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Abstract: Global Navigation Satellite System (GNSS)-based
passive radar (GBPR) has been widely used in remote sensing
applications. However, for moving target detection (MTD), the
quadratic phase error (QPE) introduced by the non-cooperative
target motion is usually difficult to be compensated, as the low
power level of the GBPR echo signal renders the estimation of
the Doppler rate less effective. Consequently, the moving target
in GBPR image is usually defocused, which aggravates the diffi-
culty of target detection even further. In this paper, a spawning
particle filter (SPF) is proposed for defocused MTD. Firstly, the
measurement model and the likelihood ratio function (LRF) of the
defocused point-like target image are deduced. Then, a spawn-
ing particle set is generated for subsequent target detection,
with reference to traditional particles in particle filter (PF) as their
parent. After that, based on the PF estimator, the SPF algorithm
and its sequential Monte Carlo (SMC) implementation are pro-
posed with a novel amplitude estimation method to decrease the
target state dimension. Finally, the effectiveness of the pro-
posed SPF is demonstrated by numerical simulations and pre-
liminary experimental results, showing that the target range and
Doppler can be estimated accurately.
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1. Introduction

Recently, the Global Navigation Satellite System (GNSS)
signals have been receiving particular attention in pas-
sive radar, due to their permanent global coverage, ease
for synchronization and abundant satellite resources

Manuscript received February 28, 2022.

*Corresponding author.

This work was supported by the National Natural Science Foundation
of China (62101014) and the National Key Laboratory of Science and
Technology on Space Microwave (6142411203307).

[1-5]. As a powerful remote sensing tool, the GNSS-
based passive radar (GBPR) has been widely studied for
synthetic aperture radar (SAR) [5—7], change detection
[8] and moving target detection (MTD) [9—11], includ-
ing ship targets [11—13] and aerial targets [14].

Although the GBPR system has many advantages com-
pared with other illuminators, its low power level is a cru-
cial issue [15]. For SAR imaging, huge process gain can
be achieved with long coherent integration time (CIT).
However, for MTD, it is challenging to obtain enough
signal-to-noise ratio (SNR) for a satisfactory detection
probability with a small false alarm rate. As the target
motion is unknown, Doppler frequency migration (DFM)
and range cell migration (RCM) caused by target motion
are difficult to be compensated [16,17]. Usually, the cross-
ambiguity function is widely used to obtain the delay-
Doppler map, but it is only applicable in short time case
[18]. In order to increase the CIT, both Radon Fourier
transform (RFT)-based [19-21] and Radon fractional
Fourier transform (FrFT)-based [22] methods are pro-
posed, which can focus the moving target in the range-
Doppler (RD) domain and the CIT can be up to tens of
seconds theoretically. In addition, a new strategy with
hybrid coherent and noncoherent integration technique is
proposed [9]. However, in the abovemetioned methods,
Doppler rate searching or estimation is required to com-
pensate the quadratic phase error (QPE) caused by target
motion, which is time-consuming or even not working as
the SNR is quite low.

In general, the QPE caused by Doppler rate can defo-
cus the target and lead to reduction in image SNR; but if
the CIT is short enough (several seconds), these effects
will not be serious. Based on this consideration, the non-
threshold method can be used for MTD, such as track
before detection (TBD) [23,24]. Using a sequence of sys-
tem measurements, the TBD can potentially detect mov-
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ing targets with a much lower SNR than traditional me-
thods. A few TBD algorithms have been developed based
on the recursive Bayesian estimator, such as the particle
filter (PF) [25—27], the probability hypothesis density
(PHD) filter [28,29], and the multi-Bernoulli filter
[30,31]. Due to its simple implementation and good per-
formance at low SNR conditions, the PF and its varia-
tions have been widely used [24]. The PF and its imple-
mentation were firstly introduced for low SNR point tar-
get detection [25,27]. Moreover, detailed explanation,
performance analysis, and the Cramer-Rao lower bound
of PF were also presented [24], and modified PFs were
proposed for detection of maneuvering targets, multiple
targets and extended targets [32—34]. Further improve-
ments were made on the PF in radar signal processing
[23,35]. These PFs are mainly used to detect point tar-
gets or extended targets. In GBPR, small moving targets
can be focused into a point-like target in RD plane in the-
ory. However, in practice, moving targets are normally
defocused, as it is difficult to completely compensate the
QPE. Moreover, the state-of-art PFs are not suitable for
defocused MTD, and even the likelihood ratio function
(LRF) of the point target or the extended target is not
suitable. Therefore, to detect the defocused moving tar-
get in GBPR, it is crucial to study the improved PF-based
algorithm.

Our research in this work is focused on the defocused
MTD using a sequence of GBPR image frames, and a
novel spawning PF (SPF) is proposed with a modified
LFR model and an amplitude estimation. Firstly, the LRF
model in the defocused target of RD image is developed.
Then, the spawning particle concept is introduced to cal-
culate the modified LRF model. The spawning particles
are born by a uniform distribution with reference to each
traditional particle as their parent. After that, an ampli-
tude estimation is proposed based on spawning particles,
which can avoid sampling in amplitude dimension.
Finally, the SPF and its sequential Monte Carlo (SMC)
implementation are presented, including initializing, LRF
with amplitude estimation, existing spawning particles,
newborn spawning particles, mixed spawning particle set,
resampling, and target state estimation.

This paper is organized as follows. Analysis of the
moving target signal in GBPR is presented in Section 2,
including the Doppler characteristic and RD image
results. Then, in Section 3, the measurement model for
defocused moving targets is presented, followed by the
LRF modeling. In Section 4, the proposed SPF algorithm
using a sequence of RD image frames is derived in detail,
with its SMC implementation. In order to testify the
effectiveness of the SPF, numerical simulations and pre-
liminary experimental results are provided in Section 5.
Section 6 concludes the paper.

2. Analysis of moving target signal in
GBPR system

2.1 Doppler characteristic analysis

Fig. 1 shows the general geometry of a GBPR with a
moving target, where the origin O is set to be the radar
receiver, while the X- and Y- axes point to the East and
North directions, respectively. Assume that the moving
target M is located at P,(X,,Y,,Zy) with a constant
velocity Vi, (Vi Vig»Vir), While the transmitter is located
at P, (X7, Yr,Z7) with a velocity vector Vyyo(Vro Ve V).
R(?), Ry(f), and R,(f) denote the instantaneous transmit-
ter slant range, receiver slant range and direct range,
respectively.
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Fig. 1 General geometry of GBPR with a moving target
Then, the range history R(f) variation with time ¢ is
A
R(0) = Ry (0+ Ry (D) = Res + Afat + 5" (1)

where 4 is the signal wavelength, and R, f;, and f.denote
reference range, Doppler centroid, and Doppler rate,
respectively. f; and £, can be derived as

_1drR@®|

Ja= 1 dr r=0_ﬁ10+fdm o
71d2R(1‘) 3

ﬁ_/l dtz lzo_fr0+‘frm

where f;, and f;, denote the Doppler history introduced by
the system motion, and f;, and f,, are the corresponding
variations introduced by target motion. As the coordi-
nates of the transmitter and receiver are known, it is easy
to remove fy, and f;, terms from the synchronization out-
puts. Therefore, to simplify the subsequent derivation, the
Doppler history only caused by the system motion is not
considered in the following. The unknown f;, can cause
Doppler shift and image defocusing, but it can be esti-
mated and compensated by the RFT method. The
unknown f;,, can cause image defocusing and can be esti-
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mated by techniques such as peak value searching, if the
image SNR is large enough [14].

Using the GNSS satellite parameters (refer to Subsec-
tion 5.1), the variations of f;,, are shown in Fig. 2, as the
fm term is important for focusing. In Fig. 2(a), moving
target A is located at (1,1,0.3) km with a velocity 100 m/s,
and at this condition, the f;, is about 27.05+£0.1 Hz/s. As
depicted in Fig. 2(b), moving target B is located at
(100,100,8) km with a velocity 300 m/s, and at this condi-
tion, f,,, is about 2.5+0.3 Hz/s. In Fig. 2, the X-axis is the
angle between target velocity and the Y-axis in Fig. 1. As
shown in Fig. 2, f,, is relatively small, but it cannot be
ignored, because the QPE and the length of Doppler fre-
quency spread caused by f,,, are sufficiently large.
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Fig. 2 Variation of f,,, caused by target motion in different geo-
metric configurations with targets A and B

2.2 RD image results of moving target

In order to obtain enough image SNR for MTD, long CIT
processing in GBPR is necessary. A modified RFT with
Doppler rate estimation was proposed in [36], which can
focus the moving target (point target) in the RD domain:

1087
N, /2-1
S, (B, = A Y, CIR=Ry+A(fi=f,,)mT,]
m=-N,/2
exp (i2n(f, = fu,)mT,)|,_, 3)

where A4 is the amplitude factor, C(-) is the normalized
auto-correlation function of GNSS transmitted signal, T,
is the signal period, N, is the azimuth sample number,
/. is the Doppler frequency, and f, is the estimated
Doppler rate. Obviously, the maximum output occurs at
the position of target motion parameters (R.s, fim» frm)- AS
shown in (3), three dimensional (3D) parameter search-
ing is performed in modified RFT, which is time-consum-
ing. Moreover, although many solutions can provide the
Doppler rate and its phase error, such as the amplitude
auto-focus method, their effectiveness is highly depen-
dent on the image SNR, and they may even fail if the
image SNR is too low. Therefore, RD 2D parameters

searching is normally used, and the output will be
N,/2—1

S,(fuR)= A Y CIR=Ry+A(f.= fi,)mT,]
m=—N,/2

expli2n(f, - f,,)mT,}-explinf, (mT,)’}  (4)
where the range-curvature term in C(+) is ignored, as it is
much smaller than one range cell. As shown in (4), the
moving target is defocused at the RD plane due to the
QPE. Actually, the uncompensated f;,, term can only lead
to image defocusing in the Doppler domain, as the range-
curvature is ignored. The signal expansion length in the
Doppler domain is f,,N,/PRF, and the corresponding
Doppler cell number is fm,(Na/PRF)Z, where PRF denotes
the equivalent pulse repetition frequency of GNSS sig-
nals. Based on the signal model in (3) and (4), the ideal
results with and without Doppler rate compensation are
shown in Fig. 3 (f,,=0.2 Hz/s, N,/PRF =5 s). As shown in
Fig. 3(b), the moving target signal is defocused in the
Doppler domain.
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Fig. 3 Interpolation point target result processed by RFT

3. Measurement model and LRF of defo-
cused moving target

In GBPR, moving targets can be focused in RD plane by
the modified RFT. However, due to its low image SNR, it
is really difficult to estimate the f;,, term caused by target
motion. As a result, the moving target is usually defo-
cused, and the traditional track after the detection method
does not work. In this paper, the PF-based method is used
for the defocused MTD.

3.1 Measurement model

Assume the kth frame image is the measurement z;, and
each cell in this frame can be modelled as

2z = {(11) i=1,2,--- Ny, j:1,2,~~~,Nr} )

where N, and N, denote the number of Doppler cell and
range cell, respectively. For each cell, there are only two
states: target exists or no target. Therefore, the random
variable E; € {e, e} can be used to indicate whether the
target exists at the kth frame or at time £. Normally, there
is only one target in a imaging cell. Therefore, the mea-
surement model is

" g (x)+ W, Ec=e
4r={ (6)
Vk”), Ek =e

where v(’ -

is the noise in the (i,j)th cell, which is nor-
mally independent zero-mean Gaussian distributed with
variance o . X, is the target state vector at time k, and can
be modelled as x, = [4;,R;.fy1fri], Where Ay, Ry, fur, and f,;
denote the amplitude, target reference range, target

Doppler frequency and target Doppler rate at time k.

g (-) is the point target response function, and based on
the signal model in (4), it is

Na/2-1

g;(i‘j)(xk) =A; Z C[Rj_Rk_F/l(fi_fd’k)mTp]'

m=—N,/2

exp{j2n(f = fui)mT,|-explinf, (mT,7} — (7)

where R/ and f* denote the range sampling sequence and
frequency sampling sequence, and R'=R.+(j—N, /2)AR,
f'=(i=N;/2)Af, and AR and Af are the range unit and
doppler unit, respectively.

3.2 Modified LRF modelling

For the focused point target in a radar image, it is gene-
rally assumed that the intensity of each pixel follows the
Rice distribution if target exists, or Rayleigh distribution
if only noise is present [35]. Hence, the likelihood func-
tion in pixel (i, j) is

(i,) @,j) (i)

G.J)) _ 2z, 22,78} deal (xk)
p(27 I e) = =1y :
o o

exp —|Z](€i’j)'2+|g%ea] ol : ®)

o2

i) | £ | 2

s _ 2%, k
p(ale)= - expy - ©)

o2

where [(*) is the zero-order Bessel function, g,((’;’ﬁm] () is
the ideal point target response function as shown in (3).
As the noise in each pixel is assumed to be independent,
the likelihood function of the focused point target is a

product over all of the contributions:

Ny N,
P (Zilxi.e) = np (”)|xk,
v . (10
p@®) =[] r("e)

=1 j

Therefore, the statistical LRF of the ideal point target is

p(zilxi, €)
Ligea (ZilXi, 1) = —p (kz |ké) =
k
Ny ()} (z D G.j)
1_[ ﬁ 8x., :deal (xk)| ! 8. {dml X;) (11)
=1 j=1 O 0-2 ’

In addition, the azimuth profile of the focused ideal
point target is in the form of a sinc function, and the
GNSS signal has a particularly excellent autocorrelation
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property. Thus, the energy of the focused target is mainly
concentrated in the main lobe. To improve the computa-
tion efficiency, a sub-area can be used for the whole
image to calculate the LRF:

Ligea (zel X1, 1) =

{ ;;{L):leal (xk)l } [
p 0

where N, and N, ; denote the size of the sub-area image

Ny, (t J) o))

t 8k, ideal (xk)] (12)
o

N,
[]er

=1 j=1

in RD domain. Normally, a 5x5 sub-area is recom-
mended, considering the tradeoff between efficiency and
accuracy.

Based on the LRF in (12), the moving target can be
detected using PF in the GBPR. However, for the defo-
cused target, there is no suitable probability model to
directly describe the likelihood function in each pixel, as
the energy of the moving target can expand into multiple-
pixel areas. Usually, the defocused target is an object
which is born in proximity to its corresponding focused
point target, and the energy expansion area is highly
related to the position (f;,,R,). Assume the state vector of
the defocused target is y,, the energy expansion of the
~ p(yi| x;), where
p(v:| x;) is the probability density function (PDF) for state

defocused target can be modelled as y,

x, transfer to state y,. Therefore, the likelihood function of
the defocused target can be described as

p@lxee) = [ palee pde)dy.  (13)

In order to calculate the likelihood function in (13), the
extent of target defocusing should be carefully examined.
Normally, the second-order phase modulation caused by
f.x only lead to reduced amplitude and Doppler defo-
cused, and the peak position of the defocused target is
still (f;,R,). Assume the supporting length of the target
distribution in the Doppler domain is L, and the Doppler
slice of the defocused target is

N4/2-1
8 (fur+.R) = Ac Y ClAy-AfymT,]-
m=—N,/2
explj2n(y-Af)ymT,} -explinf, ,(mT,)’} (14)

where y=[—L;/2,L;/2]. Generally, for the CA code in
GBPR, the range resolution is around 150 m, but the
range-curvature term is just several meters. The Doppler
defocusing extent is L= f, (N, /PRF)Q‘ Then, we have

1089

- (L)z < AR (15)

|0y AfymT,|< A bag)=2
) 2 ¥\ PRF

which means the term in the range envelop C() in (14) is
smaller than one range cell, and C[A(y-Af)ymT,]=1. Thus,
(14) can be rewritten as

Ny/2-1

8 (fur+3.R) = Ac D expli2n(y-Af)ymT,)-

m=—N, /2

explinf, ,(mT,)’}. (16)

The range slice of the defocused target is

Ny/2-1

g (foR) = A Z

m=—N, /2

exp {jnfnk(mTp)z} 'C(Rj —Rk).

(17)

Therefore, the target will still be focused in the range
domain, with only reduced amplitude. Based on the
above analysis, Fig. 4 presents distribution of the defo-
cused moving target. As shown in Fig. 4, based on the
target state x; = [A;, Ry, fuxr fr4], the defocused target
state y, can be modelled as [Ay,, Ry, fux +YAS, f4], where
the amplitude 4, is decided by 4;, f,,, and N,.

A4

Doppler
(ﬁi.FLf/ 2-y, Ry)
s
% ‘
i i
RA Rang;

Fig. 4 Distribution of the defocused moving target

Then, the p(z;| ¥, €) in (13) can be calculated as
27" I (zzl(cm D hea fae+y-Af, Rk)]
0 .

o2

(7 lyie) =

o0 {_ e+ |ghea i+ ARO[ } e

o2

o2

Normally, p(y, | x;) can be set to the uniform
distribution, based on the assumption that the target
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energy distributes uniformly in the defocused area.
Thus, the likelihood function in (13) can be calculated

by

| L2

()= |
Ly
)

zzyﬂ’./)

0—2

; [24"*-‘ 8t +y~Af,Rk)]
0 .

o2

o2

Gy )| |G 2
Z + 8 e Sk Y- Af Ry
CXp{_l k | |gk,1deal(f1k y f /‘)l }dy (19)

Same as (8), the intensity of a noise-only pixel is still
Rayleigh distribution. Finally, based on (8), (10), (11),
and (19), the statistical LRF of the defocused target can
be modelled as

Laer (zilxi, e0) =

L (t J) o2
i=1 j=1 —Lf/2 k

{ (1 = 1) + g (fd,k+y-Af,Rk)|2}
expq — = dy.

(20)

4. The proposed SPF algorithm

Based on the modelled LRF for defocused target, a novel
SPF algorithm is proposed for target detection using the
defocused image frame data. Unlike the traditional PF, a
spawning particle set is generated by the target state parti-
cles, and Ly (z:xs,e,) s used for updating. And an ampli-
tude estimation method is also presented for reducing the
sampling dimension.

4.1 Traditional PF

Assume that {ka,wk}n , represents N independent parti-
cles {xj,,n=1,2,---,N} distributed with weights w}
which are generated by the posterior PDF p(xq.z,.), then
the true PDF can be expressed [24] based on Dirac func-

tion o(*):

N
P (Xoxlz1) = szé(x():k —xﬁ;k)- (21)

n=1

In general, it is impossible to get the particles from the
posterior PDF p(x.|z,,) directly. Based on the impor-
tance sampling technology, a practical way is generating

those particles from a proposal distribution g(x.|z,.),-
Then, the weight w} of the ith particle is

W= P (X lz1) p(x5,)
q(xgcklzlik)

Then, based on sequential
q(x;,|z14) can be rewritten as

(22)

importance sampling,

q (XoxlZ14) = g Xkl X015 Z1:6) G (Xop-11Z1:4-1) - (23)

The target state and system measurement generally sa-
tisfy the following requirement:

k
p(xO:k) = P(x()) ]_[ p(xmlxm—l)
m=1

k (24)
p(zl:k|x0:k) = l_] p(zmlxm)

m=1
Hence, based on (23) and (24), (22) can be rewritten in

recursive updating form [24] as follows:

n o p(xplx") p(zelxy)
TR g (gl )

(25)

Finally, the posterior filtered density p(xz,,) can be
approximated by

N
Pz~ D wis(x - x}). (26)
n=1

Equations (21)—(26) form the basis of PF [24].

4.2 SPF algorithm and its SMC implementation for
defocused MTD

Based on the amplitude estimation and the deduced LRF
of the defocused target, a novel SPF is proposed for MTD
in this section. In the proposed method, two particle sets

with associated weights {x;w}"  and { " “)} are used
-

n=1

to calculate the density and LRF. Here, the nth particle x;}
- [ALRL )

is born in proximity to its

represents the target state, which is x]
and the spawning particle y;
parent particle x; and thus its initial state depends on the
parent’s state. As presented in Subsection 3.2, the mov-
ing target is only defocused along the Doppler domain.
Therefore, these new spawning particles are sampled in
the Doppler domain, which can be modelled as
= [ f"“)] Based on the PF and those two particle
sets, the processing flow of the SMC implementation of
the SPF is shown in Fig. 5, where seven stages are
included.
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Fig. 5 Processing flow of the SMC implementation of the proposed SPF algorithm

4.2.1 Initialization

The first stage is initialization for generating the initial

particle sets {x;w;}"_ and {yg (‘Y)}ivjl. The choice of the
initial particle set plays an important role in the imple-
mentation of the proposed filter, which affects the effi-
ciency of target detection and the number of particles
required. In general, the uniform distribution is recom-

mended, and the uniform particles can be drawn by
Ry~ U[Ruin : AR 1 Ry
Jao~Ulfwin t Af 2 finas]
Io ~ Ul fomin : Af 2 frmas]
0 ~ U\ fr o= Lyo/2-Af 1 Af £ o+ Lyo/2|

27

where [R,;,, Rpa] 18 the range searching area, [fin, frax] 15
the Doppler searching area, [fmin, frmax] 18 the Doppler rate
searching area, and the supporting length L, is decided
by f,.,N,/PRF. The discrete unit in range AR is decided by
the signal sampling rate, the discrete unit in Doppler Af
can be calculated by PRF/N,, and the discrete unit in
Doppler rate Af. is decided by N, or the frame duration T}
in each image frame. Considering the normalized ampli-
tude reduction caused by Af,, as presented in (28), Fig. 6
shows the impact of Af, on amplitude reduction with dif-
ferent 7,, which equals N,/PRF. Normally, 7, is around
several seconds. Thus, the discrete unit in the Doppler
rate Af, can be set less than 0.05 Hz/s.
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Nayj2-1

Z exp{jnAf,(mT,)*}| - N}’

m==N,/2

Aloss = (28)

Based on the relationship between fdy“ and f7, the
way for the spawning particle to be generated in (27) can
be rewritten as

fd(’)l (9 _ fdn +y2;) f

U —Lso L. Lyo] - (29)
0 2 2
Therefore, the particle set {x!}" and { " (”} _ can be
n=N,s=N;

merged into a new spawning particle set {x;*,w;}

n=l,s=1 >
where x* = [AZ,R,’j,ﬁk,frk,yZ (V)] and the new set will be

used in the following.
4.2.2 LRF with amplitude estimation

The second part is the calculation of LRF. For PF, the
computing load is related to the dimension of target state,
and the target amplitude sampling is also needed, which
is only used for LRF calculation. In general, we are only
interested in the position and velocity of a target. To
avoid the amplitude sampling, an amplitude estimation
method is proposed, which will improve the efficiency of
the SPF. Moreover, the target state can be modelled as a
3D vector x;= [Ry, fuw /4], and the spawning particle x|’

is [R S o Ve (T)]
In general, the first order approximation of Bessel
function [37] is

e 1

Then, the LRF in (12) can be rewritten as

2
AG e (60
1deal (Zklxk,ek) = 1—[ l—[ex _M )

=1 j=1

( ZAAZ(I /)G(l k,ideal (xk) )
exXpl—————————

0-2

0_2
[ * ) (0-))
16Akz ! G k,ideal (xk)

2. 2468 G (0
- =
@31
where G{'\ (x;) is the normalization of g/ (x;).

Using the principle of maximum likelihood estimation
(MLE), the logarithm is applied on both sides of (31), and
the partial derivative of 4, is

01In Ligeq (Zelxx, €x)

=~

0A,
|G](;‘ge"' (xk)| - 2z J)G(Ll 1{:1)5.11 (xk)
—2A
Ny N, 0-2
;;(2& 16A; (U)G:lﬂ)edl k)). (32)

Set (32) to 0, and the MLE Ak of A, can be estimated
0 In Ligea (Zilx1, €1)

by finding the solution to 5A = 0. There-
k
fore, the LRF can be calculated by
' zf"”|2
Ldef (zk|xk ,ek) ll—][ 1:[ Lf Z(, J) 0_2
N, 2z (”‘A ])A G(l .J) ( n(s) R )
Z (i J) kideal Jak k) |
s=1 0-2
Hvk ij n(s 2
( ]) +A2'G( k, ideal dj()’Rk)'
exps — 33
Y

o2

4.2.3 Existing spawning particles

The existing spawning particles indicate that the target
exists at both time k—1 and £, and they are generated by
updating the N, spawning particles at k—1 to k, based on
the target state updating equation x,=Fx;_,+v,, where v, is
the Gaussian distributed noise, and F is the state transi-
tion matrix:

AT?

Loar 5
F=|oy | 1 | (34)

0 0 1

©n, v}n =N,,s=Ny

The continuous particles at k are { , where
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the superscript (¢) means continuous particle. Then, the
normalized weights of continuous particles can be calcu-
lated by the LRF:

wff)"z Ldet(Z |x(()“» k) . (35)

Z Ldef Zk|x(()n e )

Therefore, the continuous spawning particle set with

X n=Ne,s=N;
weights can be modelled as W,

n=1,s=1

4.2.4 Newborn spawning particles

The newborn spawning particles indicate that the target

(D)n,s
xk

~q(xilex, €1, 20), {i=1,---,N,}

(bn _
w,o =

(b) (byn, (b)n, -
Lt (ZA|x e )P( *le, e 1)/‘]( |6’k76’k—1,zk)

() b b _
ZLdef Zk|x i ) ( ;.)n ek, & 1)/41( ()M|ek,ek71,zk)

n=1

(36)

Therefore, the birth spawning particle set with weights

n=N,,s=N;
can be modelled as{ Ons )”}

n=1,s=1

4.2.5 Mixed spawning particles

At the mixed spawning particle set stage, the mixing

does not exist at time k—1 but exists at time k, and they ~ probabilities are calculated firstly, based on the w{”" and
are sampled from the proposal density wﬁj’” which are
plerlei-) p(exilzin- 1)2W<b)n
Mb =
plederr) p@ilzin 1)Zw(b)n+17(€k|ek D ez 1)ZW(O"
n=1 (37)
peder-r) pler—i1lzia- |)ZW(EM
M = n=1
pledei) p(eilzix- |)ZWU))"+P(€1<|€1< 1) P (€r|Zi- |)ZW(CM

n=1

where p(e;_i1zi4-1) and p(e,_|z14-1) denote the probabi-
lity of target non-existing and existing at k—1, respec-
tively. p(eier;) and p(eiler;) denote the probability of
target appearance and target survival, respectively. Then,
the birth spawning particle set and continuous spawning
particle set are merged into a new mixed spawning parti-

cle set { s " he [b, c]}n ZV':lN *"and it should be

noted that the welghts of the mixing spawning particle set
are normalized:

w(h)n -M W]({b)n / Z W(b)n
n=
N,
1/'-{}(c)n M W(kc)n/z w(c)n

n=1

(38)

4.2.6 Resampling [24]

Resampling is an effective method to mitigate the dege-
neracy problem in the SMC implementation of PF. The
main idea of resampling is that if the effective sample
number is larger than a threshold, resampling is then per-
formed. Resampling eliminates particles with low impor-
tance weights and multiplies particles of high importance.
Based on resampling, the number of spawning particles is

n=1

resampled from N,+N. down to N,, and the resampled
n=N,,s=N;
n=1,s=1

spawning particle set is {(x]*,w}), w} = 1/N_}
4.2.7 Target state estimation

In the final stage, the probability of target existence can
be calculated [35] by the mixing probabilities:
pedzii) =
M, + M.

M, + M.+ p(elei) plerilziu-1) + p(&rlei-)) p(€x-11Zix-1) ’
(39)

If p(eilzi4) is over the threshold value Py, the target is
declared present, and its estimated state can be

N,
Be= ) wix). (40)
n=1

5. Experimental results and performance
analysis

In this section, compared with the traditional PF algo-
rithm, numerical simulations are carried out firstly to
demonstrate the performance of the proposed SPF algo-
rithm and its feasibility for defocused MTD. Then, some
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preliminary experimental results are provided to show its
performance in a practical scenario.

5.1 Results using simulated data

In the GBPR simulation system, the L5 signal from a
GPS satellite (space vehicle number, SVN #10) is
employed. Assume the target moves on the XOY
plane, and the main simulation parameters are listed
in Table 1, where 13 image frames are generated using
the RFT imaging algorithm without Doppler rate com-
pensation [38], and each frame illumination time 7|

Journal of Systems Engineering and Electronics Vol. 34, No. 5, October 2023

is 5 s. The moving target appears at frame-3 and
disappears at frame-11 with a constant velocity (100,
=173, 0) m/s, and based on the system geometry,
fum and f,, caused by target motion can be calculated,
which are 166.3 Hz and 1.01 Hz/s at frame-7. In
Fig. 7, imaging results at frame-4 and frame-9 are pre-
sented, and to highlight the target, all image frames in
Fig. 7 are noise-free. As shown, the target is defocused in
the Doppler domain, and due to target motion, the defo-
cused target is located in different RD cells at different
image frames.

Table 1 Main simulation parameters

Parameter Value Parameter Value
Wavelength/m 0.255 Supporting length L, ,/pixel 40
Antenna gain/dB 30 Spawning particles number N, 400
Target appearance Frame-3 Continuous/born particles number N =N, 10 000
Target disappearance Frame-11 Target position/km (100,100,8)
Threshold P, 0.5 Target velocity/(m-s ) (100,-173,0)
Image frames 13 Image SNR/dB 8,10
Target RCS/dB 30 SVN #10 position/km (10232.9,-15 519.5, 12 420.5)
Sampling rate/MHz 50.0 SVN #10 Velocity/(ms ) (190.2,-2 114.0, -1 798.6)

(a) Frame-4

(b) Frame-9

Fig. 7 Noise-free simulated image frame results

For both traditional PF and proposed SPF, the initial
target state is generated by the uniform distribution,
where R~U[—1000,1000] m (the reference range is

removed), f;,~U[100,220] Hz, f,.,~U[0,1.5] Hz/s, and
yo~U[—20,20]. The processing results of each image
frame are shown as the distribution of ‘alive’ particle
clouds (red points) in Fig. 8, where the blue circle marks
the true target position at the current frame, and the black
line represents the target trajectory in the RD plane from
frame-3 to frame-11. Those particles appear randomly
dispersed at the beginning of target appearance, but as the
PF-based method can learn from the image data the pres-
ence and location of this moving target, when more
image frames are used, the particle clouds become more
and more concentrated around the true location. In the
traditional PF, the LRF model is not matched with the
response function of the defocused target. As shown in
Fig. 8(a), the particle clouds are randomly distributed in
the image area, and even after several image frames, as
shown in Fig. 8(c), the particle clouds are just a little bit
concentrated around the true target location and still con-
densed to a slanted line in the Doppler direction. This
phenomenon indicates that the traditional LRF is not
matched in the Doppler domain. As a result, it is difficult
for the traditional PF to detect and track the defocused
moving target. As shown in Fig. 8(b), for the proposed
SPF, the particle clouds have been focused to a line in the
Doppler direction and MTD has been preliminarily rea-
lized. However, the error of the estimated state is still
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large, which is due to error of the modified LRF model as
amplitude estimation is not accurate enough at the begin-
ning. Then, as shown in Fig. 8 (d), with the increase of
input image frame data, the accuracy of target amplitude

220

Location in Doppler/Hz

=500 0 500
Location in range/m
(a) Frame-3 in traditional PF

Location in Doppler/Hz

120 . .
—-600 —400 —200 O

200 400 600 800
Location in range/m
(c) Frame-7 in traditional PF
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estimation and LRF model is gradually improved, and
particle clouds become more concentrated towards the
true target position. Finally, the estimated target trajec-
tory can be obtained based on the estimation target state.

200

Location in Doppler/Hz
2N
S

—200 0 200 400
Location in range/m
(b) Frame-3 in SPF

Location in Doppler/Hz
3
S S

—_

W

(=]
T

140 - :
—400 —200 0 200 400
Location in range/m

(d) Frame-7 in SPF

Fig. 8 Locations of particle clouds after filtering at each frame with a 10 dB image SNR

The true and estimated trajectories in the RD image are
shown in Fig. 9, where the target moves from bottom left
to top right. For the traditional PF, the target cannot be
detected at the beginning, and then with more frames, the
target is detected but the estimated track error is too large.
However, for the SPF, as shown by the red line in Fig. 9,
the target is detected when it appears, and the estimated
track becomes close to the true one gradually. In the simu-
lation, conducted on a computer with intel core i-7-
6820HQ@2.70 GHz processors, the SPF has competitive
advantages compared with the traditional PF. The tradi-
tional PF takes 39.05 s to process, while SPF shows rela-
tively same speedy processing time with 41.66 s, in con-
sideration of the overall effects of introduced additional
spawning particles and reduction of the sampling dimen-
sion.
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=8~ [deal trajectory; =p=: Estimated trajectory (PF);
=4=: Estimated trajectory (SPF).

Fig. 9 Target detection results by the traditional PF and the pro-
posed SPF algorithm

Next, 500 Monte Carlo simulations are carried out to
evaluate the performance of the proposed SPF, in terms
of detected frame rate, root mean square (RMS) Doppler
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estimation error and RMS range estimation error [38].
The detected frame rate results are shown in Fig. 10, with
a Py = 0.5 to determine whether the target is detected or
not. As shown, a higher detected frame rate is obtained
when the image SNR is high, and the detected frame rate
by the SPF (red and blue line) is much higher than that by
the traditional PF given the same image quality, which
verifies effectiveness of the proposed SPF. Moreover,
although the detected frame rate is low at the beginning
when the target appears, the PF and SPF algorithms can
learn target information from the image data, and as more
image frames are used for MTD, the detected frame rate
increases dramatically.

1.0
g 08 )/ )
E / —1
£ 06 [ e =1
s »" 1
= 4 , [}
s / » R \
8 vl V.4 [
£ 04 0 |
8 o2l e
’ /
' 4
0
2 3 4 5 6 7 8 9 10 11 12 13

Frame
=+: SNR=8 dB (PF); =-e-: SNR=8 dB (SPF);
=» : SNR=10 dB (PF); —==: SNR=10 dB (SPF).
Fig. 10 Detected frame rate result by the traditional PF and the
proposed SPF algorithm with different image SNRs

In Fig. 11, the RMS estimation error results of the tar-
get Doppler and range are presented, where both errors
are large at the beginning, but they become smaller with
the increase of image frames. Same as in Fig. 10, the
RMS estimation error in the SPF case (red and blue line)
is much smaller than that in the traditional PF case, and a
lower RMS estimation error is obtained with a higher
image SNR. In our simulations, the range resolution is
around 10 m and the Doppler resolution is 0.2 Hz (1/7}).
As shown by the red line in Fig. 11, the final RMS esti-
mation error of target range and Doppler is close to the
ideal resolution, which demonstrates that the proposed
SPF can track the target accurately.
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Fig. 11 RMS estimation error in different image SNR cases

5.2 Preliminary experimental results with
GPS signals

To demonstrate the effectiveness of the proposed SPF in
a practical scenario, a preliminary experiment was con-
ducted near the Beijing Capital Airport (PEK), China at
19:48:20 (local time) on 31 May 2021, and the experi-
mental scene and hardware setups are shown in Fig. 12,
where the reference and receiver antennas are fixed on
the blue spot, and the receiver antenna points to the verti-
cal direction (almost West) of the target trajectory. In the
experiment, the flight CA1902 from Urumgqi to Beijing
was landing from South to North at a speed of 78 m/s,
GPS satellites SVN #02, #13, and #30 are chosen as the
transmitters and the L1 signal (corresponding resolution
is around 150 m) is chosen as the illumination source. At
this situation, the flight can be regarded as a point target.
More details about the experimental parameters are listed
in Table 2. Note that the positions of targets, satellites
and receivers are recorded in the Earth-Centered Earth-
Fixed (ECEF) coordinate at reference time (19:48:20),
and the range between flight and receiver at reference
time Ry is around 1.21 km.

(a) Experimental scene
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Ilustration of the experimental scene, hardware setups

Table 2 Experimental parameters with GPS satellites

Parameter Value
Wavelength/m 0.19
Sampling rate/MHz 62
Signal bandwidth/MHz 2.046
Antenna gain/dB 15
Target speed/(m-s~!) 78
SVN #02 position/km (-21605.1, 14765.4, 5351.2)
SVN #13 position/km (-13120.6,20485.8, 10363.6)
SVN #30 position/km (-23221.1,-1572.9, 13072.6)

Receiver position/km (—2191.8,4370.8, 4081.2)

Target position/km (—2191.3,4371.9, 4081.6)

Based on the signal synchronization algorithm [3] and
RFT algorithm [36], eight frames of RD image result are
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generated for each transmitter (SVN #02, #13, and #30).
The illumination time of each frame is 0.5 s, and the
frame time interval is 0.2 s. Thus, the total illumination
time is very short (1.6 s), and the flight can be assumed to
be moving at a constant speed in the process. It can also
be assumed that it is moving on the XOY plane, because
the average vertical flight velocity during landing is just
around 2 m/s. For illustration, frame-2 and frame-5 under
the geometry of SVN #13 are shown in Fig. 13. As
shown, the target is defocused along the Doppler direc-
tion, as the QPE caused by Doppler rate is not compen-
sated. Both the Doppler frequency introduced by the GPS
satellite motion and the reference range have been
removed. Considering the prior information about the
flight, the initial target state is generated by uniform dis-
tribution, where Ry~U[0,3000] m, f;,~U[—100, 100] Hz,
f.o~U[15, 20] Hz/s, and y¢~U[-10,10]. The other SMC
implementation parameters are the same as those listed in
Table 1. Since the RD history of each geometry configu-
ration is totally different, the same target will be located
in different RD cells if a different transmitter is used.
Therefore, three estimated tracks (blue for SVN #02, red
for SVN #13, pink for SVN #30) are obtained, as shown
in Fig. 14. For the reference time, the estimated target
Doppler and range parameter are listed in Table 3. Then,
based on the relationship between a target’s position,
speed and RD parameter [35], the position and speed of
the detected flight can be estimated using parameters
listed in Table 3, which gives the flight position at
(—2191.27,4371.86,4081.61) km with an estimated speed
of 76.4 m/s, while the estimated R; is around 1.23 km.
All these again have demonstrated the effectiveness of
the proposed SPF.

Doppler/Hz

2000
Range/m
(a) Frame-2
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Fig. 13 RD image using SVN #13 as the transmitter
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Fig. 14 Estimated target tracks in range-Doppler plane

Table 3 Estimated target information at the reference time

Satellite Doppler/Hz Range/m
SVN #02 —72.2 1280
SVN #13 -61.9 907
SVN #30 46.3 2149

6. Conclusions

In this paper, the defocused point-like target detection in
GBPR system has been studied. To detect the defocused
target, the measurement model and the modified LRF
model are first derived to describe the target data, which
can also be applied to detection of multiple targets in sin-
gle-static or multi-static GBPR systems. Then, a novel
SPF algorithm and its SMC implementation are proposed,
where a spawning particle set generation method is deve-
loped with reference to the traditional particles in PF as
their parent. To reduce the sampling dimension and com-
putation in SMC implementation, a novel amplitude esti-
mation method based on the modified LFR is presented.
After that, spawning particles initializing, LRF calcula-

tion, newborn and existing spawning particles calcula-
tion, mixed spawning particle set generation, resampling,
and target state estimation are presented to make full use
of all image frame data to realize the defocused MTD. As
demonstrated by numerical simulations and preliminary
experimental results, the proposed algorithm can realize
high-precision defocused MTD, with an error just around
the resolution cell size. Comparing with the traditional
PF, the computation efficiency of the proposed SPF is
almost the same, due to the reduction of the sampling
dimension. Moreover, due to the availability of multiple
GNSS satellites, multiple observations from different
transmitters allow the proposed algorithm to effectively
obtain not only the range and Doppler parameters of the
moving target but also its position and velocity. Based on
findings in this paper, our next work is to explore the
extended moving target detection with real GBPR data.
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