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Range estimation of few-shot underwater sound source in
shallow water based on transfer learning and residual CNN
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Abstract: Taking the real part and the imaginary part of com-
plex sound pressure of the sound field as features, a transfer
learning model is constructed. Based on the pre-training of a
large amount of underwater acoustic data in the preselected sea
area using the convolutional neural network (CNN), the few-shot
underwater acoustic data in the test sea area are retrained to
study the underwater sound source ranging problem. The S5
voyage data of SWellEX-96 experiment is used to verify the pro-
posed method, realize the range estimation for the shallow
source in the experiment, and compare the range estimation
performance of the underwater target sound source of four
methods: matched field processing (MFP), generalized regres-
sion neural network (GRNN), traditional CNN, and transfer learn-
ing. Experimental data processing results show that the transfer
learning model based on residual CNN can effectively realize
range estimation in few-shot scenes, and the estimation perfor-
mance is remarkably better than that of other methods.
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1. Introduction

Underwater target location is a research hot spot in the
field of underwater acoustic signal processing. Passive
location technology is widely used in military and civil
fields. Most of the traditional passive positioning me-
thods are matched field processing (MFP) based on the
underwater acoustic model. In 1976, Bucker proposed the
linear matched field processor and established the actual
environment model to realize passive positioning by cal-
culating the fuzzy function of range and depth [1]. In
1981, Klemm proposed the generalized maximum
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entropy beamformer, which has a higher resolution and a
better estimation performance than the linear matched
field processor [2]. In 1988, Baggeroer established the
MFP technology based on the horizontal layered marine
environment waveguide model and obtained that increas-
ing the bandwidth can effectively improve the accuracy
of the matched field algorithm [3]. In 1996,
Michalopoulou et al. superimposed the narrowband ambi-
guity function of each frequency point through the uncor-
related method and obtained that the uncorrelated method
is feasible in the broadband MFP algorithm [4]. In 2003,
Soares et al. designed normalized correlation processor
and matched-phase correlation processor based on the
correlation between various frequency points [5]. In
2006, Yang et al. designed a linear MFP algorithm in the
scene of strong interference under the condition of envi-
ronmental mismatch to suppress the interference [6]. The
MFP method combines the acoustic propagation model
with the array signal based on the characteristics of
underwater acoustic channel to estimate the depth and
range of underwater targets. However, its positioning per-
formance depends heavily on parameters such as sea
depth and sound velocity profile. In the scene of environ-
mental mismatch, the accuracy of this method is seri-
ously affected.

The data-driven model does not depend on the parame-
ters of the marine environment. The data-driven method
represented by the neural network has been widely used
in the field of underwater acoustic passive positioning. In
1991, Steinberg et al. established a single-layer neural
network model for point sound sources in homogeneous
media to realize depth estimation [7]. However, at that
time, the machine learning technology was relatively
weak and not widely used, and the mainstream passive
location algorithm was the matched field processing
method. Therefore, in the field of underwater acoustic
passive location, the development of machine learning
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method was relatively slow for a long time. In 2017, Niu
et al. used feedforward neural network (FNN) and sup-
port vector machine (SVM) to achieve effective localiza-
tion of sound source under the condition that they only
have approximate environmental prior parameter infor-
mation [8]. In 2018, Wang et al. introduced the genera-
lized regression neural network (GRNN) method in the
field of underwater acoustic passive positioning. In the
environment of high signal-to-noise ratio (SNR) in shal-
low water, they determined that this method can achieve
effective target range estimation [9]. In the same year,
Ferguson et al. extracted the features of cepstrum and
generalized cross-correlation of sound source signal in
shallow water waveguide environment, and realized tar-
get azimuth estimation based on convolutional neural net-
work (CNN) [10]. In 2019, Liu et al. realized underwater
target range estimation in the scene with roughly deter-
mined depth range based on one-dimensional (1D) CNN
and integrated learning technology [11]. Under the condi-
tion of only approximate environmental parameters, Niu
et al. generated a large amount of underwater acoustic
data based on the sound propagation model, collected the
sound pressure value received by a single hydrophone,
and detected the sound source by using a 50-layer resi-
dual CNN [12]. Howarth et al. added Gaussian noise to
underwater acoustic data to evaluate the performance of
CNN in estimating target range and environment cate-
gory under different SNRs [13]. In 2020, Komen et al.
input the data obtained by modeling a variety of environ-
mental parameters into the CNN model to realize target
range estimation and environmental recognition. The net-
work can effectively estimate the test set obtained by the
sound field model, whereas the estimation performance
of sea test data was relatively poor [14,15]. Ozanich et al.
used the FNN for azimuth estimation and compared it
with the SVM method. The results showed that the appli-
cation of the deep FNN model in horizontal array passive
positioning is feasible [16]. In the same year, Liu et al.
proposed a multitask learning algorithm based on CNN,
which can simultaneously estimate the range and depth of
the sound source [17]. In 2021, Chen et al. proposed a
CNN model whose training data are only composed of
model simulation data. The results showed that the CNN
model has a better estimation performance than the MFP
method [18]. In the above research, CNN and SVM were
used to estimate the position of a single underwater tar-
get, and satisfactory results were obtained.

Transfer learning is a machine learning method that
uses existing knowledge to solve problems in different
but related fields [19]. In the field of image processing,

transfer learning has been widely used. In 2008, Dai et al.
based on the transfer learning model and assisted image
clustering with text data. This method can effectively
improve the accuracy of image clustering [20]. In 2011,
Zhu et al. took the label information on the image as a
bridge for knowledge transfer between image and text,
which helped improve the effect of image classification
[21]. In 2019, Nakamura et al. proposed a fine-tuning
method to make the model converge faster on small sam-
ple data sets and make the knowledge learned by the
model more consistent with the target task [22]. Jang et al.
proposed to use meta learning to learn the weights of
transfer feature maps and transfer layers [23]. In 2022,
Gerace et al. used the solvable model of synthetic data as
a framework for modeling the correlation between data
sets, and analyzed the generalization performance when
transferring the trained feature map from the source task
to the target task [24]. However, the application of trans-
fer learning in underwater acoustic localization is less. In
2019, Wang et al. obtained the pre-training model by
training a large amount of simulation data and then
trained the measured data of a few shots. The research
showed that this method can effectively realize the esti-
mation of sound source range in the untested sea area
[25]. In 2021, Cao et al. used the single-vector
hydrophone simulation data generated by the sound pro-
pagation model for the pre-training of the model and used
the sea trial data to realize the retraining of the model.
The results showed that compared with the traditional
CNN, the single-vector hydrophone azimuth estimation
based on transfer learning is more robust [26].

To sum up, the traditional MFP method based on
model driving has great limitations. It requires a large
number of marine environment parameters and is prone
to the problem of environmental mismatch. Compared
with the machine learning method, it cannot extract the
deep feature information in the underwater acoustic data,
and the estimation performance is often poor. Although
the traditional machine learning method can obtain the
model similar to the estimation task through training, it
often needs a large number of training data to support.
The transfer learning method can be applied to new tasks
by training similar tasks and solving the estimation prob-
lem with a small number of training samples. As for unfa-
miliar sea areas, neither enough underwater acoustic data
nor environmental parameters generate a large amount of
copy field data. Therefore, training an accurate deep neu-
ral network is impossible.

However, transfer learning can be used as a learning
framework to apply the knowledge of known sea areas to
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the detection of unfamiliar sea areas. Therefore, the appli-
cation of transfer learning in the field of underwater
acoustic passive positioning has great research impor-
tance. This paper makes full use of a large amount of
underwater acoustic data in the known sea area to train
the corresponding pre-training model. Transfer learning is
applied to the sea area target ranging with only a small
amount of underwater acoustic data. The S5 data of
SWellEX-96 experiment are used to verify the feasibility
of this method.

2. MFP

Using the normal wave model, the sound pressure gene-
rated at (r,z) by a single frequency point sound source at
(0,z,) [27] is expressed as

ik

e N o
R Z (2 ¥(2) o (1)

where i is the unit of imaginary number, p is the density
of the medium, ¥,(z,) and £,, are the mode depth func-
tion (characteristic function) and horizontal wave num-
ber of the mth normal mode, respectively.

The data received by the hydrophone array are
matched with the copy vector generated through the nor-
mal wave model and environmental parameters, and the
maximum value is found in the calculated blurred sur-
face of range and depth. The corresponding position of
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Fig. 1

The convolution can be expressed as
C=f(Wxx_,+b) (5)

where * represents the convolution operation, C; is the
output of the current layer, f(-) represents the nonlinear
activation function, W, represents the weight of the /th
layer, x,_; represents the output of the previous layer, and
b, represents the deviation of the /th layer.

The pooling layer makes statistics on the overall cha-

this point is the estimated position [28]. The positioning
ambiguity plane B of MFP is calculated from the cross-
spectral density matrix R and copy vector w:

B(p) = 0" ()Rw(yp), 2

1 L
R=_) PP, (3)
=1

w:[pl>p29“'7pl3"'9pL]T> l=1’29“'7L5 (4)

where w is the copy vector, p; is the complex sound pres-
sure received by the array under the copy field, ¢ is the
position parameter of the sound source, (-) is the conju-
gate transpose, L is the number of snapshots, and P, is the
frequency domain data vector of the array under the /th
snapshot. The ambiguity plane of the broadband signal
can be obtained by accumulating and averaging the ambi-
guity plane corresponding to each frequency.

3. CNN
3.1 Theoretical basis

The network structure of a typical CNN is shown in
Fig. 1. In this network, each neuron is connected to the
local receptive domain of the previous layer. Different
levels of features in the original signal are obtained
through convolution operation and nonlinear activation to
realize the feature mapping of the previous layer [29].

Convolutional layer 2 Fully connected layer

\/
V
Il
‘ Activation function ‘
I

Typical CNN model

racteristics of the nearby area at a certain location to
reduce the diversity and dimensionality of feature selec-
tion, and effectively avoid the over fitting of the network
while reducing the network parameters. In this paper,
average pooling is adopted, which is expressed as

Z, = f(W,*mean(x,_,) + b, (6)

where Z, is the output mapping of the /th layer, and
mean(-) represents the average pooled sampling func-
tion.
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The full connection layer integrates the high-dimen-
sional information features after convolution and pooling.
The layer uses the features corresponding to the linear
equation to fit the input and then processes the informa-
tion through the activation function. The model is

K= fwo-f,+by) (7

where f, is the eigenvector, w, is the weight matrix, and
b, represents the offset matrix.

3.2 Residual connection model

The CNN model with residual connections can not only
be used to build a deep network architecture, but also
maintain the accuracy of the model [30]. The model
adopts the network structure of jump connection to super-
impose the shallow features and the deep features, which
can effectively avoid the loss of shallow features during
network training. The residual connection structure is
shown in Fig. 2, in which x is the input of the current
unit, and F(x) is the mapping output of the current unit
processed by the nonlinear transformation function. In the
forward propagation of the CNN model, not only the
mapping output result of each current unit is used as the
input of the next unit, but also the input of the current unit
is directly connected and added to the input of the next
unit to realize the jump connection. Therefore, the input
of the next unit is

H(x) = F(x) + x. ®

X

Weight layer

F(x) Relu

H(x)=F(x)+x Gt—><—

Relu

Fig. 2 Residual connection structure

Compared with traditional CNN, the most evident
feature of the CNN model with residual connection is
that many branches connect the input directly to the
later layer. The residual CNN model only needs to
obtain the difference information between input and out-
put, which reduces the complexity of training objectives
and the convergence time required for network model
training.

3.3 CNN model construction

As a representative model in residual CNN, the ResNet18
model has an excellent recognition performance. In this
paper, ResNet18 is used as the backbone network, and its
framework is shown in Fig. 3. First, a convolution layer
has a dimension of 7x7, followed by four ResBlocks, and
a pool layer and a full connection layer at the rear. To
adapt to the characteristics of underwater acoustic data,
the CNN model adopted in this paper removes the pool-
ing layer in the original ResNetl8 model to retain more
characteristic information in the input data, and changes
the input layer, full connection layer, and output layer to
the size suitable for this research task. The covariance
matrix of the received data of the array is used for train-
ing, and the vertical array used contains 21 available ele-
ments. Therefore, the dimension of the covariance
matrix is 21x21. To match the size of the convolution
layer in the ResNetl8 model, the input data need to be
transformed into a 224x224 matrix. The problem of range
estimation is transformed into a classification problem
based on neural network, which has been widely used in
the field of underwater sound source localization
[8,12,18]. It can avoid searching in continuous space and
effectively reduce the complexity and convergence
time of network training. The corresponding grid interval
needs to be set, which is similar to MFP. It can be
expressed as

. Tmax — I'min
grld =

~ ©)

where N is the number of grid intervals, and r,,, and ry,
represent the maximum range and the minimum range,
respectively. The label of the ith sample used for training
is generated according to

~ Fimin

v
label; = ——
abe grid

(10)
where r; represents the range of the ith sample. The for-
mula divides the maximum range and the minimum range
into N categories, and assigns labels according to the tar-
get range. In practical applications, the setting of parame-
ter NV is related to the data set used. It should not be too
large, otherwise, the grid interval will be less than the
range resolution of training data, which will lead to the
labels having no practical training significance. Because
the velocity of the sound source in this study is 2.5 m/s,
the grid interval corresponding to the label of 1 s-snap-
shot training data should not be less than 2.5 m. Theoreti-
cally, on the premise that the grid interval exceeds the
range resolution, the estimation performance can be
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improved by increasing parameter N as much as possible.
However, in the actual training process, only considering
the increase of parameter N will lead to over fitting and
poor generalization of the network, and the estimation
performance of the model on the test data will be
degraded. Based on the above considerations, the parame-
ter NV is set to 100, so the grid interval is 0.018 1 km,
which meets the above grid interval conditions and the
actual accuracy requirements of range estimation of

data
convl
bn_convl
convl_relu
res2a_branch2a
bn2a branch2a
res2a_branch2a_relu
res2a_branch2b
bn2a branch2b
res2a
res2a_relu
res2b_branch2a
bn2b_branch2a
res2b_branch2a_relu
res2b_branch2b
bn2b_branch2b
res2b
res2b_relu

res3a_branch2a

res3a_branchl bn3a branch2a

res3a_branch2a relu

res3a_branch2b
bn3a_branch2b

bn3a branchl

res3b_branch2a
bn3b_branch2a
res3b_branch2a_relu
res3b_branch2b

bn3b_branch2b
res3b

843

underwater sound source.

The CNN model optimization algorithm is stochastic
gradient descent with momentum (SGDM) algorithm.
The number of batch training samples is 128 and the
learning rate is 0.001. In order to avoid overfitting, the
batch normalization layer is set after the convolution
layer, the L2 normalization (weight decay) coefficient is
set to 0.000 1, and the dropout layer with a ratio of 0.5 is
also set.
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Fig.3 ResNet18 model framework

4. Deep transfer learning and
data preprocessing

Transfer learning for underwater ranging uses the
knowledge learned from a scene (model sound field or
historical environment sound field) to ranging the sound
source of the new environment. Traditional machine
learning models train data sets in different fields in-
dependently and cannot be directly applied in other
environments. CNN is a kind of deep neural network

and has been widely used in underwater acoustic
target classification and location. Based on the tradi-
tional CNN, transfer learning can transfer a pre-training
model to a new field. In this paper, the pre-training model
is trained from the normalized experimental underwater
acoustic data and transferred to another sea area for tar-
get range estimation with only few-shot underwater
acoustic data. The transfer learning system is shown in
Fig. 4.
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‘ Pre-trained model ‘ — ‘ Re-trained model ‘

Fig. 4 Transfer learning system

4.1 Data preprocessing

To reduce the influence of sound source amplitude, the
frequency domain complex sound pressure received by L-
element array is normalized by

" P(f) P(f)
P = = =
== PO,
NG
[51(F). (), (D] (11)

The normalized covariance matrix is obtained by
averaging the data of N, snapshots. The calculation for-
mula is

IO s s
C(H) =3 ) PP (12)

where P,(f) is the complex sound pressure correspond-
ing to the sth snapshot. For the covariance matrix, the real
part and imaginary part are taken out, and a 21x21x2
input sample is obtained in parallel.

In this study, 1 s-snapshot is selected for signal feature
extraction. Theoretically, shorter snapshot can be selected
for training, so that parameter N of (9) can be set to a
larger value and the number of samples is larger. How-
ever, in actual training process, the 1 s-snapshot contains
obviously more feature information than the shorter snap-
shot. Therefore, selecting a shorter snapshot may not ne-
cessarily improve the estimation performance. For the
above reasons, in the field of underwater sound source
localization, the 1 s-snapshot is widely used for signal
feature extraction.

4.2 Measurement standards

To compare the positioning performance of different
sound source ranging methods, mean absolute percent-
age error (MAPE) is defined as

100

MAPE = —
N

(13)

Ry~ R,
= R ‘
where R,; is the neural network prediction data, and R, is
the actual data.

4.3 Design of transfer learning model

The transfer learning model can make full use of a large

number of underwater acoustic data sets T1 in the prese-
lected sea area and a few-shot underwater acoustic data
set T2 in the detection sea area to estimate the target
range of the detection sea area test set T3, which is
divided into the following steps.

(i) A large amount of underwater acoustic data are col-
lected from the preselected sea area and a few shots of
underwater acoustic data from the test sea area. For the
collected time-domain sound pressure, the frequency-
domain complex sound pressure is extracted by fast
Fourier transform (FFT), and the norm is normalized.

(i) A traditional CNN is built, which is used to pre-
train the training set containing a large amount of under-
water acoustic data in the preselected sea area. The cha-
racteristics P! of T1 data set are input, and the pre-train-
ing model is trained by CNN.

(iii) A transfer learning model is built based on
the traditional CNN, and the weights of the convolu-
tion layer and pooling layer of the pre training mo-
del are retained, that is, its convolution layer and poo-
ling layer are frozen as the transfer layer. The weight
of the full connection layer and the output layer
are adjusted as the adjustment layer, and a new net-
work is built from the transfer layer and the adjustment
layer.

(iv) Using the newly built network, the data set with
only few shots of underwater acoustic data in the detec-
tion sea area is retrained, and the characteristics P}* of
T2 data set are input, so that the full connection layer and
output layer obtain new weights.

(v) The trained transfer learning model is applied to the
range estimation of the test sea area, the characteristics
PP of T3 data set are input, the estimated value of the
output range is counted, and the estimation performance
of the model is analyzed.

5. Verification of sea trial data
5.1 Experimental description

In this paper, the SWellEX-96 experimental S5 voyage is
used. The environmental parameters of the sea trial are
shown in Fig. 5. The map of the experimental S5 vo-
yage is shown in Fig. 6. The blue line in the figure repre-
sents the track of the target sound source. The data
received by S5 vertical array in this experiment were used
for network training and testing, and to study the range
estimation under the conditions of no strong interference
and strong interference, respectively. The experimental
ship towed two sound sources: deep (54 m) and shallow
(9 m). The shallow sound source was selected. The shal-
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low sound source emitted continuous wave (CW) signals
at multiple frequency points between 109 Hz and 385 Hz.
The speed of the experimental ship was about 2.5 m/s. A
total of 75 min of data were collected in S5 voyage. The
experiment used a vertical array with 22 hydrophones, the
sampling frequency was 1.5 kHz, and the depth was
94.125-212.25 m. In the experiment, one hydrophone
failed, so only the measurement data of the 21 other
hydrophones can be used [31].
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Fig. 6 SWellEX-96 experiment S5 voyage map [31]

5.2 Experimental data processing and result analysis

5.2.1 Selection of data set

In the SWellEX-96 experiment, 232 Hz and {163,
232,385} Hz were selected as the narrowband and broad-
band frequencies, respectively. T1, T2, and T3 data sets
were selected as pre-training data sets, few-shot data sets,
and test sets, respectively. The distribution of each data
set is shown in Fig. 6 and Fig. 7. In the 40—60 min of the
experiment, 1 s-snapshot data of corresponding fre-
quency were extracted every 1 s, and 1200 groups of data
were obtained. As a large number of underwater acoustic
data sets were collected in known sea areas, they were
used for pre-training and set as T1 data set. In the 60—
75 min of the experiment, a group of 1 s-snapshot data
was extracted every 29 s as a few-shot underwater acous-
tic data set of the test sea area for retraining. A total of 31
groups were set as T2 data set. During this period, a
group of 1 s-snapshot data was extracted every 5 s (to
avoid the leakage of the test set, the sample points coinci-
dent with the few-shot data set were removed) as a test
set of the test sea area for testing the model. A total of
180 groups were set as T3 data set.

9
8t
7t
6k
g
=< 5t
&
24t
=2
3 T1 T2/T3
2f ——
1F
0 1 L 1 1 1 1 1
0O 10 20 30 40 50 60 70 80
Time/min
Fig. 7 Data set distribution
5.2.2 MFP

Fig. 8(a) and Fig. 8(b) show the MFP range estimation
results of narrowband 232 Hz and broadband {163,
232, 385} Hz signals, respectively. The results show that
the MFP method is prone to environmental mismatch. For
narrowband signals, the test samples with a range of
1.5-2.0 km have a large error. For broadband signals, the
range estimation can be roughly realized, but the estima-
tion results of a large number of test samples below 1.5 km
exceed the error limit.
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5.2.4 Traditional CNN

Using the traditional CNN training method, when the
training sets were T1 data set, T2 data set, and T1/T2 data
set, Fig. 11 shows the estimation results of the T3 data set
under the three training sets, respectively. In the environ-
ment without strong interference, when the training set
was T1, the neural network model did not easily predict
the test set due to the large range difference between the
training set and the test set, so the effective range estima-
tion cannot be realized in this scene. When the training
set was T2, because the training set and the test set were
in the same sea area, the range estimation can be realized
to a certain extent, but due to the small amount of data in
the training set, the error was still large. When the train-
ing set was the mixed data set of T1 and T2, because the
mixed data set not only had a large amount of data but
also contained the T2 data set in the same sea area as the
test set, it can better realize the range estimation, but a
certain error was still observed.
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Fig. 11 Range estimation results of traditional CNN

5.2.5 Transfer learning

After the training of the transfer learning model, the
range estimation results are shown in Fig. 12. Compared

with MFP, GRNN, and traditional CNN methods, trans-
fer learning can realize the target range estimation more
accurately.
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Fig. 12 Range estimation results of transfer learning

Table 1 shows the MAPE of the range estimation
results of narrowband and broadband signals under vari-
ous methods. According to the horizontal comparison, the
MAPE of the range estimation results under the transfer
learning method is much smaller than that of traditional
CNN, GRNN, and MFP, and the estimation performance
of transfer learning is substantially better than that of
other methods. Among these methods, the estimation
results of the MFP method has the largest error. The
GRNN method can only realize approximate estimation
of range, and the GRNN method can only realize approx-
imate estimation of range, and the range estimation result
of training set T1/T2 is better than that of training set T1
and T2. Compared with GRNN model, ResNetl18 model
can extract deeper feature information, so CNN method
has better estimation performance. Compared with the
traditional CNN whose training set is T1, the estimation
performance of the traditional CNN using T2 data set is
better. It can be obtained that the smaller the position dif-
ference between the training set and the test set, the bet-
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ter the estimation performance. If there are a large num-
ber of samples in the T2 data set, the traditional CNN can
also obtain more accurate range estimation results for the
test set in theory, but in the few-shot scenario, the effec-
tive range estimation cannot be realized through the tradi-
tional CNN. Compared with the traditional CNN method
with only T1 or T2 training set, the traditional CNN
method with T1/T2 training set has a large amount of
data, so it can be trained more fully. Therefore, its estima-
tion performance is the best among the traditional CNN
methods with various training sets. The traditional CNN
method with T1/T2 training set and the transfer learning
method have the same amount of data used for training,

but the former is to train and estimate in a large range,
whereas the latter is to retrain the few-shot sea area under
the condition of similar model weights that have been
trained, that is, on the basis of making full use of the
underwater acoustic data of the nearby sea area, focusing
on training and accurate estimation in a small range for
the few-shot sea area containing the test set. Therefore,
compared with the traditional CNN method with T1/T2
training set, the estimation result of transfer learning
method is better. According to the longitudinal compari-
son, compared with the narrowband signal, the wideband
signal provides more characteristic information, so the
range estimation result of the broadband signal is better.

Table 1 MAPE of range estimation results of narrowband and broadband signals using different methods

GRNN CNN
Method MFP Transfer learning
T1 T2 T1/T2 T1 T2 T1/T2
Narrowband 55.6925 19.0144 12.9857 10.3732 17.5382 7.5285 5.8026 4.0886
Broadband 20.2007 17.4170 10.3911 8.1141 16.7749 6.9176 5.0352 29136

Taking broadband signal as an example, this study also
analyzes the calculation time of different methods. The
methods were developed on a workstation with the 11th
Generation Intel(R) Core(TM) i7-1165G7 CPU*8. The
calculation time of traditional MFP method is 9.9 s, and
the training and testing time of different machine learn-
ing methods are shown in Table 2. The results show that

the training time of CNN method is relatively long com-
pared with GRNN in the training phase, but the differ-
ence of testing time of different methods is small in the
testing phase. Although the training time of transfer
learning method is long, it can achieve more accurate
estimation, and for the trained model, it can achieve
effective estimation of test samples in a short time.

Table 2 Training and testing time of different machine learning methods

GRNN CNN
Method Transfer learning
T1 T2 T1/T2 T1 T2 T1/T2
Training time/s 20.5 9.7 29.2 50.8 329 89.3 95.2
Testing time/s 2.3 2.1 2.4 2.8 2.5 3.1 2.9

6. Conclusions

The combination of machine learning in the field of
underwater acoustic passive positioning is becoming
closer. When only few shots of underwater acoustic data
are in the test sea area, transfer learning can be used as a
learning framework to apply the existing knowledge to
the new environment. In this paper, a transfer learning
model based on residual CNN is proposed, and the
method is verified by using the S5 voyage data of
SWellEX-96 experiment. The performances of underwa-
ter target range estimation of MFP, GRNN, traditional
CNN, and transfer learning are compared. The experi-
mental data processing results show that in the few-shot
scenario, the MFP method is not applicable in the envi-
ronment with a range of 0—2 km. GRNN method can only

realize approximate estimation of range. The traditional
CNN method has a good positioning only when the train-
ing set is T1/T2, whereas the transfer learning method
can achieve robust range estimation. The transfer learn-
ing model has less research in the field of underwater
acoustic passive positioning and has a large research
space. The target range estimation under different types
of interference and different depths of test set and train-
ing set needs to be further explored.
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