-
machine integration [35—37]. Emergent intelligence in
unmanned swarms could evolve from the “embedding of
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intelligence ” with man playing the leading role supple-
mented by machines to “intelligent support” featuring
unmanned autonomy and finally to “intelligence domi-
nance” with bionic autonomy and autonomous attack and
defence by swarms.

2.2 Coordination mechanism

In the military field, the winning mechanism of intelli-
gent warfare is more manifested in “intelligence” and
“autonomy”. Therefore, the autonomy of various unman-
ned systems and platforms will have to be improved with
the needs of the battlefield in the future. The unmanned
swarm combat system will have higher perception, analy-
sis, planning, decision-making and execution capabilities,
and must be able to continuously complete the necessary
control functions under uncertain object and environmen-
tal conditions and without participation. The regional dis-
tribution, intelligent autonomy and decentralization of an
unmanned swarm operation system require orderly col-
laboration of the UAVs in the unmanned swarm based on
the information network, thereby ensuring good battle-
field survivability and mission completion capabilities.

An intelligent single unmanned platform interacting
with other platforms needs to calculate and evaluate its
energy, loss and cost to maximize its “payoff”. The com-
petition between individuals inherent in this process
causes the individual “payoft” to deviate from the opti-
mal total “utility” of the swarm. Hence, maintaining an
individual payoff that is consistent with swarm utility is a
key issue in designing a coordination mechanism.

A well-designed coordination mechanism is key to
resolving the conflict between the individual payoff and
total swarm utility. Further analysis of the competition
and conflict between components (individuals) and the
system (collective) needs to be performed within the
framework of classic multi agent system (MAS) theory
[38], complex adaptive systems (CAS) theory [39] and
the complex network [40].

Unlike traditional optimization, swarm collaboration
does not necessarily improve the adaptability of all indi-
viduals by simply selecting a specific behaviour. A com-
plex situation is frequently created when the direct influ-
ence of interacting individuals on each other creates a
conflict between individuals’ pursuits of improving their
interests. Game theory provides an effective research

framework within which to study interaction and coordi-
nation among multiple individuals in a swarm.

All the individuals are participants in the game, and all
the optional behaviours form the strategy set of the game.
The participants, the strategy set and the payoffs corre-
sponding to various strategies constitute the game. Indi-
viduals choose a strategy by evaluating the influences of
the surrounding individuals and environmental factors
and use adaptive learning from repeated games to maxi-
mize their own payoffs and those of the swarm [41,42].
Finally, the swarm coordination mechanism can be deter-
mined using Nash equilibrium for the classical game or
the evolutionary stable strategy (ESS) for the evolution-
ary game.

3. Mathematical model

The evolutionary game theory combines “equilibrium” in
economics with “adaptability” in biology to depict the
process that individuals adapt to the external environ-
ment through learning, imitation and trial-and-error
under boundary rationality and asymmetric informa-
tion. And the PGG provides a basic theoretical frame-
work for revealing the cooperative evolution mechanism
and coping with the tragedy of the commons. PGG
reflects that investors(collaborators) and hitchhikers
(non-collaborators) play strategic games over time based
on cost, multiplication factor, selection intensity, etc.,
which makes the proportion of collaborators and betra-
yers in the population change dynamically, and finally
tends to an evolutionarily stable state. The research focus
of PGG is to calculate the mathematical expectation of
the proportion of collaborators in a population after multi-
round game, that is, the average abundance, and then ana-
lyze the relationship between average abundance and
parameters (i.e., cost, multiplication factor, selection
intensity, etc.) to achieve the ultimate purpose of manual
control.

In essence, the autonomous collaboration of unmanned
swarms is a game process of multi-party and multi-round,
which focuses on the autonomous allocation of public
resources. Therefore, we use multi-player public goods
evolutionary game to model the cooperative evolution of
unmanned swarms. The mapping between the concepts of
cooperative evolution in unmanned swarms and multi-
player public goods evolutionary game is listed in
Table 1.

Table 1 Relationship between the concepts of the unmanned swarm and the multiplayer public goods game

Autonomous collaboration of unmanned swarm

Multi-player public goods
evolutionary game

Unmanned swarm

Mixed homogeneous population

Public resources required by autonomous collaboration (ammunition, communication, etc.)

Public goods
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Continued

Autonomous collaboration of unmanned swarm

Multi-player public goods
evolutionary game

Multiple unmanned platforms involving in autonomous collaboration

Multi-player

Individual unmanned platforms

Individuals

Individual unmanned platforms as research objects

Focal individual

Cooperative behavior where platforms are willing to contribute resources to the swarm Strategy 4
Non-cooperative behavior where platforms prefer “free-riding” rather than contributing Strateoy B
ate
resources to the swarm &
Public resources the swarm gives back to platforms under different strategies Pay-off
Payoff-based strategy transition between unmanned platforms Game
Dynamic variations in the proportion of platforms that take different strategies in multiple rounds of game Evolutionary

After multiple rounds, the game is terminated after the proportion of platforms stabilizes

Evolutionary stable state

Expected proportion of cooperators (non-cooperators) in the swarm in the evolutionary stable state

Average abundance

Average abundance of cooperators in the swarm is larger than 0.5

Strategy 4 dominates

3.1 Multiplayer evolutionary game model

A well-mixed swarm with a population size N is
assumed. Each individual makes choices and performs
updates within a finite strategy set {A, B}. An iterative
process (evolution process) is used to adjust the ratio of
the number of A/B-type individuals in the population to
N in real time. This ratio ultimately converges to a well-
defined value, corresponding to a stable evolutionary state.

The multiplayer evolutionary game consists of the fol-
lowing three steps.

(1) An individual X (type 4 or type B) is randomly
selected from N individuals in the swarm. Then, d—1
individuals are chosen from the remaining N —1 individ-
uals. The selected d(d < N) individuals form a group. If
the number of A-type individuals in the group is
k(0 < k <d-1), then the number of B-type individuals is
d-k-1.

(il) Games are played between the focal individual X
and the remaining d—1 individuals in the group. Each
party chooses game strategies from {A, B}. The payoff
of X is a, if an A-type strategy is chosen and b, if a
B-type strategy is chosen.

(iii) After each round of the game, the focal individual
X evaluates its payoff generated by each strategy. The
strategy is updated based on the imitation dynamics or the
aspiration-driven rule.

These three steps are repeated until a stable evolution-
ary state is reached. The types of the d individuals in the
group are randomly selected. Therefore, the probability of
the focal individual X encountering k A-type individuals
and d—k—1 B-type individuals during games between
itself and the d—1 individuals satisfies the mathematical
constraint of a hypergeometric distribution [43]. For
example, the probability of an A-type focal individual X
encountering k A-type individuals and d—-k—1 B-type

‘ o, where i is

individuals is P,(N,i; d, k) = C,’.ilCﬁj’?’l/C”’l
the number of A-type individuals among the N individu-
als in the population; C¥, and C{*' are the numbers of
combinations of individuals choosing the 4- and B-type
strategies, respectively; and C%~! is the number of combi-
nations of individuals participating in the selection. The
probability P,(N,i; d,k) corresponds to the payoff a;.
One A-type focal individual X could be faced with d pos-
sible encounters and obtain d possible payoffs during one
round of the game. Thus, the expected payoff of an
A-type focal individual X during a given round of game is

d-1 Ck i+
ma(i) = l_éd—_]vlﬂako (1)
k=0 N-1
Similarly, Py(N,i; d,k) = C*C4*! / C47 . The expected

payoff for a B-type focal individual X in a given round of
the game is

d-1 ke
) Cf-(CdJLl
mp(i) = Z C+llbk' (2)
k=0 N-1

The aforementioned results were derived in our pre-
vious study [30—32].

3.2 Aspiration-driven dynamics

The strategy updating mechanism can be generally
divided within the framework of evolutionary game the-
ory into two categories: imitation dynamics [21] and aspi-
ration-driven dynamics [44—46]. The results of previous
studies suggest that aspiration-driven dynamics can
improve the average abundance and thus boost collabora-
tion more effectively than traditional imitation dynamics
for both the prisoner’s dilemma game and PGGs [47,48].
Based on aspiration-driven dynamics, the probability of
the focal individual updating from the A-type to the
B-type is
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1

Pis= 1 + ewms®-a)

)

where « represents the aspiration of individual X; w is a
coefficient used to adjust the determination level of the
term 7, —a for Py_p. If my—a=0 (Panp=1/2), i is
equally inclined towards both strategies. If 7, — @ > 0 (the
payoff of i exceeds the aspiration and P,z < 1/2), i is
inclined towards the A-type strategy. If 7, —a <0 (the
payoff of i is lower than the aspiration and P,z > 1/2), i
is inclined towards the B-type strategy.

Similarly, the probability of the focal individual updat-
ing from the B- to the A-type strategy is

1

Pps= —1 1 evmi-a) (4)

In any strategy updating mechanism, the number of
A-type individuals in every round of the evolutionary
game changes in one of the following three ways:
decreasing by 1, i » i—1; increasing by 1, i » i+ 1; and
remaining unchanged, i — i.

Equations (3) and (4) can be used to determine the cor-
responding transition probability as follows:

i 1
Pi—-i-1)=T = NI ormoa’ %)
L . N-i 1
Pi—i+1)=T = N 11 eumoa’ (6)
Pi—i=1-T -T;. 7

4. Strategy dominance rules

In this section, the average abundance is first defined, and
then a mathematical expression for the average abun-
dance is obtained. The rules for collaborative strategy
dominance are derived by expanding the average abun-
dance function in a first-order Taylor series.

4.1 Average abundance

Definition 1 Average abundance. Consider that the
number of A-type combat units in the swarm is j, where
the proportion j/N is a random variable. Let v(j) denote
the probability distribution of j/N. Then, the expected
value of j/N is defined as the average abundance of 4-
type combat units in the swarm.

This definition can be used to express the average
abundance ((X,(j))) of the collaborative strategy 4 as

N

CADESW AW (8)

J=0

The average abundance is calculated by determining
v(j) of the random variable. v(j) is the stationary distri-
bution (¢; (j €10, N])) of a Markov chain with nonab-
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sorbing states, where ¢, satisfies the detailed balance
condition [49,50]:

o T; =¢ii T, )

The following equation can be derived from (9):

-1
1—[;0 T/ -1 .
gi==7 v =] Mg, j>1  (10)

l—[izl Ty

+

L. As the stationary distribution ;satis-
i+1

N
fies Zgojz 1,
i=0
N j-1

Z =g+ > [ [ mxgo=1. (11)

j=1 i=0

where h(i) =

Thus,
1

-~
NI

Substituting this result into (10) yields

[0

Yo =

p;= , Jj= 1 (12)

The average abundance of strategy 4 is expanded by
substituting the equation given above into (8):

N j N J _7 1
2N TN T -

X2 =

where
T+ _ (N— l)(l + ew(”A(i+1)—(t))

h(l) T- (l+ 1)(1 + ew(ﬂg(i)—ﬂ)) ’

i+1

(14)

4.2 Strategy dominance condition

Definition 2 Strategy dominance. When the game
reaches a stable evolutionary state during an unmanned
swarm operation, a strategy with an average abundance
above 0.5 is considered dominant.

Thus, the collaborative strategy dominance is denoted
as

K= L > (15)
Jj=0

1
N7
The equation given above can be expanded in a first-
order Taylor series as follows:
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0
@~ Pi(W)]w=0 + W —90-] (16)
J J dw’’ -
where
Cy
0/() oo = 9(0) = 5. (17)

Substituting the equations presented above into (18)
yields

d Cl <
Bl = o2 Z[nA(k)—nB(k—l)]—

2(2N+1) ch Z [a (i) —mp(i—1)]. (18)

i=

Substituting (1) and (2) into (18) yields

dlck dlk

() —mpi=1) = ) —= A N —(a=by),  (19)
k=0 Nfl
because
N . N . j
J Jj G _1
—p;0)= ) =-—=~. 2
239 0= 255 =3 (20)
Jj=0 j=0
The strategy dominance condition is equivalent to
N .
J 0
Z Nw[%go_,] > 0. Q1)
Jj=0 W=
Substituting (18) and (19) into (21) yields
N Jd-1 k d— 1 k
w ; CL,C
2j—-N)C] —-by|>0.
AN(2M) [JZ;( J ) NZ; CN 1 k)} >
(22)

Then,
ch ci- kz Qj-N)Cl, =2"NCE CE,. (23)
Jj=1

Combining (18) and (19) yields

d-1
4(‘;) > IC (@b > 0. (24)
k=0
In summary, the collaborative strategy dominance con-
dition is
d-1
D ICh (@ =b01 > 0. (25)
k=0
Equation (25) is a collaborative strategy dominance
condition that applies to any multiplayer strategy game.
The strategy dominance conditions of traditional imita-
tion dynamics depend entirely on the sum of the

payoff differences among different strategies and
d-1
Z (a;—by) >0 [19]. However, the aspiration-driven

k=0

model adds an extra weight to the payoff differences
d-1

between strategies, i.e., Z [ijl(ak —b)] > 0. Hence, the

number & of collaborati\féostrategy holders becomes par-
ticularly important. As a consequence of the symmetry of
the number of combinations C% |, C¥_ has the strongest
influence on strategy dominance when k is the median of
d(i.e., there are equal numbers of collaborators and non-
collaborators in the swarm).

The preceding rigorous mathematical derivation of the
strategy dominance condition for a multiplayer evolution-
ary game lays a theoretical foundation for the analysis of
two types of public goods games in the following section.

5. Evolutionary game analysis

On the basis of the average abundance of unmanned
swarm obtained in Subsection 4.1, we will analyze the
impact of parameter adjustment on it.

The parameters in the model have realistic military sig-
nificance. Take cost as an example. Cost (such as com-
munication, intelligence, firepower and other resources)
is a factor that we must consider when studying swarm
cooperation. In real combat, we pursue to exchange the
lowest cost investment for the optimal swarm coordina-
tion effect, and finally achieve the maximum combat
effectiveness. On the contrary, if the cost is too high, we
will finally achieve the combat purpose, which is also
“the gain outweighs the loss”. Another typical parameter
is the multiplication factor. The multiplication factor
determines the “appreciation rate ” of resources. The
appreciation of resources is reflected in the overall effi-
ciency of “1 + 1 > 2” brought by swarm coordination.
Too small multiplication factor cannot promote the trans-
formation of the unmanned platform to the cooperation
strategy, and too large multiplication factor has no practi-
cal significance. Studying the influence law of multiplica-
tion factor on swarm cooperation level is of great signifi-
cance for reasonably setting the size of multiplication fac-
tor and improving the overall cooperation level of swarm.

The linear and threshold PGGs are analyzed to deter-
mine the payoffs, the strategy dominance characteristics
are simulated, and reasonable suggestions are proposed
for the design of autonomous coordination mechanisms
of swarms.

5.1 Characteristic analysis of average abundance

Let N=100, d=15,c=1, r=1.3, a =1, and draw the
basic curve (see Fig. 2). Since X, < 0.5, this case is a
non-dominant case, that is, most units choose strategy B.
Therefore, we try to regulate relevant parameters to
increase the average abundance of unmanned swarm and
promote cooperation.
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As shown in Fig. 2, reducing the cost or increasing the
aspiration level can raise the proportion of cooperators.
However, increasing the multiplication factor will cause
the average abundance curve to deviate downward from
the basic curve, which is because increasing pay-off of coo-
perators and betrayers by the same margin will make the
“free riding” situation more serious. Consequently, we try
to separate the multiplication factor of cooperators from
that of betrayers, only increase the multiplication factor
ry of cooperators (the multiplication factor rp of betray-
ers remains unchanged), and find that the average abun-
dance curve deviates upward from the basic curve.

Furthermore, we simulate the average abundance under
different r, (see Fig. 3). When r, =2, the average abun-
dance is approximately equal to 0.5, which indicates that
the proportion of cooperators and betrayers in the swarm
is basically balanced. With the further increase of r,,
when r, =2.65, the average abundance will be greater
than 0.5 at w~ 10, while when r, =2.9, the average
abundance will be greater than 0.5 at w ~ 5. Thus, we can
reach the following conclusions.
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Fig.3 Effects of different r4 on average abundance

(1) The adjustment on r,4 can switch the dominant stra-
tegy, making the average abundance of strategy 4 greater
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than 0.5;

(i1) The lower the w is, the more stringent requirement
for r, will be, and the higher the w is, the looser require-
ment for r, will be X,(w=5,r,=2.9)>0.5, while
X4(w=10,r,=2.65)>0.5.

In order to investigate the regulation sensitivity of dif-
ferent parameters, we simulate the affecting degree of unit
variation of ¢, @, r, on the average abundance. We select
the simulation results with w =0, 5, 15 to be discussed,
as shown in Fig. 4(a), Fig. 4(b), and Fig. 4(c), respectively.
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Fig. 4 Effects of unit variation in parameters on average abundance
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(i) When w =0, the average abundance is identically
equal to 0.5, and thus the parameter regulation loses its
effect (see Fig. 4(a)).

(i) When w#0 and unit variation of parameters
(i.e., A) is small (note that the threshold of A is related
to w: A=~ 1.70],-5, A= 1.53]|,;5), the change in value
of average abundance caused by adjusting a and c is
much greater than adjusting r, (see Fig. 4(b), Fig. 4(c)).
The regulation of @ and ¢ is more sensitive than that
of ry.

(ii1) When w # 0 and A is large, the regulation effect of
r4 is much better than that of @ and c¢. And the larger w
is, the more sensitive r, is, i.e.,, a small A, leads to a
large increase in average abundance: A < X,(w=35,A,=
1.95) >~ 0.43, while A <X,(w=20,A,=1.55)>~0.48
(see Fig. 4(b), Fig. 4(c)).

To improve the average abundance, the ideal measure
is to increase the multiplication factor, reduce the cost of
cooperators, or both. However, in order to ensure the
effectiveness of the operation in the actual battlefield, the
cost is difficult to reduce or even increases. Therefore, it
is necessary to consider increasing both r, and c. Fig. 5
shows the change of average abundance when r, and ¢
increase at the same time (¢ increases by 50%, r,
increases by 69% and 73%, respectively). Accordingly,
as long as r, increases by more than 73%, not only can
the adverse effect of cost increasing on average abun-
dance be offset, but also the cooperation in swarm can be
promoted.

0.49

0.48

0.47

0.46

0.45
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Average abundance of strategy X,

043 b e
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Aspiration level a
—c=Lr=13; —— :c=1.5,r=22; —~-:c=1.5,r=2.25.

Fig. 5 Effect of increase in cost and multiplication factor on ave-
rage abundance

Unfortunately, the above regulation can only achieve a
limited increase in the average abundance, that is, it can-
not make the average abundance greater than 0.5. The
conversion of dominant strategies (a large increase in
average abundance) depends on a large selection inten-
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sity w and a large unit variation A,,, and thus we further
increase r, under the premise of increasing ¢ by 50%
(see Fig. 6). According to the results in Fig. 6, when
ry =2.52 and w= 15, X, will be greater than 0.5; when
ry =2.65 and w = 5, X, will be greater than 0.5.

1.0
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Selection indensity @
— =1, r=13; —— 1 c=1.5,r=2.52; —~-:c=1.5,r,=2.65.

Fig. 6 Stragy alternation by increasing cost and multiplication fac-
tor

The increase of r, means that the hitchhiker will no
longer get as much pay-off as the cooperator, and the
decrease of pay-off will directly increase the strategy
update probability Pp_,,, so then more units tend to coo-
perate (more betrayers transfer to cooperators ).

According to the above simulation results and conclu-
sions, we can consider the following measures from two
dimensions of management and technology in the actual
control of unmanned swarm cooperation:

(1) Increase the multiplication factor value r, of
cooperators as much as possible. For example, with the
help of advanced management means, for each combat
unit in the swarm, its investment (i.e., cost ¢) in previous
operations can be accumulated, and those with higher
cumulative investment will be given more supplies (e.g.,
ammunition) or higher supply priority in the follow-up
operations;

(i) Minimize the cost ¢ for each operation. For
example, with the help of advanced technology means,
improve the reliability and survivability of combat
units or the strike accuracy and damage-power of ammu-
nition.

In addition, since ¢, r and « are closely related to spe-
cific operation tasks, it is also necessary to discuss spe-
cific control measures in combination with operation
tasks under the limitation of parameter value range.

5.2 Characteristic analysis of linear PGGs

When X chooses collaborative strategy 4 in the linear
PGGs model, the total quantity of resources that the
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group can acquire is kc + c. The total payoff after the cost
increase is r(kc+c). Thus, the individual payoff is
r(kc+c)/d. As the initial investment of X has a value c,
the net payoff of X is [r(kc +c)/d] —c. If X selects strat-
egy B, the parameters presented above change to kc, rkc,
rke/d and rkc/d. Thus,

r(kc+c
a=ED 26)
d
rkc
bk = 7 (27)
The payoff matrix is shown in Table 2.
Table 2 Payoff for the linear PPG model
Number of cooperators
Strategy
d-1 k—1 1 0
A re—c [r(kct+e)/d]—c [2re/d]—c  [rc/d]—c
B rd—1)c/2 - rkeld reld 0

As a,—b,=c(r/d—1) and 1<r<d are generally
assumed, (25) can be used to evaluate the strategy domi-
nance as follows:

d-1

> [cha-bo) =2d’lc(§— 1)<0. (28)

k=0

Therefore, the linear PGGs model is a non-collabora-
tive dominance game, that is, the non-collaborative strat-
egy rather than the collaborative strategy dominates the
swarm when the stable evolutionary state is reached. The
dominant characteristics of this game strategy are deter-
mined by analyzing the influences of the selection inten-
sity w, reward coefficient r and aspiration level « on the
average abundance X, in simulations with a =1, N =
100 and ¢ = 1. The relationship between w and r and X,
is shown in Fig. 7.
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Fig. 7  Relationship between X, and selection intensity and

reward coefficient for the linear PGGs model

The reward coefficient is fixed in Fig. 7(a) and d/2
in Fig. 7(b). In Fig. 7(a), d=10 or 20 and r = 2. The ave-
rage abundance X, ==0.5 for a selection intensity
w=0. When w is small (as shown in the top right
corner), it is difficult to satisfy the aspiration of the
collaborators. Thus, large numbers of collaborators
change their strategies, which produces a downturn in X,,.
As w increases, X, improves slightly and stabilizes at
approximately 0.45. In Fig. 7(b), d=10 or 20 and r = d/2.
Fig. 7(b) shows that increasing » (from 2 to 5 and 10)
causes X, to decrease progressively compared to
Fig. 7(a). The larger the increment in r is, the larger the
decrement in X, is, ie., X (w)|-1 < Xs(w)|=s. One
reason for this result is that the simultaneous increase in
the payoffs of both the collaborative and non-collabora-

B

tive units in the swarm aggravates “free-riding ’
behaviour and causes many combat units to become non-
collaborators.

Conclusion 1 Under constants ¢ and « for the linear
PGGs model, collaborators have a high X, for a weak w
(w—0) and a small r. The effect of a weak w on pro-
moting cooperation has been verified in a variety of
fields, such as biological genetics, molecular evolution
and cultural evolution [51—-53], although the action mech-
anism has not been identified.

Although collaboration is not the dominant strategy in
unmanned swarm operations in the linear PGGs model,
the influences of w and r on strategy updating could be
mitigated by presetting small values of w and r, thereby
increasing the X, of the collaborators in the swarm and
maximally facilitating swarm collaboration.

Fig. 8 shows the simulated results for the relationship
between « and X, for w=0, 5, 10, 15 and 20, ¢ =1 and
r=1.1.
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Relationship between the average abundance and aspira-

In Fig. 8, X, increases with «, indicating that increas-
ing @ makes it even more difficult to attain the expected
non-collaborative payoff. Equation (4) shows that the
strategy updating probability P, increases and more
non-collaborators become collaborators. At a sufficiently
high a, lim,_. X, = 1/2 at any w.

Conclusion 2 Under a constant ¢ and r for the linear
PGGs model, the collaborators have a high X, for high a.

Therefore, the probability that non-collaborators will
choose the collaborative strategy (that is, switch from the
non-collaborative strategy) could be increased by preset-
ting a large @ in unmanned swarm operations in the li-
near PGGs model, thereby improving the average abun-
dance of collaborators in the swarm and maximally facili-
tating swarm collaboration.

5.3 Characteristic analysis of threshold PGGs

Within the threshold PGGs model, individuals only earn
payoffs when the total number of collaborative strategy
holders in the group is not smaller than a threshold m.
When & > m and X chooses collaborative strategy 4, the
total quantity of resources that the group can acquire is
kc + c. The total payoff after the cost increase is r(kc +c).
Thus, the individual payoff is r(kc+c)/d. If X selects
strategy B, the parameters presented above change to kc,
rke, rkec/d and rkc/d + c. Thus,

a; =r(kc+c)/d, (29)

by = [rkc/d] +c. (30)
The payoff matrix is presented in Table 3.

Table 3 Payoff for the threshold PPG model

Number of cooperators
d-1 = k om—1
A re [r(kctc)ld]—c
B [H(d—1)c/d]+c [rke/d]+c R 0 0

Strategy

mrcld

Thus,
d-1 d-1 mrc
;[Cz_mak—bk)]:;@_]( o)+ C ™. G

Unlike for linear PGGs, the equation presented above
does not exhibit any notable characteristics of strategy
dominance. The severity of the two types of strategy
dominance conditions, i.e., aspiration-driven dynamics
and imitation dynamics, is compared in the following sec-

tion.

d-1
Let Z [ij_l(ak —bk)] >0, and substitute (28) into this

. k=0 . . .
equation yields the strategy dominance condition:

d-1
ay cy,

k m ) (32)

Cl  +mCy)

d 1

k=m

= d-1

Setting 1=d )" Ch | / [ ch + mcy-l‘] yields the fol-
k=m

lowing equation:

d-1

d (Z ct , +mCn) J —dmC")!

k=m

= =) =
Dich emer

k=m

k=m

(d-m)Cy +mCr)

d-1
k m—1
Z Co,+mC-

k=m

d—m

Equation (32) is equivalent to

(d-m)Cy ! +mCr}
d-1 :
k m—1
Z Cooy +mCyZ,

k=m

r>d-m

(33)

The strategy dominance condition under imitation
d—1

dynamics is Z (a;, —by) > 0. Equation (33) is derived by
k=0

using (29) and (30):
r>d-m. (34)

The following observations are made by comparing
(32) and (33).
(i) For large m, the property of combinatorial numbers
d-1
results in (d—m)Cy| > ZCfH in (33). Therefore, it is

k=m
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easier to satisfy (33) than (34). That is, the dominance
condition for the aspiration-driven strategy is easier to
fulfil than that for the imitation dynamics strategy, indi-
cating that collaborative strategy dominance requires a
lower payoff (i.e., a smaller r) under the aspiration-
driven rules.

d-1
(i) Conversely, (d-m)Cm! < ZCZ‘,_, in (31) for
k=m

small m. Therefore, it is easier to satisfy (34) than (33).
The dominance condition of the aspiration-driven stra-
tegy is stricter than that of the imitation dynamics stra-
tegy. The dominance condition for the imitation dynam-
ics strategy can facilitate intra-swarm collaboration more
effectively than that of the aspiration-driven strategy.

The characteristics of the aspiration-driven strategy
dominance for the threshold PGGs model are analyzed by
determining the influences of different m and r on collab-
orative strategy dominance for simulations with @ =1,
N =100, ¢ =1, and d = 10. The effects of m and r on X,
are shown in Fig. 9.
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Fig. 9 Effect of the threshold and reward coefficient on X4 within
the threshold PPG model

Fig. 9 (a) shows the influence of the threshold on X,,
and Fig. 9(b) shows the influence of the threshold on X,
for a fixed reward coefficient. In Fig. 9(a), when r=2
and m increases from 4 to 7, X, of the collaborative stra-
tegy increases, and the dominant strategy is also changed
(X4 lm=s <0.5 changes to X,|,-; >0.5; the dominant
strategy is switched from B to 4). The top right corner of
Fig. 9(a) shows the relationship between several m and r
values. As m increases, the required r (i.e., the required
payoffpecomesncreasinglyymallewhertheollaborativestra-
tegy is dominant. Unlike the results shown in Fig. 9(a),
Fig. 9(b) shows that although m is still 4 or 7,
X |m=4, et > Xy |m=4. reo and Xy (=7, rea > X4 |e7, =2 at the
same w and m, because r increases from 2 to 4.

Conclusion3 Underaconstant ¢ and « for the threshold
PGGs model, a large m promotes collaboration, even at
small r. For fixed m, a large r promotes collaboration.

Thus, simultaneously increasing m and rcan exploit
the advantage offered by aspiration in promoting swarm
collaboration and realize collaborative strategy domi-
nance in unmanned swarm operations within the thresh-
old PGGs model.

For the management of actual unmanned swarms, an
autonomous collaborative rule could be preset based on
the evolutionary game model and aspiration-driven
dynamics developed in Section 2. Additionally, accord-
ing to each specific combat scenario, (r; —r3;) could be
changed by adjusting the parameters, such as ¢, @, r and
m. However, the rule for changing (7, — ;) should be pre-
set based on Conclusions 1-3. When communication
with the ground control station is interrupted, the
unmanned swam can respond effectively following the
preset rules and realize collaboration strategy dominance,
thereby seamlessly completing the military mission.

For example, a is usually fixed for UAVs in actual
operation. Moreover, it is difficult to further compress
operational costs ¢, such as ammunition and communica-
tion. In this case, the unmanned swarms may automati-
cally set a high m and a large r for the collaborative pro-
cess based on r; within the framework of R to enhance
the proportion of collaborators in the swarm in the stable
evolutionary state and facilitate collaborative behaviour
and collaborative strategy dominance.

6. Conclusions

Autonomous collaboration of unmanned swarms is the
focus of military research on “new combat capabilities’
and “disruptive technologies”. A key problem in

autonomous collaboration is the design of a reasonable
mechanism to increase the proportion of collaborators in
a combat swarm, thus ensuring the overall combat effec-
tiveness of the swarm. An aspiration-driven multiplayer

B
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evolutionary game model is built in this study. Mathema-
tical derivations are used to obtain the average abundance
function of the model, the strategy dominance conditions
and the linear and threshold PGGs. The simulation results
show that increasing the multiplication factor r, and
reducing the cost ¢ can improve the average abundance
of cooperators, furthermore, when the unit variation A is
large, r4 not only has a high regulation sensitivity, but
also can realize the switching of the dominant strategy.
The influences of w, r, @and m on strategy dominance of
the two game models are analyzed. Finally, we suggest
some proposals to support decision-making for designing
the mechanism of unmanned swarm operations.

In this study, the swarm structure is assumed to be well-
mixed, and the influence of the structure on the strategy
dominance characteristics is not considered. On a real
battlefield, a combat platform uses physical/information
links to create a network structure. Allen, Lippner and
Nowak [54] and Tkadlec et al. [55] have carried out
insightful studies on spatial evolutionary games. In a sub-
sequent study, we will use complex networks to calculate
the evolutionary game and strategy dominance character-
istics of unmanned swarms with specific network struc-
tures.
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