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Abstract: The deep deterministic policy gradient (DDPG) algo-
rithm is an off-policy method that combines two mainstream
reinforcement learning methods based on value iteration and
policy iteration. Using the DDPG algorithm, agents can explore
and summarize the environment to achieve autonomous deci-
sions in the continuous state space and action space. In this
paper, a cooperative defense with DDPG via swarms of
unmanned aerial vehicle (UAV) is developed and validated, which
has shown promising practical value in the effect of defending.
We solve the sparse rewards problem of reinforcement learning
pair in a long-term task by building the reward function of UAV
swarms and optimizing the learning process of artificial neural
network based on the DDPG algorithm to reduce the vibration in
the learning process. The experimental results show that the
DDPG algorithm can guide the UAVs swarm to perform the
defense task efficiently, meeting the requirements of a UAV
swarm for non-centralization, autonomy, and promoting the
intelligent development of UAVs swarm as well as the decision-
making process.
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1. Introduction

Since its emergence, unmanned aerial vehicle (UAV) has
been widely used in People’s daily life and scientific
research because its good performance and great applica-
tion potential. Besides, UAV has natural advantages in
carrying out military missions because of its conceal-
ment and security [1]. However, with the continuous
advancement of the application of UAVs in the military
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field, it is difficult to guarantee the flexibility and mis-
sion completion rate of a single UAV in the execution of
tasks. Therefore, the use of multiple UAVs to form a
swarm and utilizing UAVs swarm to perform related mili-
tary tasks has become one of the important development
trends in the militarization applications of UAVs [2].
Recently, some researchers have worked on the intelli-
gence algorithms of the UAVs swarm, such as the ant
colony optimization (ACO) algorithm and the wolf group
algorithm (WGA) to realize the command-and-control
process of the UAV swarm [3,4]. However, these meth-
ods have to take a long time to compute, lack flexibility,
and have the weakness of low degree of intelligence. In
recent years, the emerging field of artificial intelligence,
with its powerful non-linear processing ability and the
ability of perception and understanding of high-dimen-
sional information, is expected to enable UAV swarm to
have enough intelligence to complete tasks in a complex
environment on the battlefield.

At present, some scholars have used artificial intelli-
gence methods to carry out exploratory studies on rele-
vant issues of the UAVs swarm. For example, Chan-
darana et al. applied classification methods in artificial
intelligence to study the human-machine interaction
mode of UAV and compared the interactive control meth-
ods of UAV based on mouse, voice, and gesture [5,6]. Xu
et al. developed deep reinforcement learning to research
the autonomous target area coverage problem with UAVs
swarms, which are used to solve the task planning prob-
lem and the challenge of high-dimensional state space
under the joint action of multiple UAVs [7,8]. Wang et al.
proposed a utility maximization approach for tuning the
reward generation of a multi-arm bandits (MAB)-based
reinforcement learning approach for selecting energy and
processing optimized data offload paths between a source
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and target UAV in a decentralized edge UAV swarm [9].
Li et al. [10,11] used deep reinforcement learning meth-
ods to investigate the relevant factors that affect the
autonomous air combat on UAV, which provides a theo-
retical basis for future intelligent air combat. The rein-
forcement learning approach is also applied to the
resource allocation problem [12,13], and the global deep
reinforcement learning model can be directly down-
loaded to the newly activated agent, which avoids the
time-consuming training process. Wang et al. used deep
reinforcement learning for pursuing an omni-directional
target with multiple, homogeneous agents that are sub-
ject to unicycle kinematic constraints. With shared expe-
rience to train a policy for a given number of pursuers,
executed independently by each agent at run-time, they
achieved good training results [14]. Liu et al. employed
the deep neural network as the function approximator,
and combined it with Q-learning to achieve the accurate
fitting of action-value function for the intelligent tactical
decision problem [15]. Price et al. leveraged the deter-
ministic policy gradient algorithms in an actor-critic con-
struct using artificial neural networks as nonlinear func-
tion approximators to define agent behaviors in a continu-
ous state and action space [16]. They used the method in
target defense differential game and gained optimal
results in both the single and multi-agent cases [16].
Moreover, some experiments on the application of arti-
ficial intelligence in UAV swarm have been undertaken
in many countries, and the United States has also experi-
mented with many UAV swarm projects. Especially in
2016, the UAV swarm experiment conducted by the U.S
Army in California successfully applied artificial intelli-
gence to the action decision-making of UAV swarm, and
this experiment realized UAV swarm autonomous colla-
boration in the air, formed UAV cluster formation, and
completed the scheduled tasks, which have been fully
embodied the drone of the cluster’s decentralized, self-
independence and autonomous. These research results
show that the ad-hoc network and task in UAV swarm
decision-making is ready for commercial use [17]. Hu et al.
[18] presented an actor-critic, model-free algorithm based
on the deterministic policy gradient (DPG) that can oper-
ate over continuous action spaces. Based on the DPG
algorithm [19], they also combined the actor-critic
approach with insights from the recent success of deep Q
network (DQN) [20]. The model-free approach, deep
DPG (DDPG), proposed by Timothy et al. requires only a
straightforward actor-critic architecture and learning
algorithm with very few “moving parts”, and it is easy to
implement and scale to more difficult problems and

larger networks.

This paper investigates the UAV swarm defense mis-
sion using the DDPG algorithm. Due to the use of neural
networks in DDPG, its powerful simulation ability makes
the state space and action space of agents be extended
from limited discrete type to infinite continuous type,
which is closer to the real scene of UAVs defense mis-
sions. We successfully overcome the "sparse reward"
problem by setting the reward function to obtain the
appropriate reward value before an episode ends, thus
making the algorithm easier to converge. At the same
time, we also add random noise elements to the act selec-
tion to improve the random exploration ability of the
UAV in the early training, which can obtain more abun-
dant experience.

2. Task description

Among the numerous UAVs swarm tasks, the defense
task is always the typical one of them. The defense task is
to deploy the UAVs cluster around the defense target to
prevent the possible attack from the incoming enemy and
achieve the defense mission of the target.

2.1 Environment description

In this paper, a continuous two-dimensional battlefield
map is constructed to serve as the exploration environ-
ment for UAV swarm defense task. The position of
UAVs, incoming enemy, and the defended target are rep-
resented by continuous coordinate position, and the origi-
nal state of the defensive task is shown in Fig. 1.
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Fig. 1 Schematic diagram of UAV swarm defensive mission

As shown in Fig. 1, there are insurmountable battle-
field boundaries in the environment. It is stipulated that
the defended target is generated in the lower left part of
the environment and moves horizontally to the right and
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assumed that the movement of the defended target is not
affected by the movement state of the incoming enemy
and the UAV swarm. The initial region of the UAV
swarm is on both sides of the defended target. The UAV
swarm is randomly generated from the two initial regions
of the UAV and it is accompanied by a certain random
initial speed. In the upper right, there is the initialization
region of the incoming enemy. The incoming enemy is
randomly generated in this area.

It is assumed that there is only a single incoming
enemy in the mission, and the incoming enemy aims to
destroy the defended target. The incoming enemy knows
the position and speed of the defended target, so it can
maneuver according to the two guidance methods, and
the movement of the incoming enemy will not be affected
by the movement state of the UAV swarm.

The objective of the UAV swarm is to eliminate the
incoming enemy and achieve defensive missions. To real-
ize the destruction of UAVs to an incoming enemy, it is
assumed that the UAV carries a weapon unit. To sim-
plify the model, there is no limit on the number of
weapons. It is only possible for an incoming enemy to be
destroyed by UAVs when it enters the attack range of
UAVs.

Therefore, there are three end states for UAV swarm to
perform defense tasks: the incoming enemy is destroyed
and the defense mission is completed; the defended tar-
get is destroyed and the defense mission fails; UAVs hit
battlefield boundary and the defense mission fails.

2.2 Incoming enemy model

As the purpose of the incoming enemy is to destroy the
defended target, the movement of the incoming enemy
should be modeled. It is assumed that the position, speed,
and other information of the defended target can be
obtained by the incoming enemy, and the movement of
the incoming enemy is guided through the information. It
is known that the movement speed of the incoming
enemy is 1.5 times the maximum movement speed of the
UAV’s. In other words, Vepemy = 1.5max(Vygen). The
movement model of the incoming enemy is constructed
based on the fire-control attack seeker which has two
kinds of motion rules.

(i) Pure tracking attack

Pure tracking attack is an easy and common attack
method, which is often used as the guidance method of
infrared-guided missiles and other controllable weapons.
The core of the pure tracking guidance method requires
that the velocity vector of the incoming enemy always
points to the center of the defended target at every
moment, as shown in Fig. 2.
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Fig.2 Schematic diagram of pure tracking attack

The speed direction of the incoming enemy always
points to the defended target, that is,
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where v represents the velocity vector; d represents the
distance vector from the incoming enemy to the defended
target. Given that the velocity of the incoming enemy is a
constant as Venemy, the movement strategy of the incom-
ing enemy in the pure tracking attack mode can be
obtained.

(i1) Pure collision attack

Pure collision attack is another common attack guid-
ance method, which is often used for weapons that can-
not be controlled autonomously after launching and the
main guidance method of tactical contact with the enemy.
Its core is that the velocity vector of the incoming enemy
always points to the predicted impact point between the
incoming enemy and the defended target, as shown in

Fig. 3.
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Fig.3 Schematic diagram of a pure collision attack
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According to the characteristics of pure collision guid-
ance, in the process of navigation for an incoming enemy,
it is necessary to calculate the expected impact point
through the initial position, speed of the target, initial
position, and speed of the defended target in the process
of navigation. Then the velocity vector of the incoming
enemy always points to the expected impact point with a
constant velocity. And according to the characteristics of
a pure collision attack, the speed of the incoming enemy
always points to the defensive target relative to the defen-
sive target’s velocity.

According to the sine theorem, it can be obtained that

SIN 77 Vatacker! _ Vattacker
sin p - - @

vtarget

vtarget t

where p is the angle between the line connecting the posi-
tions of the attacker and the target and the velocity vector
of the attacker, 7 is the angle between the line connect-
ing the positions of the target and the attacker and the
velocity vector of the target, Ve 1S the speed of the
attacker, and v, is the speed of the target.

It is assumed that the speed ratio between the incom-

Vattaker
—— =k, and
Vtarget

X, y is the ordinate distance between the incom-

ing enemy and the defended target is

sin 1 =
ing enemy and the defended target, d is the distance
between the incoming enemy and defended target. There-
fore, it can be known that

p= arcsin(ky—d). 3)

Therefore, the direction of the incoming enemy can be
obtained. According to the guidance mode of pure colli-
sion attack, the incoming enemy will keep this speed
direction until it hits the target.

The incoming enemy uses the above attack guidance
method to attack the defended target. Each turn ran-
domly selects one of the above attack guidance methods
to attack the defended target.

2.3 Model of the UAV swarm

This paper uses a deep reinforcement learning algorithm
to study the UAV swarm defense missions. Different
from the traditional grid-based dimensionality reduction
method used in the interaction between UAV and envi-
ronment under the deep reinforcement learning algorithm,
we construct a continuous UAV exploration environment,
that is, the UAV can reach any point on the map, and the
UAYV has an infinite state space. The continuous environ-
ment greatly improves the authenticity of the environ-
ment model, which makes deep reinforcement learning an
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important step to practical application. Based on the con-
tinuous environment space, the UAV is modeled as fol-
lows.

(1) UAV kinematics model

For the continuous environment model, acceleration is
used as the action control unit of the UAV, and the spe-
cific acceleration action space is shown in Fig. 4.

Fig. 4 UAYV acceleration model diagram

The UAV is modeled because the UAV swarm defends
the mission environment and uses acceleration to control
its action. Moreover, the DDPG algorithm can control the
continuous action of the UAV. As shown in Fig. 4, the
action space of UAV is controlled by its tangential acce-
leration a@,, and normal acceleration a,, and the value
range of acceleration is limited.

a; €(-2,2)
a, €(-1,1)
At the same time, the speed of UAV is limited, and the

speed of UAV is not affected by the acceleration unli-
mited, v € [3,7]. In the initial state, the state of UAV i is

given by s’ = [xl-,y,-,v;,.,v;i], the initial speed Vi, v, and
position coordinates x;, y; which are initialized randomly
within the specified range.

A
200 ———————————————
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Fig.5 UAY kinematics model diagram

Then the next state of a UAV is calculated according to
the basic kinematic formula for each state. As shown in
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Fig. 5, the kinematic model is given by

. ot 12 12
s1na—vy/(vx +v, )

oyl 2 2\’ (4)
cosa =v, /(v +V,
v''=v +a,-cosa-t+a, sina-t 5)
V' =y +a,-sina-t+a, -cosa-t’
{x;’+1 =x v, -t ©
y;+1 =y;+v)"t
In (4)—=(6), variables a,,, a,, vi, v}, vi"', v;'! are vec-

tors: v, and v, are the speeds of the UAV at time ; v'"
and v are the speeds of the UAV at time 7+1; a;, and
a, are the accelerations of the UAV output by the neural
network in current state; x' and y' are position coordi-
nates of UAV at time ¢; ¥/, and y’,, are position coordi-
nates of UAV at time ¢+ 1; ¢ is movement time of the
UAV in one state; « is angle between velocity direction
of UAV and X-axis direction.

(i1) UAV detection model

It is assumed that the UAV can sense its environment
globally. To make the model closer to the real environ-
ment, a normal distribution error is added to the UAV
sensor information. The relevant parameters of the error
are determined as follows:

u=0
1 . (7

o= @dagem_target
Therefore, the UAV detection results are as follows:

{xget =x+¢

Yt =Y +E

®)

where x, is position in the x-direction of the incoming
enemy detected by the UAV; y,. is position in the y-
direction of the incoming enemy detected by the UAV; x
is true x-direction position of the incoming enemy; y is
true y-direction position of the incoming enemy; & is a
random value that follows a normal distribution.

The detection results of the UAV on the incoming
enemy’s speed are as follows:
Xnow — Xold

i ©)

_ Ynow ~ Yold
Vyiget - ¢

Vi get =

Where Xow, Xoids Ynow» Yoia T€Spectively represent the incom-
ing enemy’s position detected under the current condi-
tions and the previous conditions and ¢ represents the
detection cycle of the UAV swarm. Because of the detec-
tion error of the UAV swarm to the incoming enemy’s

position, the detection error of the UAV swarm to
detected velocity state always exists.

(iii) UAV attack model

It is assumed that the UAV has an attack mode, which
is set as a circular attack area to simplify the model.
Assuming that the attack radius of the UAV is r when the
incoming enemy enters the attack area of the UAV, the
UAYV begins to attack, and the UAV can launch an attack
on the incoming enemy every three simulation cycles. In
each launch, the UAV has a certain probability of
destroying the incoming enemy, and the probability of
destroying is related to the distance between the incom-
ing enemy and the UAV. The probability of destroying an
incoming enemy in each attack is assumed to be as fol-
lows:

P = =377 geng anses +0.85 (10)

where dygeny weer Tepresents the distance between the
drone and the incoming target. When dyeeng et < 7, the
incoming enemy is within the attack area of the UAV.

(iv) UAV communication model

To make UAVs have better action decisions, local
communication between UAVs is required. Different
from centralized communication which needs the central
node, we adopt the flat distributed communication struc-
ture. Assume that each UAV can communicate with its
adjacent drones, and each drone can obtain its three near-
est neighbor’s position, velocity, and other related infor-
mation, as shown in Fig. 6.

Fig. 6 Schematic diagram of UAVs communication

The arrow direction in the figure shows the process of
the UAV transmitting its position, speed, and other state
information and corresponding detected information to
the adjacent UAV. Besides, the state of the UAV itself
and the state of the adjacent UAV transmitted by commu-
nication is taken as the perception state of the UAV to the
current environment.

In this paper, the UAV i can sense the following prop-
erties about other UAVs within its neighborhood:

d' is the distance to its neighboring UAVs;

J_ i
o :arctan(yj y_)—gb” is the bearing angle to its
xi—x
neighboring UAVs;
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y =y
X —x/

0 = arctan( )— ¢’ is relative orientation;

AV =vi[cos ¢',sin ¢'] —v/[cos ¢/,sin ¢/] is relative
velocity.

Furthermore, each UAV has access to the following
local properties:
o dary = N (X" = Xmnin»s Y = Vinins Xmax — X' Ymax — ') 18 the
distance to closest battlefield boundary;

Bhoundary = Phounaary — ¢ 18 Orientation to closest battle-
field boundary;

V' is the velocity of the UAV itself.

Phomaury denotes the absolute bearing angle of UAV i to

the closet battlefield boundary segment.

Updating|parameters
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A

3. DDPG algorithm

The DDPG algorithm is a deep reinforcement learning
algorithm combining value iteration and policy iteration
[21,22]. The DDPG algorithm uses neural networks to
learn and preserve the UAV action strategy, which can
explore the environment and learn optimal strategy in
infinite size state space and action space.

3.1 Algorithm structure

DDPG algorithm combines advantages of the “actor &
critic” algorithm and the DQN algorithm, which is a new
deep reinforcement learning algorithm [23,24]. The algo-
rithm structure is shown in Fig. 7.
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Fig. 7 Structure of the DDPG algorithm

The actor part and the critic part each have a pair of
artificial neural networks with exactly the same structure,
which is called Eval neural network and Target neural
network respectively. Among them, Eval neural network
is used for training and Target for updating the parame-
ters of Eval network, which are followed by periodic soft
update strategy and assist in the training process of the
neural network.

The actor neural network determines the probability of
UAV’s action selection. When the UAV makes beha-
vioral decisions, it will interact with the environment
according to the probability provided by the actor neural
network. The critic neural network receives the state and

action and generates the value evaluation of the “state-
action”, in which the Eval neural network is used to
judge the value of the current state and action, and
the Target neural network receives the state at the
next moment and the action at the next moment from the
actor Target neural network and makes the value judg-
ment.

Actors and critics have different training processes
using different loss functions. For the critic network, TD-
error is used to update the parameters of Eval neural net-
work to minimize loss during training, as shown in (11)
and (12).
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TD —error = reward (s,,a,) +

;

’)/V, (St+l 7at+1;9‘;rmc) - V(S/, at;gcritic) 5 (1 1)

Loss = (TD —error)’. (12)

In (11) and (12), reward(s;,a;) is the environmental
reward of the current state and action, given by the train-
) is the evaluation of the
value of state and action at the next moment, given by the

ing sample; V'(S.1, 30l
critic’s neural network; v(s,,a,;0.4i.) 1S status assessment
of current temporal states and actions, given by critic’s
neural network; a,,, is the action of the next moment
given by the neural network of the actor’s part; s,,, is the
status at the next moment given by the training sample; a,
is the action at the current moment given by the training
sample;s; is the current status given by the training sam-
ple; v is the discount factor.

For the training process of actors neural network, it is
necessary to maximize the value function of state and
action, so the mean value of evaluation of state and action
is used as the loss function, as shown in (13):

Loss = —mean (v (5, @; Oitic)) - (13)

3.2 Balance of DDPG algorithm in exploration and
experience

Although the DDPG algorithm outputs the probability
distribution of UAV’s action selection in the process of
UAV’s action selection, in the final process of UAV
interaction with the environment, the only action is still
selected according to the given probability distribution
[18]. Therefore, in the process of UAV interaction with
the environment, it always uses a deterministic strategy,
which will lead to insufficient exploration of the environ-
ment by UAV. Therefore, it is necessary to add some
exploration to the strategy selection of DDPG algorithm
[25].

The exploratory method to increase the exploration
ability for the DDPG algorithm needs to add some ran-
dom noise to the action selection process of UAV. As
shown in (14):

action = action’ + Noise (14)

where action is the interaction between the UAV and the
environment; action’ is action selected according to the
probability distribution of actions given by the actor-net-
work; Noise is the random noise.

The action decision made by the DDPG algorithm can
output the continuous action of UAV. Therefore, it is fea-

1217

sible to enhance the exploratory performance of the
DDPG algorithm by using the above method, and the ran-
dom noise is normally distributed:

Noise ~ N(0, 02). (15)

The variance of the random noise is the quantity
related to the iteration round. As the training progress
goes on, the variance decreases gradually. According to
the characteristics of the normal distribution, we give the
initial value of the variance as follows:

o, = (action,,,, —action,,,) /4 = 1.5, (16)

= kP, (17)

The variance change of random noise used to
increase the exploratory of DDPG algorithm is
shown in (16) and (17), and here based on the training
experience k =0.9995, episode represents the training
cycle, which can ensure that the action selection of
UAV has a large exploration rate. At the same time,
when the action selection of UAV exceeds the maximum
range, it is restricted to the corresponding action bound-

ary.
3.3 Network model of DDPG algorithm

The network structure diagram of the DDPG algo-
rithm is constructed by using an artificial neural network,
where the “actor” and “critic” parts of the DDPG algo-
rithm have a pair of neural networks with the same struc-
ture, and the two neural networks will be introduced
below.

(1) “Actor” part of artificial neural network

It is well known that the neural network of the “actor”
part is used to select the action of UAVs, that is, to real-
ize the mapping of the state space of UAV swarm to the
action space of UAVs.

In UAV swarm defense mission scenario, the state
space for the UAV swarm is defended target position
Xeenters Yeenters UAVS’ POSIION  Xygents Vagent» UAVS’ speed
Vy agents Vy agent>  and  the position
Xiargets Yirget» the Incoming enemy’s speed Xeygers Vearger, and
other information that gained by the interaction with
other UAVs in the swarm Xugen comm i> Yagent comm i
Vi agent_comm_is Vy agent comm i» a5 Well as the other UAVs to
detect the incoming enemy’s information Xugen: comm i gets

incoming enemy’s

Yagent_comm_i_get> Vx_agent_comm_i_get> Vy agent_comm_i_gets & total of 34
dimensions for the UAV swarm state space. These state
data are sorted and coded in a fixed order to form the
state space structure of the UAV swarm, as shown in
Fig. 8.



1218 Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

Xoase » Voase

X,

X,

target > Viarget > Y _target >V target

agent » Vagent »

v v

x _agent > "y _agent

Base Information exchange
- Attacker’s state] UAV’s state g
position of UAVs

xagenl _comm _1_get ’yagenl _comm _1_get? Vx,l‘gém,c‘““‘“,', get? vyiagem _comm_1_ get ’xagenlicommil ’yagenl?commil 2 vx7 agent_ comm_12 v y_ agent_ comm |

Xagent _comm_2_get >Vagent _comm _2_get >Vx_agent _comm_2_get>Vy_agent_comm_2_get > Xagent _comm_2>Vagent _comm_22Vx_agent_comm_22Vy_ agent_comm_2

‘xagem _comm_3_ get Y agent _comm_3_ get vV X_ agent_comm_3_ gel’vy _agent comm _3_get ’xagenl _comm _3 ’yﬂgent _comm _3 "V _agent _comm_3 v y_agent_comm_3

Fig. 8 State space of UAV swarm
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Therefore, for the “actor” part: the Target and Eval ; -
Base Attacker’s | (javs state | nformation exchange

neural network, two fully-connected artificial neural net-
works (excluding the input layer) with the same structure
are constructed, and we have a six layers neural network,
the number of neurons in each layer is respectively
[100,100,300,100,10,2]. Neurons in the last layer of the
neural network use tanh(x) as nonlinear activation func-
tions to realize the mapping between the network output
and UAV’s action,
relu(x) = max(0, x) as nonlinear activation functions. And
the root mean square prop (RMSP) algorithm is used as
the optimization algorithm of training. The neural net-

while other neurons use

work structure is shown in Fig. 9.

Output-layer 1%2

34*100

Cw ) (

Fig. 9 Artificial neural network structure of the “actor’s part”

(i1) “Critic” partial artificial neural network

Through the determined value of “state-action”, the
critic’s partial neural network guides the training pro-
cess of the “actor” neural network [26]. Therefore, the
input state of the critic neural network is the state infor-
mation and action information of the UAV swarm, and
the state space structure of the critic network is shown in
Fig. 10.

of UAVs

position state

{?

State information

Action information

Ll

A agents A1 agent

Fig. 10 Input data structure of “critic section” neural network

It is also built via two completely identical 5-layer all
connected artificial neural networks (excluding the input
layer) for the “critic” part of the Target and Eval artificial
neural network, the number of neurons in each layer is
respectively [100,300, 100,10, 1]. The neurons of the last
output layer use tanh(x) as a nonlinear activation func-
tion, while the other neurons use relu(x) as a nonlinear
activation function, and the RMSP algorithm is used as
the optimization algorithm for training. The structure of
the neural network is shown in Fig. 11.

Output-layer
1*10 10%1 1%1
Hidden-layer 4 ( w5 ) ( b5 )
\100*10
1*10
Hidden-layer 3 ) (
1*300

Hidden-layer 2
*
1#100 1 00*30(\

Hidden-layer_1 ( w2

b4 )

) w» )

36%100 1¥100
C wt ) o1 )
Fig. 11 Artificial neural network structure of the “critic” part

For the “actor” part and the “critic” part, there exist
simultaneously the Target and Eval neural networks,
Eval is used for the training process, and the parameters
of the Target neural network change periodically with the
corresponding parameters of the training network. For the
parameter update of Target neural network, the soft
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update strategy based on the sliding average value is
adopted, namely,

QTarget = keTarget + (1 - k) 9Eval (1 8)

where 6, refers to Target neural network parameters;
Ogva refers to Eval neural network parameters; k is the
sliding factor, with a value of 0.2.

3.4 Sparse reward problem of DDPG algorithm

Since the continuous state space and action space are
used in this research, the UAV will undergo a long inter-
action with the environment to reach the final state after
initialization [24]. At this point, the method of rewarding
UAV only after it reaches the final state has the defect of
too long return period, which leads to the failure of effec-
tive learning in reinforcement learning, that is, the prob-
lem of sparse reward.

For the sparse reward problem, there are two common
solutions: one is to divide the main task and set related
small goals for the main task so that the UAV starts learn-
ing from the small goal first, to speed up learning [27].
Another one is to modify the goal to increase the effec-
tive reward, to speed up learning. We adopt the second
method to accelerate the training and construct the reward
function of UAVs to guide the learning direction of deep
reinforcement learning.

r=100
r=-10
r=-100 19)

r= dagem_target - d/agem_target + Vagent COS B- d 20

center_target
where  dygen weer 1S the distance between the UAV
and the incoming enemy at the current state; d; ., e 1S
the distance between the UAV and the incoming enemy
in the next state; B is angle between speed direction
of the UAV and connection line between the UAV and
the incoming enemy at the current state; V.. is the
velocity of the UAV at the current state; deener targer 1S the
distance between the defended target and the incoming
enemy.

According to the above different termination states,
there are different reward function values. When the
UAYV swarm completes the defense task, the UAV swarm
that destroys the incoming enemy will receive a
positive reward r = 100. When the collision boundary of
UAV swarm leads to the early end of this turn, the
UAV colliding with the battlefield boundary is given
a negative reward r =—10. If the UAV swarm fails to
complete the task and the defended target is destroyed,
the UAV will be given a negative reward r = —100. For
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the exploration phase of UAV in the environment, the
reward function with enlightened characteristic is
adopted:

i_ (20)

center_target

—_ 4
r= dagcntitargct —-d agent_target + Vagent Cos B -

The reward function of the enlightened property is
composed of the distance between the UAV and the
incoming enemy, the speed and direction of the UAV,
and the distance between the defended target and the
incoming enemy. Obviously, in defense missions, the
reward function corresponding to the smaller distance
between UAV and the incoming enemy is positive. When
the UAV’s velocity vector points to the incoming enemy,
the higher the UAV’s velocity is, the higher the reward
function will be. When the UAV’s velocity vector devi-
ates from the incoming enemy, the higher the UAV’s
velocity is, the higher the negative reward function will
be. At the same time, it increases the distance between
the incoming enemy and the defended target as the refer-
ence of time and the threat of the incoming enemy to the
defended target. The closer the distance between the
incoming enemy and the defended target is, the greater
the negative reward will be. To sum up, (19) reward
function can accurately reflect the state value of UAV
swarm.

3.5 DDPG algorithm flow

A detailed description of DDPG algorithm is provided in
Algorithm 1.

Algorithm 1 DDPG algorithm
1: Initialize maximum iterations 7', state feature dimen-

sion n,, action space dimension #,, and batch size;
2: Initialize parameters y,a,n and artificial neural net-

work parameters;
3: Initialize memory playback unit and temporary stor-

age unit;

4: for training rounds episode = 1,T
5: Initialize the state space and action space
6: dotimer=1

7: Select UAV’s action using the equation:
a, = argmax (Q (s, : Oucror))

8: Generate random noise error using:
a, = a, +Noise

9: UAYV performs an action a,, get new state s,

and reward y
10:  Store {s,,a;,7, s} on the temporary storage unit
11: If the temporary storage unit is full
12:  Calculate the value of the sample using the value
function

TD —error = reward (s,,a,) + ¥V (S1, 1) — v (s,,a,)
13:  Remove low-value samples from the temporary
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storage unit by probability formula

-1
PG) = k(p +¢)

Z(pi+8)71
i=1

14:  Calculate the sample value under the new state
using the value function
TD —error = reward (s,,a,) + YV (8.1, a41) — v (5;,a,)
15:  Select high-value samples to store in the tempo-
rary storage unit according to probability
X
Py =

>
i=1

16: Empty temporary storage unit
17: If in training phase:

18:  In the memory playback unit through a value func-
tion

TD —error = reward (s,,a,) + YV (81, 1) — v (5;,a,)
19:  Select batch_size training samples by priority sam-
pling according to probability
P(i) = . Hpi+B

Z (W p; +B)

20: Calculate the loss function loss = (TD —error)® and
get the gradient

21:  Update neural network with RMSP optimizer

22: If reach “target-network” update cycle

23:  Soft update parameters
o :a*gcrilic-i_(l_a)*gé

critic ritic

and
)/
eactor

24: while the UAV reaches the end state, ending the cycle
25: end for

:a*eactor+(1 _a)*e’

actor

4. Simulation results

The DDPG algorithm is used to study the defense task of
UAV swarm against the incoming enemy which is ran-
domly generated using either pure pursuit or pure colli-
sion attack mode against the defended target. The initial
position of the UAV swarm is generated randomly in the
designated area, and its initial state is random. Therefore,
the DDPG algorithm is used to command the action deci-
sion of UAV swarm, to observe the performance of UAV
swarm in defense tasks.

4.1 Training process

The artificial neural network constructed above is used
for training, during which five isomorphic drones are
used for defense missions. It is assumed that each UAV
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receives relevant information from three adjacent UAVs
to assist in decision making and the maximum training
epoch is 1250. The snapshots of the training peocess are
shown in Fig. 12.
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(c) 600 rounds of training renderings



ZHANG Yaozhong et al.: A UAV collaborative defense scheme driven by DDPG algorithm 1221

200

Incoming enemy

175}
150}
125}

oo}

-
75|
so}

UAV2

25

Defended target
L L

0 25 50 75

100 125 150 175 200
x/km
(d) 1 250 rounds of training renderings

Fig. 12 Snapshots of different training epochs

Firstly, the convergence of the artificial neural net-
work is analyzed, and the parameters of the neural net-
work layers of “critic” and “actor” are selected for rele-
vant statistics. Since there are massive parameters in the
neural network, the mean and variance of the parameters
are statistically observed. The statistical results are shown
in Figs. 13—16.
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Fig. 13 Mean changes of network parameters in “critic” section
from Eval network
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Fig. 14 Variance changes of network parameters in “critic” sec-
tion from Eval network
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Fig. 15 Mean changes of network parameters in “actor” section
from Eval network
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Fig. 16 Variance changes of network parameters in “actor” sec-
tion from Eval network

The parameter statistics of the above figure are
selected from the parameter statistics of all neurons in the
neural network of the “critic” part and “actor” part. The
solid line is the statistical truth value of the parameter,
while the dotted line is the result of sliding average pro-
cessing of the statistical truth value with a period of 3. In
Fig. 17 and Fig. 18, it can also be seen from the distribu-
tion trend of target network parameters of actor and critic
that the parameters of neural network are constantly
changing during training and eventually tend to be stable.
It is proved that the neural network tends to converge
during training. It can be seen from the above statistics
that the artificial neural network converges during the
training process.

—-0.55 —-0.35 —0.15 0.05 0.25 0.45

Fig. 17 Changes of Target network parameters distribution in the
“actor” section

-0.25 -0.05 0.15 035 055 0.75 095 l.iS 1.35

Fig. 18 Changes of Target network parameters distribution in the
“critic” section
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This paper processes the data in the UAV training pro-
cess and uses memory playback unit to store the samples,
and the reward value in each sample is the return of the
interaction between the UAV and the environment, as
well as the performance reference index when the UAV
interacts in the environment. Fig. 19 shows the reward
values of the samples selected for training against the
increase of training rounds.

Average reward

74 1 I 1 1 1
0 200 400 600 800 1000 1200
Number of iterations
—e— : Mean reward; -+ : Moving average with 3.

Fig. 19 Mean reward of samples in different epochs

As shown in Fig. 19, with the increase of training
rounds, the average reward of training samples rises
slowly, that is to say, the UAV behavior represented by
the samples in the memory playback unit is trying to be
beneficial to the direction adjustment of the task target,
and the UAV training will have better and better perfor-
mance, while the dotted line is the result of sliding aver-
age processing of the statistical truth value with a period
of 3.

Fig. 20 shows the evolution of the average episode
rewards in different rounds during the training process.

200
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Episode reward (mean)
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Number of iterations
-e— : Mean reward.

Fig.20 Mean episode reward under different training rounds

Fig. 20 shows that DDPG achieves very good perfor-
mance on our task. As expected, we see that with the
increase of the total training rounds, the total rewards of
the round increases steadily. When it reaches 800 rounds,
it is close to convergence.

Using the above method to train five UAVs, and the
mission success rate of each round is shown in Fig. 21.

Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

1.0

Task completion rate

200 400 600 800 1000 1200
Number of iterations
-+ : Rate; = : Moving average with 3.

Fig. 21 Task completion rate for UAV swarm

As can be seen from Fig. 21, the UAV clusters after
training can well complete the defense task, with an aver-
age success rate of 95%.

4.2 Execution process

After the completion of the defense task training with five
UAVs, the artificial neural network verifies the com-
pleted training model. The artificial neural network
model completed by training is used as the behavioral
decision-making unit of the UAV swarm. The UAV has a
certain random initial state, and the initial position of the
incoming enemy is also randomly generated in the desig-
nated area. Firstly, the behavioral decision of using five
UAVs for defense missions is verified, and the move-
ment trajectory of the UAV swarm is obtained, as shown
in Fig. 22.
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Fig. 22 Trajectory of five UAVs in a defense mission

As shown in Fig. 22, the trained model can well
accomplish the defense tasks of the cluster of five UAVs.
Then, increasing the number of UAVs to 30 without
changing the state space structure of the UAVs cluster. It
is to verify the UAV swarm defense mission by using the
trained network (in the cluster defense mission environ-
ment composed of five UAVs, the artificial neural net-
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work has undergone 1250 epochs of training). Also, the
initial position and initial velocity of the UAV swarm are
random to some extent. The performance of the swarm
composed of more UAVs when the defense task is veri-
fied, and the mission trajectory of the UAV swarm is
shown in Fig. 23.
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Fig. 23 Trajectory of 30 UAVs in defense mission

As shown in Fig. 23, the decision-making model of
UAV swarm defense mission obtained by training with
five UAVs can be applied to the swarm defense mission
composed of more UAVs without modifying the state
space structure. At the same time, it also shows that the
behavior decision of UAV swarm using DDPG algo-
rithm can well meet the challenge of UAV swarm to a
dynamic number of individuals, reflecting the characteris-
tics of UAV cluster autonomy.

5. Conclusions

In this paper, the DDPG algorithm is used to study
defense task of the UAV swarm, which have a continu-
ous state space and action space. To balance the contra-
diction of “experience-exploration” in the DDPG algo-
rithm, we add random noise elements to the act selection
to improve the exploration ability of the algorithm. At the
same time, the random noise will decrease with the
increase of iteration epochs to ensure the convergence of
the algorithm. To improve the performance of the algo-
rithm, the parameter updating process of a neural net-
work is optimized. To solve the problem of “sparse
reward” in deep reinforcement learning, we build a guid-
ing reward function to give the UAV swarm appropriate
reward when an episode is not over, which effectively
improves the convergence of the algorithm.

According to simulation results, we use the DDPG
algorithm to guide the UAV swarm for decision making
which successfully defend the target from the incoming

enemy. Meanwhile, under the same state space, the model
trained from a small number of UAVs can be directly
applied to more UAVs to form swarm to perform the cor-
responding tasks, which fully embodies the characteris-
tics of UAV swarm, such as decentralization and auton-
omy. This also reflects the use of artificial intelligence
method to study the strong generalization ability of the
UAYV swarm decision-making problem.
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