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Abstract: Rare  labeled  data  are  difficult  to  recognize  by  using
conventional  methods  in  the  process  of  radar  emitter  recogni-
tion.  To  solve  this  problem,  an  optimized  cooperative  semi-
supervised learning radar emitter recognition method based on a
small amount of labeled data is developed. First, a small amount
of  labeled  data  are  randomly  sampled  by  using  the  bootstrap
method,  loss  functions  for  three  common  deep  learning  net-
works are  improved,  the uniform distribution and cross-entropy
function are combined to reduce the overconfidence of softmax
classification.  Subsequently,  the  dataset  obtained  after  sam-
pling is adopted to train three improved networks so as to build
the initial model. In addition, the unlabeled data are preliminarily
screened  through  dynamic  time  warping  (DTW)  and  then  input
into the initial model trained previously for judgment. If the judg-
ment  results  of  two  or  more  networks  are  consistent,  the  unla-
beled data are labeled and put into the labeled data set. Lastly,
the  three  network  models  are  input  into  the  labeled dataset  for
training, and the final  model is built.  As revealed by the simula-
tion results, the semi-supervised learning method adopted in this
paper  is  capable  of  exploiting  a  small  amount  of  labeled  data
and basically achieving the accuracy of labeled data recognition.
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 1. Introduction
Radar  radiation  source  identification  [1−3]  is  an  impor-
tant  component  and  key  step  in  electronic  warfare,  and
after  completing  signal  interception  and  pulse  parameter
analysis, the signal needs to be further analyzed to obtain
the  radiation  source  model  or  even  individual  informa-
tion. To be able to better the radar radiation source signal,
many  scholars  introduced  machine  learning  methods.
Meng et  al.  proposed a  radar  radiation source identifica-
tion  method  based  on  time-frequency  image  texture  fea-
tures  [4];  Cao  et  al.  proposed  wavelet  invariant  moment
based for radiation source identification [5]; Li et al. used

stacked  sparse  self-encoder  to  extract  features  and  iden-
tify the signal [6];  Kong et  al.  used convolutional neural
network  (CNN)  for  radar  signal  waveform identification
[7].  All  of  the  abover-mentioned  have  achieved  good
results.

However, the above methods work well on the premise
that the radar radiation source variety is relatively single
and limited, and as technology continues to advance, the
modern  battlefield  electromagnetic  environment  is
increasingly  intricate  and  complex,  with  relatively  few
available  samples  of  unknown  radiation  source  signals,
which can lead to overfitting of machine learning models.
In recent years, semi-supervised learning methods [8−12]
have  gradually  been  emphasized  by  researchers.  This
approach  can  use  the  information  in  a  small  number  of
labeled samples to discover patterns from a large number
of unlabeled samples for classification recognition.

In  this  context,  this  paper  proposes  a  semi-supervised
classification  algorithm  that  can  act  directly  on  a  small
amount of labeled and a large amount of unlabeled radia-
tion source magnitude sequence data. The risk of classifi-
cation  being  too  absolute  is  reduced by  adding  homoge-
nization to  the loss  function,  which effectively improves
the  recognition  accuracy  of  semi-supervised  learning.
Further optimization of the unlabeled dataset by dynamic
time warping (DTW) technique [13−16] greatly improves
the  recognition  speed  while  ensuring  the  recognition
accuracy,  which  can  well  balance  the  recognition  accu-
racy and recognition speed.

In  this  paper,  the  first  three  sections  mainly  introduce
the  theoretical  foundation.  Section  1  introduces  the  con-
cept  and  types  of  semi-supervised  learning,  Section  2
introduces  the  concept  and  improvement  methods  of  the
loss  function,  and  Section  3  introduces  the  DTW  tech-
nique.  Section  4  details  the  semi-supervised  networks
used  in  this  paper,  including  the  basic  structure  of
the  networks  and  the  parameters  used.  Section  5
focuses on designing simulation experiments for the semi-
supervised  networks  and  analyzing  the  experimental
results.
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 2. Semi-supervised learning
 2.1    Introduction of semi-supervised learning

Semi-supervised learning is a machine learning approach
between  supervised  and  unsupervised  learning  [17,18],
which can learn using both labeled and unlabeled data. In
many practical problems, only a small amount of labeled
data  is  available  because  it  is  costly  and  impractical  to
label  all  data.  For  example,  in  daily  electronic  counter-
measures  reconnaissance,  labeling  all  intercepted  radia-
tion  source  signals  is  basically  impossible  to  achieve.
While,  on  the  contrary,  unlabeled  radiation  source  sig-
nals are easily available. To make better use of unlabeled
data  to  achieve  better  recognition  results,  semi-super-
vised learning techniques have emerged.

 2.2    Classification of semi-supervised learning

The main semi-supervised learning approaches are as fol-
lows.

(i)  Self-training:  first  train  a  classifier  using  a  small
amount  of  sample  data,  then  use  the  classifier  to  predict
unlabeled data, select samples with high confidence to be
added to the labeled data, and finally retrain the classifier
using  the  updated  labeled  data  set,  repeating  the  above
two procedures until the target is reached.

(ii)  Generative  model  [19]:  an  algorithm implemented
based  on  the  clustering  assumption,  which  first  clusters
the  unlabeled  data  using  a  clustering  algorithm  (usually
using a Gaussian mixture model), then estimates the com-
ponent  parameters  in  the  Gaussian  mixture  model  using
the  expectation  maximum  algorithm,  and  finally  deter-
mines the class of each component using a small amount
of labeled data.

(iii) Low-density partitioning algorithms [20]: combin-
ing support vector machines with clustering assumptions
so  that  the  classification  boundary  bypasses  data-dense
regions.

(iv) Graph-based semi-supervised algorithm [21−24]: it
is assumed that all data (both labeled and unlabeled) and
the interrelationships between all data can be represented
in  the  form  of  an  undirected  graph,  where  the  nodes  of
the graph represent data sample points and the similarity
relationships  between  samples  are  represented  as  edges.
The  graph-based  semi-supervised  algorithm  is  to  make
the  results  of  the  labeled  sample  points  conform  to  the
flow-type assumption.

(v)  Divergence-based  semi-supervised  algorithm
[25,26]:  two different  classifiers  are  trained on x1 and x2

(two views of the labeled data) using the labeled data, and
then the unlabeled samples are predicted by using the two
classifiers,  and  the  unlabeled  samples  with  higher  confi-
dence  in  the  classification  results  of  the  classifiers  and
their prediction labels are put into the labeled data set for
the next training, and so on iteratively.

Considering  the  advantages  and  disadvantages  of  the
five  semi-supervised  learning  approaches,  this  paper
selects  the  divergence-based  semi-supervised  algorithm
as  the  radar  radiation  source  sequence  data  recognition,
and improves on the original  algorithm to make it  better
classify and recognize the radiation source sequence data.

 3. Loss function and its improvement
 3.1    Loss function concept and selection

The loss function is used to evaluate the degree of diffe-
rence between the true value and the predicted value of a
machine learning model, and generally speaking, the bet-
ter the model performance, the better the loss function. In
general,  loss  functions  can  be  divided  into  two  types:
empirical risk loss function and structural risk loss func-
tion, the difference is that the structural risk loss function
is obtained by adding a regular term to the empirical risk
loss function.

For  a  multi-classification  problem  like  radar  radiation
source  identification,  the  cross-entropy  function  is  usu-
ally used as the loss function, and the cross-entropy func-
tion is essentially a log-likelihood function. The standard
form of the cross-entropy function is

C = −1
n

n∑
x=1

[
ylna+ (1− y) ln(1−a)

]
(1)

where x denotes  the  input  radiation  source  sample, y
denotes  the  label  of  the  radiation  source, a denotes  the
predicted output, and n denotes the total number of radia-
tion source data samples. For a multi-classification prob-
lem like radiation source identification,  the loss function
takes the form of

loss = −1
n

n∑
i=1

yilnai (2)

yi

ai

where i denotes the input different radiation source sam-
ples,  denotes  the  labels  of  different  radiation  sources,
and  denotes the predicted different outputs.

 3.2    Customized complex loss function

There  are  also  some  problems  when  the  cross-entropy
function  solves  the  multi-classification  problem:  when
the results of classification are output using softmax, the
classification results  are  too absolute,  and the results  are
also  non-zero  or  1  when  the  noise  is  classified,  which
may  lead  to  model  overfitting,  and  this  risk  is  further
extended especially when applied to the semi-supervised
classification  in  this  paper.  In  this  paper,  the  loss  func-
tion is modified to circumvent this risk.

First,  a  uniform  distribution  is  constructed,  the  cross-
entropy of the predicted values with this uniform distribu-
tion  is  calculated,  and  then  this  cross-entropy  is  com-
bined  with  the  original  cross-entropy  function.  This
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allows the cross-entropy function to fit the uniform distri-
bution appropriately while fitting the one-hot distribution,
thus  mitigating  the  classification  of  softmax  for  results
that are too absolute and reducing the risk of overfitting.

 4. DTW
In  the  process  of  time  series  data  analysis,  to  determine
the  relationship  between  two  sets  of  time  series  data,
DTW  is  often  used  to  calculate  the  similarity  between
two-time  series.  Any  data  that  can  be  converted  into  li-
near  series,  including  time  series  converted  from  graph-
ics,  video,  and audio,  can be calculated and analyzed by
DTW.

Therefore,  this  paper  uses  the  DTW  method  to  judge
the  similarity  between  unlabeled  radiation  source  ampli-
tude sequence data and a small amount of labeled ampli-
tude  sequence  data,  to  filter  out  the  unlabeled  data  with
higher  similarity  to  the  labeled  data,  thus  achieving  the
effect  of  reducing  the  data  volume  while  ensuring  the
accuracy.  The  following  conditions  must  be  met  to
achieve DTW.

(i)  Each  index  of  the  labeled  radiation  source  magni-
tude  sequence  must  match  one  or  more  indices  of  the
other unlabeled magnitude, and vice versa.

(ii)  The  first  index  in  the  labeled  radiation  source
amplitude  sequence  must  match  the  first  index  in  the
unlabeled  amplitude  sequence  (which  may  not  be  a
unique match).

(iii)  The  last  index  of  the  labeled  radiation  source
amplitude sequence must match the last index of the unla-
beled  amplitude  sequence  (which  may  not  be  the  only
match).

(iv) The index mapping from the labeled radial source
amplitude  sequence  to  the  other  unlabeled  amplitude
sequences  must  be  monotonically  increasing  and  vice
versa.

 5. Improved  collaborative  semi-supervised
network model

 5.1    Basic structure of the network

In  this  paper,  based  on  the  original  collaborative  semi-
supervised  algorithm,  we  optimize  the  cross-entropy
function  by  adding  uniform  distribution  to  reduce  the
error  caused  by  too  absolute  classification,  and  use  the
DTW  method  to  filter  the  unsupervised  data  set  to  ba-
lance  the  recognition  accuracy  and  the  number  of  unsu-
pervised data, the main structure of the model is shown in
Fig. 1.
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Fig. 1    Semi-supervised framework used in this paper
 

The structure of this paper consists of two main parts:
(i) initial training of three common network models with
a  small  number  of  labeled  datasets;  (ii)  updating  the
labeled  database  with  the  initially  trained  network  mo-
dels  and  unlabeled  data  and  further  training  the  network

models.
The  first  part  is  the  initial  training  of  the  network.

Firstly,  the  labeled  dataset  is  sampled  three  times  by
using the bootstrap method to obtain three different vali-
dation and test sets. The three common classification net-

1184 Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023



works are: one-dimensional (1D) CNN [27,28] (1DCNN),
temporal  convolutional  network  [29,30]  (TCN),  one-
dimensional  convolutional  network  +  temporal  convolu-
tional  network  +  attention  layer  (CTA).  The  loss  func-
tions of the three networks are added to the uniform dis-
tribution,  and  three  different  training  and  testing  sets
obtained  by  the  bootstrap  method  are  used  to  initially
train the three classification networks.

The  second  part  is  to  optimize  the  networks  by  using
the  three  initial  training  models  and  the  unlabeled  data.
First, the unlabeled data are divided into groups of every
256, and then the distances to the labeled data are calcu-
lated by grouping them using the DTW method,  and the
closer ones are selected to construct a new unlabeled data
set. Then, the data of the new unlabeled dataset are taken
out one by one and predicted by one of the three initially
trained  network  models,  and  if  two  or  more  network
models  predict  the  unlabeled  data  consistently,  the  data
are  labeled  with  the  predicted  labels  into  the  labeled
dataset, otherwise, the data are put into the end of the data
set.  When  the  data  added  to  the  labeled  dataset  reaches
3 550,  the  network  is  retrained  by  using  the  labeled
dataset  and  the  trained  network  is  used  to  continue  pre-
dicting  the  unlabeled  data  until  the  unlabeled  dataset  is
empty.

 5.2    Parameter setting

The three basic classification networks used in this paper
are shown in Fig. 2, and the basic parameters of the net-
works are as follows.
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Fig. 2    Three classification networks used in this paper
 

CNN: The number of convolutional kernels of Convo-
lutional layer 1 is 32, the time-domain window length of
convolutional  kernels  is  5,  and  the  window  size  of  the
maximum  pooling  layer  is  2;  the  number  of  convolu-

tional kernels of convolutional layer 2 is 16, and the time-
domain window length of convolutional kernels is 5.

TCN: The time domain window length of the convolu-
tional kernel of the temporal convolutional network 1 is 5
and the number of convolutional kernels is  32.  The time
domain window length of the convolutional kernel of the
temporal convolutional network 2 is 5 and the number of
convolutional  kernels  is  16.  The  expansion  ratio  of  the
expansion convolution is set to 2.

CTA:  The  CTA  network  is  obtained  by  combining  a
CNN  network  with  a  maximum  pooling  layer  removed
and  a  TCN  network  with  parameters  using  the  two  net-
work parameters mentioned above.

The fully connected layer coefficients of the three clas-
sification networks are set to 8; the activation functions of
the three classification networks all use the Leaky ReLU
activation function.

 5.3    Network summary

In order to be able to describe the semi-supervised classi-
fication  algorithm  used  in  this  paper  more  clearly  and
intuitively,  the  main  contents  of  the  algorithm  are  sum-
marized in Table 1.
 
 

Table 1    Main contents of the algorithm

Attribute Content
Algorithm

name
Improved cooperative semi-supervised learning

classification algorithm
Classification

object
Eight kinds of radar radiation source sequence data

Algorithm
objectives

Use a small amount of labeled data and a large amount of
unlabeled data to achieve the effect of supervised

recognition

Major
innovations

Improving the activation function to improve the
recognition accuracy, while reducing the network time

consumption without reducing the classification accuracy
by DTW technique

Classification
networks

CNN, TCN, CTA networks

Algorithm
flow

The similarity between labeled and unlabeled data is
calculated in groups for filtering, and then the initially

trained classification network model is used to judge each
unlabeled data

 

 6. Simulations and result analysis
 6.1    Simulation parameter setting

There are eight kinds of radar radiation source signals to
be  classified  and  identified  in  this  paper,  which  are  fre-
quency  modulated  continuous  wave  (FMCW),  multi-
phase  code  (Frank,  P1,  P2,  P3,  P4),  binary  phase  shift
keying (BPSK), and Costas. the carrier frequency range is
1−1.2 kHz, except Costas, the sampling frequency of the
other seven signals is 7 kHz. The parameters of each sig-
nal are shown in Table 2.  According to the actual signal
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characteristics,  Matlab simulation is used to generate the
corresponding  labeled  and  unlabeled  data  with  signal  to
noise ratios ranging from −20 dB to 10 dB, with an inter-
val of 2 dB and a length of 1 024 for each sample. Experi-
mental test platform uses: Intel(R) Core (TM) i7-8550U,
NVIDIA GeForce RTX 1050. The neural network model
is  built  on  the  TensorFlow  platform  using  Keras  2.3.0,
PyCharm 2018.3.6 x64, and Python 3.6 compiler.
 
 

Table 2    Main parameters of signal

Signal Main parameter Value

BPSK Barker code digits {7,11,13}

Multi-phase code Number of code bits {36,64}

FMCW

Sampling frequency/kHz {15,17}

Modulation period/ms {50,25,35}

Modulation bandwidth/kHz {0.25,0.35,0.5}

Costas Frequency sequences/kHz
{[4 7 1 6 5 2 3],
[2 6 3 8 7 5 1]}

 

 6.2    Simulation experiments and analysis

Experiment 1　When using the cross-entropy loss func-
tion  in  combination  with  softmax,  it  does  have  a  better
classification  effect  for  the  supervised  radiation  source
classification  and  identification  network.  However,  the
problem that  softmax output  results  are more absolute is
further  amplified  in  the  semi-supervised  network.  The
addition  of  homogenization  in  the  loss  function  will
reduce  this  absolute  effect.  The  comparison  of  loss,  the
accuracy  of  the  semi-supervised  classification  network
with  homogenization  and  the  semi-supervised  network
with  initial  cross-entropy  loss  function  under  the  same
data  set  (supervised  data  set  is  128,  unsupervised  data
number  is 51 200)  are  shown  in Table  3 and Table  4,
where Accuracy 1 and Loss 1 represent the initial classifi-
cation results for a small amount of supervised data, and
Accuracy 2 and Loss 2 represent the classification results
after the semi-supervised network.
 
 

Table 3    Loss function without adding uniform distribution

Network Loss 1 Accuracy 1 Loss 2 Accuracy 2
CTA 1.766 5 0.731 6 0.691 5 0.848 0
CNN 1.258 6 0.742 0 1.298 7 0.827 4
TCN 1.494 1 0.784 6 1.857 4 0.850 1

 
 
 

Table 4    Loss function added to uniform distribution

Network Loss 1 Accuracy 1 Loss 2 Accuracy 2
CTA 1.065 7 0.804 6 0.661 5 0.933 9
CNN 1.047 7 0.826 1 0.686 6 0.927 1
TCN 0.949 3 0.857 8 0.661 6 0.934 4

As  can  be  seen  in Table  2 and Table  3,  the  cross-
entropy loss function without uniform distribution in it is
less effective when the initial model obtained by training
with a small amount of labeled data when there is too lit-
tle  labeled  data.  The  problem  of  too  absolute  classifica-
tion  of  the  cross-entropy  function  is  further  amplified
when  using  semi-supervised  networks  for  classification
prediction  of  unlabeled  data,  resulting  in  excessive  loss
and  lower  accuracy.  The  table  also  shows  that  adding
homogenization  to  the  cross-entropy  function  can  more
obviously improve the classification recognition effect of
the  semi-supervised  network,  which  can  improve  the
recognition accuracy by about 10%.
Experiment  2　To investigate  the  effect  of  the  num-

ber  of  labeled  data  on  the  semi-supervised  network,  64,
128, and 256 labeled data are selected for training in the
same  network  and  the  same  number  of  unlabeled  data,
respectively,  and  the  accuracy  of  the  resulting  model
under the same validation set is shown in Table 5, where
the odd rows indicate the initial classification results for a
small amount of supervised data, and the even rows indi-
cate  the  classification  results  after  the  semi-supervised
network.
 
 

Table  5      Identification  results  of  different  labeled  data  under  the
same conditions

Number of labeled data CTA CNN TCN

64
0.653 2 0.752 0 0.752 3

0.835 6 0.832 3 0.836 1

128
0.804 6 0.826 1 0.857 8

0.933 9 0.927 1 0.934 4

256
0.852 7 0.884 6 0.903 0

0.939 7 0.934 5 0.940 3

 

It  is  obvious  from  the  table  that  when  the  number  of
labeled  samples  is  64,  the  number  of  labeled  samples  is
too  small  and  the  initial  model  obtained  after  the  initial
training  of  the  network  is  difficult  to  meet  the  require-
ments  of  the  semi-supervised  network,  so  the  training
results  are  poor  even  with  a  large  amount  of  unlabeled
data.  When  the  number  of  labeled  data  is  256,  although
the initial and final training results are relatively good, it
can  be  seen  from  the  table  that  for  some  easier  to  train
networks such as the TCN, these initial 256 labeled data
can  basically  meet  certain  requirements  and  do  not
require  further  optimization  of  the  semi-supervised  net-
work.  Therefore,  128  labeled  data  are  selected  as  the
labeled data set in this paper.

To  verify  the  effect  of  unlabeled  data  on  the  recogni-
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tion effect,  labeled data are fixed at  128, 25 600, 51 200,
76 800, and 102 400. Unlabeled data are selected to be put
into  the  semi-supervised  network  used  in  this  paper  for
training,  and  the  accuracy  of  the  resulting  model  under
the same validation set is shown in Table 6.
  
Table  6      Recognition  effects  of  three  networks  with  different
amounts of unlabeced data

Number of labeled data CTA CNN TCN

25 600 0.924 7 0.923 0 0.932 0

51 200 0.933 9 0.927 1 0.934 4

76 800 0.936 4 0.932 5 0.936 2

102 400 0.937 9 0.931 5 0.936 8

 
As can be seen from Table 5, when the unlabeled data

grows  from 25 600 to 51 200,  the  recognition  accuracy
can  be  improved  more  obviously  for  the  CTA  network
which has a more complex model. For the TCN and CNN
which have a simpler structure and are easier to train, the
accuracy  will  be  improved  to  some  extent,  but  the
improvement is not obvious enough.

When the unlabeled data grows from 51 200 to 76 800,
the  overall  accuracy  improvement  of  the  three  networks
is not as big as that when the unlabeled data grows from
25 600 to 51 200. When the unlabeled data set grows from
76 800 to 102 400, the increase of unlabeled data does not
significantly increase the recognition accuracy,  and even
some networks that  are easier  to train,  such as the TCN,
may cause  the  accuracy  improvement  due  to  overfitting.
The accuracy decreases due to problems such as overfit-
ting. This shows that there is a limit to the improvement
of  the  network by unlabeled data,  and the  accuracy can-
not  be  improved  by  continuously  increasing  the  unla-
beled data.

The  training  of  unsupervised  data  is  slow  and
time-consuming,  so how to balance the amount  of  unsu-
pervised  data  and  the  recognition  accuracy  is  the  main
concern  of  this  paper.  In  this  paper,  a  DTW  method  is
used  to  initially  filter  the  unlabeled  data  to  reduce  the
training  time  without  decreasing  the  recognition  accu-
racy.
Experiment  3　 To  investigate  the  role  of  DTW

method  in  this  paper  for  balancing  the  number  of  unla-
beled  data  and  recognition  accuracy,  the  number  of
labeled data is fixed to 128, and the initial unlabeled data
are taken to be 51 200 and 76 800 respectively.

The  recognition  accuracy  of  the  three  classifica-
tion  networks  with 51 200 unlabeled  data  is  shown  in
Table 7. 

Table 7    Results of 51 200 data filtered by DTW

Network Initial 80% 70% 60% 50%

CTA 0.933 9 0.934 6 0.932 9 0.932 5 0.928 9

CNN 0.927 1 0.931 2 0.927 0 0.928 8 0.925 0

TCN 0.934 4 0.936 1 0.933 6 0.936 1 0.933 8
 

From Table 7, it can be seen that the recognition accu-
racy  does  not  decrease  when  the  selection  ratio  is  80%,
but  increases.  When  the  selection  ratio  continues  to  be
reduced to 60%−70%,  the recognition accuracy does not
decrease  due  to  the  reduction  of  the  data  set,  although
30%−40% of the data is removed at this time. When the
selection  ratio  decreases  to  50%,  due  to  the  removal  of
more  data,  it  will  have  a  greater  impact  on  the  recogni-
tion accuracy of networks with relatively complex struc-
tures  like  CTA,  and  less  impact  on  networks  with  sim-
pler  structures  like  CNN  and  TCN,  which  also  verifies
the conclusion of Experiment 2.

In order to verify the adaptability of this method, 76 800
unlabeled  data  are  selected  for  the  same  experiments
described above as shown in Table 8.
  

Table 8    Results of 76 800 data filtered by DTW method

Network Initial 80% 70% 60% 50%

CTA 0.936 4 0.937 7 0.935 5 0.937 3 0.933 9

CNN 0.932 5 0.922 5 0.933 9 0.931 5 0.930 4

TCN 0.936 2 0.937 3 0.935 5 0.936 0 0.935 3
 

As can be seen from Table 8, when the total amount of
unlabeled  data  is 76 800,  the  conclusions  obtained  are
basically the same as those obtained in Table 7, the only
difference is that when the selected proportion is 50% and
80%, the decrease and increase in accuracy in Table 7 is
more  obvious  than  that  in Table  8,  which  is  due  to  the
larger  initial  data set  in Table 8.  From the conclusion of
Experiment 2, it is clear that the more the amount of unla-
beled  data  is,  the  lower  the  gain  it  receives  from  data
growth. The results in Table 7 and Table 8 illustrate that
using the DTW algorithm, the unlabeled data set into sex
screening  and  selecting  the  appropriate  proportion
of  data  that  are  closer  to  the  labeled  data  set  can  be  a
good  balance  between  unlabeled  data  and  recognition
accuracy.
Experiment  4　To  investigate  the  advantages  of  the

improved collaborative semi-supervised method over the
common  semi-supervised  learning  methods,  two  com-
mon  semi-supervised  learning  methods  are  selected  for
comparison  with  the  improved  collaborative  semi-super-
vised  learning  method  used  in  this  paper.  And,  to  better
illustrate  the  effect  of  semi-supervised  learning,  a  net-
work  model  obtained  by  direct  training  with  a  small
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amount  of  labeled  data  is  added  as  a  control  group.  A
total  of  128  labeled  data  and 51 200 unlabeled  data  are
used for all  four models,  and the improved collaborative
semi-supervised model used in this paper selects 60% of
the  unlabeled  data  using  a  time-warping  algorithm.  To
facilitate  comparison,  the  classification  networks  all  use
the CTA network model. The classification accuracy and
loss  of  the  four  models  are  shown  in Table  9,  and  the
recognition accuracies of the four models at different sig-
nal  to  noise  ratios  are  shown  in Fig.  3.  In Fig.  3 CTA1
denotes  the  network  model  with  a  small  amount  of
labeled data trained directly, CTA2 denotes the self-train-
ing  semi-supervised  learning  network  model,  CTA3
denotes  the  collaborative  semi-supervised  network
model,  and  CTA4  denotes  the  improved  collaborative
semi-supervised model used in this paper.
  

Table 9    Loss and accuracy of the four models

Network Loss Accuracy

CTA1 1.766 5 0.731 6

CTA2 0.916 0 0.790 0

CTA3 0.767 3 0.846 4

CTA4 0.661 5 0.932 5
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Fig.  3      Recognition  ability  of  four  models  with  different  signal  to
noise ratios
 

As can be seen from Table 9, the improved collabora-
tive semi-supervised network model used in this paper is
much  better  than  both  the  common  self-training  semi-
supervised learning network model and the collaborative
semi-supervised learning model in terms of both loss and
accuracy.  Comparing  the  commonly  used  collaborative
semi-supervised  network  model  and  this  paper’s model,
we can see that the network model used in this paper can
improve the recognition accuracy by about 10% based on
the  collaborative  semi-supervised  learning  network

model.  At  the  same  time,  the  training  speed  is  signifi-
cantly  improved  compared  with  the  common  collabora-
tive  semi-supervised  model  because  40% of  the  unla-
beled data are removed by the DTW technique.

As  can  be  seen  from Fig.  3,  when  the  signal  to  noise
ratio is low, the network model used in this paper still has
good recognition effect, and can maintain more than 90%
recognition accuracy even in the environment of −14 dB
signal  to  noise  ratio,  which  is  sufficient  to  meet
daily  needs  and  far  better  than  several  other  network
models.
Experiment  5　 Through  the  analysis  of  the  above

experimental  results,  128  labeled  data  and 51 200 unla-
beled data are selected, and 60% of these unlabeled data
are used to train three common network models by using
the  DTW  algorithm.  The  recognition  ability  of  the  net-
work  models  obtained  by  direct  training  with  a  small
amount  of  labeled  data  at  different  signal  to  noise  ratios
and  the  recognition  ability  of  the  network  models
obtained  after  semi-supervised  learning  at  different  sig-
nal  to  noise  ratios  are  shown  in Fig.  4.  In Fig.  4,  CTA,
TCN,  and  CNN denote  the  models  obtained  from initial
training with a small amount of labeled data, and CTA1,
TCN1,  and  CNN1  denote  the  network  models  obtained
after semi-supervised learning.
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Fig. 4    Recognition ability of three models with different signal to
noise ratios
 

As can be seen in Fig.  4,  the network model  obtained
after semi-supervised learning has a significant improve-
ment  in  the  recognition  of  radiation  source  signals  com-
pared with the model obtained from the initial training. In
particular,  at  low  signal  to  noise  ratios,  the  network
model  obtained  after  semi-supervised  learning  can
improve the recognition accuracy by up to 20%.

To further investigate the recognition ability of the net-
work  model  obtained  after  semi-supervised  learning  for
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eight  radiation  source  signals,  the  CTA  network  model
trained  in  this  paper  is  used  to  recognize  eight  radiation
source  signals  at  different  signal  to  noise  ratios.  The
results are shown in Fig. 5.
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Fig. 5    Recognition ability of CTA model for eight signals at diffe-
rent signal to noise ratios
 

As  can  be  seen  from Fig.  5 where  the  CTA  network
models used in this paper, when the signal to noise ratio
is  greater  than  −8  dB,  the  classification  accuracy  of  the
three  models  for  the  eight  signals  reaches  100%.  Even
when the signal to noise ratio is at −14 dB, the classifica-
tion  accuracy  of  the  three  classification  models  for  the
eight signals remains above 80%, which can still meet the
basic  requirements  for  the  classification  and  identifica-
tion  of  radar  radiation  source  signals  under  harsh  condi-
tions.

It can also be seen from Fig. 5 that, with the lower sig-
nal to noise ratio, the recognition effect of CTA network
model  for  BPSK  signals  becomes  the  worst;  for  Frank
and  P3  signals,  the  recognition  effect  is  the  best,  and
when the signal to noise ratio is at −20 dB, it still has an
accuracy  rate  of  over  70%.  For  the  other  five  signals,
except for the FMCW signal and Costas signal, the accu-
racy  of  the  other  three  signals  can  still  maintain  above
50% at −20 dB.

The  overall  confusion  matrix  for  the  eight  signals  is
shown in Fig. 6. It can be seen from the figure that most
of  the  signals  can  be  accurately  classified,  and  a  clear
diagonal line can be clearly seen. In the case of eight sig-
nals at −20−10 dB signal to noise ratio, except for BPSK
signal,  the  classification  accuracy  of  other  signals  can
basically  reach  more  than  90%,  which  can  identify  the
radiation  source  signal  more  accurately.  The  model  has
the best recognition effect for Frank signal and P3 signal,
and the recognition accuracy can reach about 96.5%, and
the recognition effect  for  BPSK and Costas  signal  is  the
worst. 
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Fig. 6    Confusion matrix of eight signals
 

 7. Conclusions
To  solve  the  problem  of  poor  recognition  when  there  is
less  labeled  data,  an  improved  collaborative  semi-super-
vised learning radar  radiation source recognition method
based  on  a  small  amount  of  labeled  data  is  proposed  in
this paper.  The loss function is improved on the original
collaborative  semi-supervised  method  to  reduce  the  risk
of too absolute classification. Meanwhile, the DTW tech-
nique  is  used  to  filter  the  unlabeled  data  to  ensure  the
classification accuracy and reduce the classification time
at  the  same  time.  The  comparison  through  simulation
experiments  shows  that,  for  eight  kinds  of  radiation
source signals, the semi-supervised network in this paper
can classify  and recognize  radar  radiation source  signals
more  accurately,  and  basically  can  achieve  the  recogni-
tion effect of supervised network.
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