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Abstract: The unmanned combat aerial vehicle (UCAV) is a
research hot issue in the world, and the situation assessment is
an important part of it. To overcome shortcomings of the exist-
ing situation assessment methods, such as low accuracy and
strong dependence on prior knowledge, a data-driven situation
assessment method is proposed. The clustering and classifica-
tion are combined, the former is used to mine situational know-
ledge, and the latter is used to realize rapid assessment. Angle
evaluation factor and distance evaluation factor are proposed to
transform multi-dimensional air combat information into two-
dimensional features. A convolution success-history based
adaptive differential evolution with linear population size reduc-
tion-means (C-LSHADE-Means) algorithm is proposed. The con-
volutional pooling layer is used to compress the size of data and
preserve the distribution characteristics. The LSHADE algorithm
is used to initialize the center of the mean clustering, which over-
comes the defect of initialization sensitivity. Comparing experi-
ment with the seven clustering algorithms is done on the UCI
data set, through four clustering indexes, and it proves that the
method proposed in this paper has better clustering perfor-
mance. A situation assessment model based on stacked autoen-
coder and learning vector quantization (SAE-LVQ) network is
constructed, and it uses SAE to reconstruct air combat data fea-
tures, and uses the self-competition layer of the LVQ to achieve
efficient classification. Compared with the five kinds of assess-
ments models, the SAE-LVQ model has the highest accuracy.
Finally, three kinds of confrontation processes from air combat
maneuvering instrumentation (ACMI) are selected, and the model
in this paper is used for situation assessment. The assessment
results are in line with the actual situation.
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1. Introduction

With the continuous development of artificial intelli-
gence technology, the intelligence and autonomy of
unmanned combat aerial vehicle (UCAV) represented
by the US “loyal wingman” have been significantly imp-
roved, but the existing intelligence is far from being able
to meet actual needs [1], therefore, autonomous air com-
bat technology is a research hot issue currently stu-
died by countries around the world [2]. UCAV air com-
bat situation assessment is an important part of
autonomous air combat. It is based on a comprehensive
situational information perception to analyze the situa-
tion of the enemy and ourself, and provide reliable guid-
ance information for UCAV maneuver decision-making
[3]. It has high requirements for assessment accuracy and
timeliness. The existing situation assessment methods are
mainly divided into two categories: non-parametric
method and parametric method. At present, scholars from
all over the world have conducted in-depth research on
these two methods.

The non-parametric method uses the situation function
to quantify the angle, speed, altitude, distance [4] and
weapon performance. Zhao et al. proposed an air combat
situation assessment method based on decision tree, and
assessed the situation from multiple aspects [5]. Zhang et
al. established angle situation and distance situation based
on relative position information, which assist maneuver
decision [6]. Zhang et al. constructed an advantage evalu-
ation function based on the key factors of the air combat
situation, and used the cross-entropy method to distribute
the weight of each factor, building a dynamic threat air
combat situation assessment model [7]. From the above
research, the situation assessment performance of the non-
parametric method is mainly determined by the situation
function. Although the method is simple to implement,
has good timeliness, and has strong scalability, the weight
definition of the situation function is too subjective,
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ignoring the continuity of the information. In complex
cases, it is difficult to accurately describe situation infor-
mation.

The parametric method is based on the prior know-
ledge of air combat, it uses uncertainty theory to approxi-
mate the relationship between air combat information,
and constructs a situation assessment model. Ying et al.
used improved belief entropy (IBE) to process data, and
used classic dempster combination rules to fuse data [8].
However, this method is difficult to apply in complex sit-
uations. Xu et al. took the single aircraft confrontation as
an example, it proposed a novel semi-supervised naive
Bayes classifier, which takes less time to evaluate, but
has low accuracy [9]. Lu et al. proposed a target threat
assessment technology based on cloud model and
Bayesian theory [10], which uses cloud model to realize
the expression and processing of situation, and Bayesian
modifies the membership cloud. He et al. proposed a
naive Bayesian situation model based on historical situa-
tion, and analyzed and modeled the tactical theory to
make the situation assessment targeted [11]. Xuan et
al. established a grey fuzzy Bayesian network model for
air combat situation assessment [12]. The uncertain know-
ledge of grey fuzzy theory is introduced into the uncer-
tain reasoning of Bayesian network. Sun et al. infered the
purpose of enemy fighter pilots by constructing Bayesian
networks [13]. Narayana et al. used Bayesian formula,
which is combined with maximum posterior probability
and relevant situation judgment rules to infer the
current situation [14]. Ma et al. proposed a target threat
assessment technology based on the cloud model and
Bayesian theory [15]. It uses the cloud model to realize
the expression and processing of the situation, and
Bayesian theory modifies the membership degree of the
cloud model. The assessment method has high require-
ment of the cloud models. Based on the above research, it
can be known that the parametric situation assessment
method has good evaluation ability in the uncertainty
problem method, and has low complexity and simple cal-
culation process, but there are also many problems such
as incomplete prior knowledge, difficult to apply in the
complex air combat, and high dependence on model ini-
tialization.

To solve the problem that it is difficult to maintain
high timeliness, objectivity and accuracy in the current air
combat situation assessment, we have made the follow-
ing original contributions in the paper:

(i) The off-axis angle of the missile is combined with
the angle factor, and the launch distance constraint of the
missile is combined with the distance factor, the evalua-
tion factors containing weapon factors are established,
and it converts multi-dimensional input data into charac-
teristic information of air combat situation.

(i1) It proposes the convolution success-history based
adaptive differential evolution with linear population size
reduction-means (C-LSHADE-Means) clustering method
to extract knowledge of air combat situation. The UCI
data set verifies that this method has good clustering per-
formance.

(iii) It proposes an stacked autoencoder and learning
vector quantization (SAE-LVQ) situation assessment
model to achieve the supervised situation assessment
rapidly. Compared with multiple assessment methods, the
results show that this method has the highest accuracy
and shorter time.

(iv) In the air combat maneuvering instrument (ACMI)
system, three kinds of air combat confrontation data are
selected, and this model is used to assess the situation of
UCAYV and enemy aircraft, comprehensively consider the
global situation. The assessment results are analyzed, and
it is line with the actual situation.

The rest of this paper is organized as follows: Section 2
introduces the overall design. Section 3 analyzes air com-
bat confrontation and constructs angle and distance evalu-
ation factors. Section 4 proposes the C-LSHADE-Means
to extract the knowledge of air combat situation. Section 5
proposes a situation assessment model based on SAE-
LVQ. Section 6 conducts situation assessment under mul-
tiple working conditions. Finally, Section 7 gives the con-
clusions of this paper and future research directions.

2. Overall design

To overcome the shortcomings of the existing situation
assessment methods, a data-driven situation assessment
method is established. The UCAV dynamic model is used
to generate a large amount of confrontation data, and the
angle and distance evaluation factors are established
which can accurately reflect situation information. Based
on the above premise, the clustering method is used to
extract the knowledge of the air combat situation. Then,
an accurate classifier is built. Finally, multiple sets of
confrontation data are selected from the ACMI system to
analyze the situation with the model proposed in this
paper. The flowchart is shown in Fig. 1, and the specific
steps are as follows:

Step 1 Build a UCAV dynamic model, air combat is
analyzed to extract 12-dimensional information, the angle
evaluation factor f,(X) and the distance evaluation fa-
ctor f,(X) are established.

Step 2 A C-LSHADE-Means clustering method is
proposed, which uses angle evaluation factors and dis-
tance evaluation factors to convert 12-dimensional air
combat information into two-dimensional features, it
extracts air combat situation knowledge through cluster-
ing, and labels the data.

Step 3 The labeled 12-dimensional data is used as
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the input of the SAE-LVQ classifier, training set and test
set are constructed to verify the accuracy and time con-
sumption of the classifier.

Step 4 Air combat data in different working condi-
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tions are selected from the ACMI system, and the SAE-
LVQ is used to assess the situation from the UCAV and
enemy aircraft to verify the effectiveness of the model
proposed in this paper.

\

Angle evaluation factor f, (X)

Distance evaluation factor f; (x)

0 02 04 06 08 10
Angle

Fig. 1 Overall design flow chart

3. UCAY air combat situation
evaluation factor

3.1 Air combat analysis

In one-to-one air combat, situation assessment is a com-
prehensive judgment based on the relative information of
the enemy and ourselves. The information of the enemy
and ourselves is shown in Fig. 2.

A

(X Vo Z2)
0 X

Fig.2 Three-dimensional two-aircraft confrontation model

(x4, Yus2,) represents space coordinate position of
UCAYV, v, represents speed of UCAV, vy, and ¢, repre-
sent UCAV’s pitch angle and yaw angle. (x;,y;,z,) repre-

sents the space coordinate position of the enemy aircraft,
v, represents the speed of the enemy aircraft, y, and ¢,
represent the pitch and yaw angle of the enemy aircraft,
and R=(x,—x,,y,—Y..2,—2,) represents the distance
between the two aircraft. A 12-dimensional air combat
information parameter matrix is

X = [xu’yuvzwvua’)/m
wusxt’yt,zt9vt’7t’¢t]' (1)
To solve the problem of confrontational data sources, a

dynamic model of UCAV is constructed. The specific
formula is as follows:

X =Vcosycosy

y = Vcosysiny

z=Vsiny
. Tcosa—-D .
V= ——0—+—gsiny )
m
. (L+Tsina)cosu g
Y= ———— — =cosy
my %
b= (L+Tsina)sinu
- mycosy

where « is the angle of attack, m is the aircraft mass, 7T is
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the engine thrust, D is the air resistance, and L is the lift.
(x,y,z) represents the spatial coordinate position of
UCAYV; v represents the speed; y, ¥, u represent pitch
angle, yaw angle, and roll angle; g represents gravita-
tional acceleration. In this model, (x,y,z,v,y,¥) is the
state quantity and (6, @, u) is the control quantity [16].
During the flight, due to fuel consumption, its own
weight will be reduced, which is determined by the con-
sumption coefficient c. The formula is as follows:

m=—cT. 3)

Thrust, drag and lift are affected by aircraft shape,
flight status and environmental factors. The calculation
formula is as follows:

T = 6T max(V, 1), “4)
I,

L= EPV SCy, (%)
1,

D= PV SCp. (6)

In the above formula, ¢ is the throttle position, p is the
air density, Sis the aerodynamic cross-sectional area of
the UCAV, C, and C, are the coefficients of lift and
drag, and T, is the maximum thrust of the UCAV.

In this paper, the new UCAV-“Storm Shadow” is a
combat aircraft, and its aerodynamic parameters and
engine thrust characteristics are obtained for simulation
experiments.

3.2 Angle evaluation factor

In the three-dimensional coordinate system, the main fa-
ctors affecting the angle evaluation are the entry angle
and the direction angle, which can be projected into the
two-dimensional coordinate system for simplification.
Therefore, the two-aircraft confrontation model shown in
Fig. 3 is established.

N
\
*u T

Fig. 3 Two-aircraft confrontation model in two-dimensional air-
craft

R’ =[x,—x,,y,—y.] is the horizontal distance between
UCAV and the target; ¢, is the target azimuth, which is
the angle between the UCAV horizontal velocity
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v, = (Vur, Vi) and the target line of sight; ¢, is target lead
angle[17], which is the angle between the enemy’s hori-
zontal velocity v, = (v,,v,) and the line-of-sight exten-
sion; the sector area is the missile attack zone, and ¢, is
the maximum off-axis launch angle.

The calculation formula of 9, is

R -v
arccos ,—”’ Viy (xt_-xu)_vux : (yt _yu) < 0
Rl - [v. ]|
P, =
(45— () > O
—arcCoS ——————, V,, (X, —X,)—Vyx* -
”R,””Vu”’ uy t u ux )’r yu

(7
Since UCAYV is flying in all directions, @, is positive
counterclockwise, and it ranges from —m to m. When
Vuy * (X, = X,) = Vi - (7, — y,) < 0, it indicates that v, is in the
counterclockwise direction of R’ and ¢, belongs to
[-m,0], and ¢, can be directly calculated according to the
vector angle formula. When v, - (x; = x,) = Vi - (0, = ¥) > 0,
it indicates that v, is in the clockwise direction of R’ and
9, belongs to [0,7]. The calculation principle of ¥, is the
same as that of 3,. The calculation formula of ¥, is

’

t
arccos ————
IR Ivl”

Vi (6 =%) =V - (= y) <0
9, =

’

.vf
—arccos ————
IR [IvilI”

VI)' : (-xl_-xu)_le : ()’1 _yu) > 0
(®)

Considering the influence of the missile attack zone on
the angle, a new angle evaluation factor 7, is constructed:

19, \" ™ 19,1\
1- A1-—1, I, 0,
( kam) =] 1.0 €10.00]

Na = |19 | 1-k |19| k ' (9)
(1 — _u) (1 - ?’) P} |ﬁu| ¢ [O’SOD]

T

k, is the gain coefficient in the attack zone, k, > n/¢pp, .
The missile has a stronger attack ability against targets
with a small off-axis angle. When the off-axis angle of
the target is close to the maximum off-axis angle of the
missile, the target is easy to get rid of the missile attack
by escape maneuver. Therefore, &, is needed to give full
play to the missile’s attack characteristics. k is the dis-
tance adjustment coefficient, indicating the urgency of
adjusting the angle, the calculation formula is

_ dodiip

k=e (10)

where d;, is the minimum missile attack range.
In (9), two cases are divided according to the value of
?,. When |9, € [0,¢p], it means that the enemy is within
. . ﬁu
the range of the UCAV missile attack zone, [1— u)

ktl‘)ODu
represents the ability of UCAV tail chase. When ¢, =0,
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it indicates that the UCAV is chasing after the tail, and
|19
T

the ability of enemy to escape. When o, = 0, 1t represents
that the enemy is escaping in the front, and the quantiza-
tion value is the largest. When [¢,] ¢ [0, ¢p], it means that
enemy is out of the UCAV missile attack zone, and the
principle is the same as the above.

The angle evaluation factor is simulated in Matlab.
Assuming that ¢p =n/3, k,=2n/¢p,, d =4 000 m, dy, =
1000 m, ¥, € [-=,x], ¥, € [-r,x], the simulation result is
shown in Fig. 4. When ¢,=0, 9,=0, it means that the
UCAV is tail chasing the enemy, the angle is the best and
4 =1; when 9,=—-mx, ¥,=n, it means that UCAYV is tail
chased by the enemy, the angle is the worst and 7, =0, it
is in line with the actual situation.

the quantization value is the largest. represents

100 200

0 100

& —-100

0
Z100 0 0
“79 ~200 —200 3JO

Fig. 4 Angle evaluation factor

3.3 Distance evaluation factors

In the process of air combat, distance is a very critical
factor. Therefore, the distance evaluation factor is con-
structed by the missile attack distance, to guide UCAV to
maintain a good attack distance.

,;R*R in
e Fan , R< Rmin

Nr = 17 Rmin<R<Rmax (11)

3 Rmax-R

&, R > Ry

where R represents the relative distance between UCAV
and the enemy, R, and R, represent the maximum and
minimum launch distance of the missile. Formula (11)
can indicate the relative distance is good or bad.

4. Air combat situation knowledge extraction
based on C-LSHADE-Mean

According to the literature, clustering methods can be
divided into partition methods, hierarchical methods,
overlapping methods and graph-based methods [18—22].
In this paper, the partition method is used to cluster. The

K-means is the most widely used. It completes the clus-
tering by using the euclidean distance between data to
measure the similarity, but it takes too much time to pro-
cess a large amount of data and is very sensitive to the
selection of the initial cluster center. In response to the
above problems, this paper proposes a C-LSHADE-
Means clustering method to extract knowledge of air
combat situation.

4.1 Convolutional pooling layer to
compress data

Convolutional neural networks (CNN) can quickly pro-
cess a large amount of data. The most critical technolo-
gies are convolutional layer and pooling layer. The 12-
dimensional air combat data has been transformed into
two-dimensional data after being processed by angle fac-
tors and distance factors. Therefore, the convolutional
pooling layer is used to compress data while maintaining
the data distribution characteristics. The specific steps are
as follows:

Step 1 Refer to the STING clustering method, the
input sample space area is divided into rectangular units,
each unit obtains the number of samples, and a quantity
matrix is established, as shown in Fig. 5.

y

N SN
[T PN N N Y )
[N NN R T 8
[N N =N [N (o oY
[P NSNS
[T IS (8] (VPN
ESENN =Y
JHN [U0) [R] Y (9% [9%1 (9819}

o X

Fig. 5 Unit extraction quantity matrix

Step 2  After the quantity matrix is established, the
mean convolution kernel is used, and in order to avoid
repeated data entry, the traditional sliding window convo-
lution is not used, and the equal interval convolution is
used, as shown in Fig. 6.

T
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5(516]6|6|6|4]4

A TE EA TS R 45625 5 425
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2[3[5]1]2]3]91

Fig. 6 Equal interval mean convolution

Step 3  After the convolutional layer compresses the
data, average pooling is used to ensure that the distribu-
tion characteristics of different regions have not changed,
as shown in Fig. 7.
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Fig.7 Average pooling

Step 4 The density of each unit is calculated, multi-
ply it by the compressed coefficiente, and round to get
the number of compressed samples for each unit. The
specific calculation formula is as follows:

n;j
pij = round| -

i=m,j=l
§ nij
i=1,j=1

i=1,2, - m; j=1,2, -1 (12)

where n;; represents the value of each unit of the quan-
tity matrix after convolution and pooling.

Step 5 After obtaining the compressed number of
unit samples, the reverse distribution is performed
according to the density value of each layer, finally, when
it is returning from the quantity matrix to the sample dis-
tribution, divide the units equally according to the value,
and solve the mean value of sample coordinates in each
unit. The specific process is shown in Fig. 8.

n.

p,~round( Fz;zzn %100) T TE
42 42 A 25805 618157
4.1 4.4 24 26 718|7]6
415|158

/
ol e®| o | o |ee o0 e | 22| 23] 1]
e | oo|® [o0]e®]ay]® L2 | t]z |22
eojo ® Sofle® | o [0e]|® 0| o 20213 2|1 |2]2]1
o o] o] ®|® |wel® o 270 81 270 T 1 518 [
0o |0®| 0% 00 00| 00 @ |o 222|222 ]| 1] 1
o [ *e[ve]oe|w [oo| el * 202]2|2]2]2]2]1
o (o | % o 4 | oo * 11|21 ]1(2]|3]|1
o[ o oo | of e 1(1|2|0|1|1|4]|0

Fig. 8 Reverse distribution of compressed quantity matrix

4.2 LSHADE-Mean clustering method

4.2.1 K-means algorithm

The K-means algorithm is a traditional partition cluster-
ing method. It completes the classification by using the
Euclidean distance between data points to measure simi-
larity.
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The K-means algorithm first randomly selects K sam-
ples as the initial cluster centers, calculates the distance
between each sample and the cluster centers. According
to the principle of minimum distance, the samples are
classified into different cluster centers, and the cluster
centers are adjusted to the mean value of all samples in
this category. The calculation is repeated again until the
cluster centers remain unchanged.

4.2.2 LSHADE algorithm

Success-history based adaptive differential evolution with
linear population size reduction (LSHADE) algorithm is
an efficient and improved version based on the differen-
tial evolution (DE) [23] algorithm. It uses mutation,
crossover and greedy strategies to find the global optimal
value, with faster optimization speed and better stability
[24]. The LSHADE algorithm is a linear population size
reduction strategy to increase the algorithm’s timeliness
performance. The specific steps are as follows:
Step 1 Initialize the population.

x,-j=lj+rand-(uj—lj) (13)

where x;; represents the jth dimension of the ith popula-
tion, u; and [; represent the upper and lower search li-
mits.

Step 2 Set scale factor F and cross rate Cr, the spe-
cific formula is

Cr = randn(Mcr, 0.1), (14)

F =randc(MF,0.1). (15)

Among them, Cr obeys a normal distribution with a
mean of Mcr and a variance of 0.1, F obeys a Cauchy
distribution with a mean of MF and a variance of 0.1.
MF and Mcr represent the mean values of the F and Cr
which are randomly selected from the memory storage
mechanism, and the initial settings of MF and Mcr are
both 0.5, which will be updated later according to (14)
and (15).

Step 3  Perform mutation operation. On the basis of
current-to-pbest/1 [25] mutation strategy, a new mutation
strategy is proposed:

v =x,.G+F,.G(xlffbesl—x,.G)+F,.G(xf1 -x9%) (16)

where x represents the ith target vector in the Gth gene-
ration; FU represents the ith scale factor of the Gth gene-

ration; x¢

hest TEPresents a random selection of the top p%

of the optimal vectors, where p is the control parameter
for exploration and survey; r, represents randomly
selected individuals in the current population, r, repre-
sents randomly selected individuals in an external sto-
rage mechanism, and the external storage mechanism
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contains vectors that performed well in the previous itera-
tions.

Step 4 Cross update. Crossover according to the
crossover rate and the mutation vector:

u

(17

G _ vfj, rand;; < Cr; or j = jiua
i xfj, otherwise
where Cr; represents the probability of crossover.
Step 5 Greedy strategy is used to update the popula-
tion. The update formula is
s :{ u?, fu?)<f(x7)

(18)

i x¢, otherwise

where x°*! is the updated population, f(u¢) and f(x¢)
represent the fitness value of variation vector and the Gth
generation population.

Step 6 The linear population size reducing (LPSR)
strategy is used to update the population size. LPSR for-
mula is
ymin _ pyinit
nfes_max

N = round[( ) -nfes + N™ (19)

where N®*' represents the number of next-generation
populations; nfes represents the current evaluation times;
nfes_max is the maximum evaluation times; N™ is the
initial population size; N™" is the minimum population
number.

Step 7 Judge whether the termination condition is
met, if the maximum number of evaluation times is
reached or the loss target value is met, the optimization is
stopped and the optimal solution is output, otherwise
return to Step 2.

4.2.3 Combination of LSAHDE and K-means

Swarm intelligent clustering algorithm is a hot research
direction of current clustering algorithm. It mainly uses
swarm heuristic optimization algorithm to solve cluster-
ing problems [26]. To combine the LSHADE algorithm
with the K-means clustering method, the sum-of-squares
within cluster (SSW) [27] index is introduced as the fit-
ness function of the optimization algorithm. The specific
calculation formula is

K m
SSW = Z Z dist(xs, ) (20)
k=1 i=1
where ¢, is the center of the kth cluster of the data, x;; is
the ith point in the Ath cluster, and dist is the distance
between the two points.

When the LSHADE initializes the population, the co-
ding technology based on label [20] is used to introduce
the cluster center of each cluster. The cluster center solu-
tion is transformed into an optimization problem, as
shown in Fig. 9.

Label 1 2 3 4 5 6 3k-23k—1 3k

Swarm | |¢y, | cfl 1 Jl Gl € [ Co3 Chll CrllCr|

i 5| | | 23
C, C, G

Fig.9 Coding technology based on label

To verify that the LSHADE algorithm can better opti-
mize K-means centers, the UCAV dynamic model is used
to generate multiple sets of confrontation data, and a vari-
ety of swarm intelligent clustering algorithms related to
K-means are selected for comparison. There are covari-
ance matrix learning and the Bimodal distribution param-
eter different evaluation (CoBiDE) algorithm [28], DE
algorithm [29], sparrow search algorithm (SSA) [30], par-
ticle swarm optimization (PSO) algorithm [31], harris
hawks optimization (HHO) algorithm [32], grey wolf
optimization (GWO) algorithm [33], and gravity search
algorithm (GSA) [34]. The specific parameter settings are
shown in Table 1.

Table 1 Algorithm parameter settings

Algorithm Parameter setting
LSHADE H=3, MF=0.5, p;;=0.11, N;;;=200, N,;,=150, D=2
CoBiDE pb=0.4, ps=0.5, D=2
DE F=0.5, Cr=0.5, D=2
SSA Leader position update probability=0.5
PSO C=1.5, C,=1.5, D=2, Inertia factor=0.3
HHO @=0.01, g=1.5, J=2(1-rand)
GWO a=2-"2t/t o
GSA a=20, G0=100, R,o=2, Ryoye=1

It can be seen from Fig. 10 that the LSHADE algo-
rithm has the fastest decline speed and the final SSW is
the smallest, indicating that the method proposed in this
paper can find a better clustering center in the air combat
situation data.
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OO 50 100 150 200
Iteration
—— :SSA; —— : PSO; : HHO; — : GWO;
—— 1 GSA; : DE; —— : CoBiDE; —— : LSHADE.

Fig. 10 SSW curve
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4.3 Performance verification

To verify that the C-LSHADE-Means method has better
clustering performance, a UCI data set is selected. Since
the air combat situation data is two-dimensional data after
being processed by angle factors and distance factors,
therefore, the selected data set is also two-dimensional

data. The UCI data set is sym data.

In order to evaluate the clustering performance of each
algorithm, Accuracy (Ac), Silhouette (Sil), Davies-
Bouldin (DB) [35], Calinski-Harabaz (CH) indexes are
introduced. The specific information of each index is
shown in Table 2.

Table 2 Cluster evaluation index

Index Formula Description
Ac A= N, «100 N, is the number of correct sample classifications; N is the total number of samples; the larger
N the Ac, the better the clustering effect.

1Y pi-
LoSI=— ) i d
Sil N Z; mdx(b,,a,

x/e(k
b; = — dist(x;, x;
! hs(l h#k( Ny (¥, %))

Xj€cy

Z dist(x;, x7) a represents the average distance from the sample to other samples of the same category, b
e represents the shortest average distance from the sample to other samples of different
categories, SI € [—1, 1], the larger the SI, the better the clustering effect.

s(cr) + s(er)
k Z dlSt(C/‘,CI)

DB DB represents the proportion of cluster scatter between cluster separation.

st = Zd(xi,ck)
i=1

BGSS = k
CH(k
k)= WGSS =1
CH WGSS = Z (ni — i 3,»2 represents the average distance of samples in the ith cluster, 32 represents the average

"1 distance of all samples, and the larger the CH, the better the clustering effect.

1 —2 -2 2
BGSS = Sk~ 1)d +;(n,-—l)(d -d;)]

Seven contrast clustering algorithms are chosen, which
are density peak clustering (DPC)[36], fuzzy C-means
(FCM) clustering, Gaussian mixture model (GMM) clus-
tering, clustering by communication with local agent
(CLA)[37], local gravitation clustering (LGC)[37],
K-means clustering, and K-means algorithm based on the
bargaining game (GBK-Means)[38]. The experimental
simulation environment is Windows 10, CPU is 2.80 GHz,
16G memory, and the running environment is

Matlab2019b. The clustering algorithm parameters are
shown in Table 3.

Fig. 11 shows the clustering results of different cluster-
ing algorithms on the test data set. Each color in Fig. 11
corresponds to a cluster. The same category of different
algorithms may have different color representations, but
this does not affect the final result. It can be seen from the
figure that the algorithm in this paper has a good cluster-
ing effect.

Table 3 Clustering algorithm parameter settings

Number Algorithm Parameter setting
1 DPC Reference [36]
5 FCM The index of the membership matrix is 2, the maximum number of iterations is 200,
and the minimum membership is 1.0e—5
3 GMM The non-negative regularization number is 1.0e—5
4 CLA Reference [37]
5 LGC Reference [37]
6 K-means Use Euclidean distance, the number of clusters is 4
7 GBK-Means Reference [38]
3 C-LSHADE-Means Use Euclidean distance, the number of clusters is 4, the maximum number of iterations is 200, CR=0.5, F=0.5,

the initial population is 200, and the minimum population is 150
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Fig. 11 Clustering results of UCI data

From Ac in Table 4, it can be seen that the pro-
posed method has good clustering accuracy on
the Sym data set. Its CH index is the best, indicating
that the clustering results of the algorithm in this
paper are dense within clusters and discrete between
clusters. The Sil index is the best, indicating that

the data in the cluster has a high degree of matching.
DB indicators also perform well, indicating that
the number of clusters is appropriate. Therefore, it
can be seen that the clustering effect of the algorithm
in this paper is better through the results of four
indexes.

Table 4 Clustering results

Data Index DPC FCM GMM CLA GLA K-means CBK-Means C-LSHADE-Means
Ac/% 63.24 74.57 80.35 84.1 84.2 75.43 77.43 86.86
DB 0.6584 0.7850 0.7701 0.635 0.635 0.7627 0.750 0.7526
UCI Data CH 237.3047 339.5852 283.9508 336.248 336.249 340.2413 286.260 340.2610
Sil 0.2468 0.4160 0.4084 0.402 0.410 0.4192 0.383 0.4348
Rank 8/8 3/8 5/8 6/8 4/8 2/8 7/8 1/8

4.4 UCAV air combat situation knowledge extraction

According to the UCAV dynamic model, multi-condition
confrontation data is generated, and the angle factor and
distance factor are used to calculate the situation to form
a situation data set.

The convolutional layer and the pooling layer are used
to compress the data to reduce the calculation amount of
cluster center optimization, and the LSHADE-Means
algorithm is used for clustering, where K=4 [13], and the
specific process is shown in Fig. 12.
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Fig. 12 Flow chart of situation extraction

5. Situation assessment model based on
SAE-LVQ

The air combat information parameter has 12 dimensions,
and there is a certain internal coupling relationship
between each dimension, which is not conducive to
extracting the air combat situation directly [39]. In the si-
tuation assessment process, the accuracy and timeliness
are very important. In this section, the stacked autoen-
coder is used to reduce the dimensionality of data and
ensure the saliency of the features. At the same time, the

learning vector quantization network is used to achieve
high-precision classification. The SAE-LVQ model is
established.

5.1 Stack autoencoder

Compared with autoencoders, stacked autoencoders
deepen the network structure and enhance the data repre-
sentation ability, and the sparseness limitation realizes the
function of feature extraction [40], hence, it is widely used
in classification and data dimensionality reduction [41].
The structure of SAE is shown in Fig. 13.

Decoding

Encoding

Decoding

Pre-training 2

Output layer
O O Omram® @ O

Fig. 13 SAE structure

In the case of multiple hidden layers, to achieve a bet-
ter weight training effect, the greedy layer-wise training
method is adopted. The training method is mainly divided
into two parts: pre-training and fine-tuning.

Pre-training means to optimize network parameters
layer by layer. The training process is shown in Fig. 13.
First, the weight between the input layer and the first hid-
den layer is H,, = [h},h),---,h}_,h;], [ is the number of
hidden layer nodes. The input data X is output after being
encoded and decoded, and errors occur between input and

output, the gradient descent method is used for training.
The H,, keeps unchanged when training the weight of the
second hidden layer. After H,,=[hih, - k> K]
encoding, the output is decoded, and error occurs again.
Use the gradient descent method to train H,;. And so on,
until all hidden layer weights are trained, the network pre-
training ends.

After the network pre-training is completed, the error
between the output data X’ and the input data X is calcu-
lated, and the back propagation algorithm is used to fine-
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tune the weights of each layer again.
5.2 LVQ network

The LVQ network is a variant structure of the self-orga-
nizing map network. The competitive layer is trained
under supervision. It has the advantages of simple struc-
ture, fewer training steps and high classification accuracy.
In image compression [42], sensor diagnosis system [43]
and fault diagnosis of power transformer [44] have shown
strong classification and recognition capabilities.

The LVQ network structure is divided into three lay-
ers: input layer, competition layer and output layer, as
shown in Fig. 14.

Competition

Output layer
layer

Input layer

Icul iti i
Tt dataca culate Competitive Linear_  Output

distance  screening calculation category

Fig. 14 LVQ network structure

The algorithms can be divided into LVQ1, LVQ2 and
LVQ3, of which the LVQ2 network has a wide range of
applications. Due to the consideration of “second winning”
neurons, it has stronger recognition capabilities [45]. The
specific calculation steps are as follows:

Step 1 Initialize the weight W . between the input
layer and the competition layer and the learning rate 7,
where S, is the number of neurons in the competition
layer and R is the input vector dimensions.

Step 2 Calculate the distance between the input vec-
tor Xz, and the neurons in the competition layer. The
formula is

R
Z (-xi - W,'lj)’
i=1

i=1,2,,R;j=12.8, 1)

where w]; is the weight between the ith neuron in the
input layer and the jth neuron in the competition layer.
Step 3 Select two neurons n, m with the smallest dis-
tance from the input vector.
Step 4 If n and m satisfiy the following conditions at
the same time: the output of the neuron » and neuron
m are the different categories; d, and d, satisfy

di = ||diSt(XR><le;‘1><R)“ =
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. dl‘l dm
min{ —, —
m d}l
dle part of the two vectors, generally, it is 2/3.
When the output category of neuron # is correct, the

weight correction formula is

— ol Id
{ Wit = Wi+ n(x —wi)

> p, where p is the width of the mid-

" . 22
W::W — ngd _ n(x_ W:’,}d) ( )
When the output category of neuron m is correct, the
weight correction formula is
W::ew - Wsld _ n(x _ Wﬁld)
whew — Wold + n(x_ Wold) N

m

(23)

Step 5  When the condition in Step 4 is not met, only
update the weight of the minimum distance neuron. When
the minimum distance neuron is classified correctly, the
weight update formula is

Wnew — Wold + T]()C _ Wcld). (24)

When the classification is wrong, the weight update
formula is

Wnew — Wold _ T](.x _ Wold)' (25)
5.3 SAE-LVQ situation assessment model

Combining the stacked autoencoder and the LVQ net-
work, an SAE-LVQ situation assessment model is pro-
posed. The stack autoencoder technology is used to
extract the characteristics of the air combat information,
reduce the data dimension. The LVQ network is trained
by the labeled data to achieve supervised classification.
The SAE-LVQ situation assessment model is shown in
Fig. 15.

Input data Output data
Asae ./ 1vQ B
AE1 O O
50
= o
k= .g
h= 2
o AE2 g
g £ 10000

AEn ??Q

Fig. 15 SAE-LVQ situation assessment model

The specific steps are as follows:

Step 1 Initialize SAE-LVQ network parameters. Ini-
tialize the SAE hidden layer weight H, the LVQ weight
W;, x> and the learning rate 7.

Step 2 Input air combat information to train the SAE,

and output the reconstructed features.
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Step 3 Input the labeled reconstruction features into
the LVQ network, use the LVQ2 algorithm for super-
vised training, and output the situation category.

5.4 Situation assessment performance test

To verify the accuracy and timeliness of the SAE-LVQ
situation assessment model, five classifiers are selected
for comparison, including hierarchical support vector
machine (HSVM) [46], crow search algorithm optimized
support vector machine (CSA-SVM) [47], K-nearest
neighbor (KNN) [48], stacked autoencoder-hierarchical
support vector machine (SAE-HSVM), and LVQ net-
work. The specific parameter settings are shown in Table 5.

Table 5 Network parameter settings

Algorithm Parameter setting
HSVM H=2,C=100, @ = 1.0e -5
CSA-HSVM FI=2.5, AP=0.1, iter=100, NP=20, C=100, @ = 1.0e -5
KNN K=4
LVQ n=0.01, max_epoch=300, Num_Compet=20
SAE-HSVM Number AE=2, H=2, C=100, @ = 1.0e -5

Number AE=2, n=0.01, max_epoch=300,

SAE-LVQ Num_Compet=20

The 12-dimensional situational air combat information
parameter X = [X,, Vs Zus Vis Yis War Xis Vis 25 Vi Vi W] 18 used
as the training input, 15 types of confrontation samples
are generated by the UCAV model, and the number of
samples reaches 3310 groups. The C-LSHADE-Means is
used to assign data labels, and a confrontation process
with 365 sets of data is selected as the test set. Each algo-
rithm is run 20 times, the accuracy and time are counted.
The accuracy rate, root-mean-square error (RMSE), mean
absolute percentage error (MAPE), and kappa coefficient
are used as the performance index for situation assess-
ment. The experimental simulation environment is Win-
dows 10, the CPU is 2.80 GHz, 16G memory, and the
running software is Matlab2019b.

Fig. 16(a) shows the test set assessment result. Fig. 16(b)
shows the test set assessment error. It can be seen that the
SAE-LVQ method has the better effect. On the test set,
only three sets of data situation assessment are wrong.

Table 6 summarizes the results of SAE-LVQ and the
comparison algorithm. Through the assessment results of
SAE-LVQ and LVQ, and SAE-HSVM and HSVM, it can
be seen that using SAE to reconstruct the air combat
information as input can significantly improve the accu-
racy, RMSE, MAPE and kappa coefficients. At the same
time, compared with other comparison methods, SAE-
LVQ is the best in accuracy indexes, and SAE-LVQ is
relatively poor in time consumption, but the average sin-
gle step time of 1.024e—04 s can also meet the timeliness
performance requirements.
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Fig. 16 Test set assessment results and errors

Table 6 Comparison of performance indexes

. Mean (SD)
Classifier
Accuracy/% RMSE MAPE/% Kappa Time

HSVM 86.704(4.29¢—01) 0.1208(1.12e—02) 4.0262(4.61e—01) 0.7912(6.4e—03) 9.183e—05(1.862e—05)
LVQ 94.663(2.81e—01) 0.046 8(4.3e—03) 2.6607(1.95¢—01) 0.9113(4.7e—03) 3.412e-05(3.247e—06)

CSA-SVM 94.10(7.43e—01) 0.062(9.7¢—03) 4.681(4.56e—01) 0.904(1.20e—02) 3.16e—04(7.34e—04)
KNN 88.015(6.13e-01) 0.055(1.27e—02) 6.99(7.43e—01) 0.804(1.74e—02) 7.674e—05(5.152e—05)
SAe-HSVM 96.910(2.81e—01) 0.0356(5.8e—03) 2.1223(5.49e—01) 0.948 6(4.6e—03) 4.435e-04(6.882e—07)
SAe-LVQ 99.251(1.62e—01) 0.0037(1.6e—03) 0.5384(1.46e—01) 0.9876(2.7e-3) 1.024e-04(1.292e—05)
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6. Air combat confrontation analysis

To verify the effectiveness of the assessment model pro-
posed in this paper in practical application, three differ-
ent confrontation processes are selected from the ACMI
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system. SAE-LVQ assesses the UCAV and enemy air-
craft, according to the results, it can be divided into four
global situations, as shown in Table 7. In Table 7, 1 is
absolute advantage; 2 is advantage; 3 is disadvantage; 4 is
absolute disadvantage.

Table 7 Global situation

Situation Statel State2 State3 State4 State5 State6 State7 State8
UCAV 1 1 2 2 3 3 4 4
Enemy 1 4 2 3 2 3 1 4

Global situation ~ Mutual threaten =~ Advantage Mutual threaten ~ Advantage  Disadvantage  Mutual safe  Disadvantage = Mutual safe

6.1 Casel

A period of head-on confrontation between two aircraft is
selected. Among them, UCAV stands for confrontation
drone, and enemy refers to the aircraft operated by pilots.
Fig. 17(b) and Fig. 17(c) assess the UCAV and enemy
aircraft situation, and Fig. 17(d) depicts the global situa-
tion. The initial state of UCAV and the enemy aircraft is
head-on flight. At this time, the angles of both sides are in
a good state, but the distance is too far. Therefore, SAE-
LVQ evaluates UCAV in the advantage state in the first

"
12 x10 _
.1}
£10
=,
0.9
08 1 I 1 1
0.5 1.0 1.5 2.0 2.5 3.0
x/m x10*
— : UCAV; — : Enemy; ¢ : Starting point of UCAV;

: Starting point of enemy.
(a) Head-on confrontation process
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(c) SAE-LVQ assessing enemy’s situation

y/m

32 samples in Fig. 17(b), and the enemy is also in the
advantage state in the first 32 samples in Fig. 17(c). As
the distance between the two parties is getting closer, the
UCAY and the enemy both make a right-turn maneuver.
At this time, the angle and distance of both sides are in
good condition, in Fig. 17(b) and Fig. 17(c), SAE-LVQ
evaluates that UCAV and enemy are in absolute advan-
tage. According to Table 7, the global situation assess-
ment is carried out, as shown in Fig. 17(d), which is in a
mutual threaten situation.
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Fig. 17 Situation analysis of Case 1



1248

6.2 Case2

A tail chase confrontation process is selected. The spe-
cific confrontation process is shown in Fig. 18(a). Fig. 18(b)
and Fig. 18(c) evaluate the UCAV and enemy aircraft si-
tuation, and Fig. 18(d) depicts the global situation. In the
initial state, UCAV chases the enemy behind the tail,
UCAV is in an advantaged state, as shown in Fig. 18 (b),
and the enemy is in a disadvantaged state in Fig. 18 (c).
At this time, the global situation is an advantage, which is
in line with the actual situation. After that, the enemy
makes a right-turn and dive maneuver to try to get rid of
the disadvantage. In Fig. 18(c), the enemy turns from a
disadvantage to an advantage. In Fig. 18(d), it can be seen

=)

N 4000
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that it is in the mutual threat situation. UCAV bites the
enemy’s tail, but the speed is too fast to cause a forward
rush. It is evaluated as a disadvantage in Fig. 18(b), and
enemy is also evaluated as a disadvantage in Fig. 18(c).
At this time, the global situation is mutual safety. Then
the enemy performs a left-turn maneuver. At this time,
UCAV is the disadvantage, the enemy is the advantage,
and the global situation is the disadvantage. UCAV
quickly performs a right turn. The enemy is at a disadvan-
tage, and the global situation is mutually safe. In the end,
UCAV adjusts its angle and quickly turns into an advan-
tage, and the enemy is disadvantaged, so the global situa-
tion is an advantage, and the confrontation ends.
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: Absolute advantage;
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Fig. 18 Situation analysis of Case 2
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6.3 Case3

A relatively complicated process of close combat con-
frontation is shown in Fig. 19(a). Fig. 19(b) and Fig. 19(c)
evaluate the UCAV and enemy aircraft situation, and
Fig. 19(d) depicts the global situation. In the initial stage,
the two sides approached head-on, with a good angle but

a long distance, it is a mutual threat situation. With the
continually decreasing of distance, UCAV and the enemy
are both in the advantaged state, since then, the two sides
continuously make large overload maneuvers, and con-
stantly adjust the angle. In Fig. 19(b) and Fig. 19 (c), it
can be seen that the situation of UCAV and enemy is con-
stantly alternating between absolute advantage and abso-
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lute disadvantage. The global situation also alternates
from the mutual threat, mutual safe and advantage. In the
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end, the two parties leave in the opposite direction, and
the global situation is the mutual safe.
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Fig. 19 Situation analysis of Case 3

7. Conclusion and future work

In the air combat situation assessment, a data-driven
assessment method is proposed. First, the C-LSHADE-
Means clustering method is used to mine air combat situ-
ation knowledge, and then the SAE-LVQ model is con-
structed for situation assessment. The following conclu-
sions are obtained through simulation experiments:

(i) The C-LSHADE-Means method and seven cluster-
ing algorithms are compared in the UCI data set. Through
four clustering indexes, it has been proved to have better
clustering performance. It can extract air combat situa-
tion knowledge by using confrontation data, and over-
come the shortcomings of traditional methods such as
excessive subjectivity and prior knowledge dependence.

(i1) The situational assessment model based on LVQ-

SAE performs better than HSVM, RBF, DNN, LVQ and
SAE-HSVM in terms of assessment accuracy, it can also
meet the high timeliness requirements of air combat
assessment.

(iii) Using ACMI data for assessment, the results show
that the method proposed in this paper is in line with the
actual situation and can better reflect the global situation
of air combat.

The future research direction is to combine situation
assessment with maneuver decision-making, and use situ-
ation assessment results to guide maneuver decision-mak-
ing.
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