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Robust least squares projection twin SVM and
its sparse solution
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Abstract: Least squares projection twin support vector machine
(LSPTSVM) has faster computing speed than classical least
squares support vector machine (LSSVM). However, LSPTSVM
is sensitive to outliers and its solution lacks sparsity. Therefore, it
is difficult for LSPTSVM to process large-scale datasets with
outliers. In this paper, we propose a robust LSPTSVM model
(called R-LSPTSVM) by applying truncated least squares loss
function. The robustness of R-LSPTSVM is proved from a
weighted perspective. Furthermore, we obtain the sparse solu-
tion of R-LSPTSVM by using the pivoting Cholesky factorization
method in primal space. Finally, the sparse R-LSPTSVM algo-
rithm (SR-LSPTSVM) is proposed. Experimental results show
that SR-LSPTSVM is insensitive to outliers and can deal with
large-scale datasets fastly.
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1. Introduction

Support vector machine (SVM) [1,2] as a powerful tool
for supervised learning, is widely used in classification
and regression from various aspects such as face detec-
tion [3], financial applications [4], disease diagnosis [5],
and image classification [6]. The principle of SVM is to
maximize the distance between two parallel hyperplanes,
which is achieved by solving a quadratic programming
problem (QPP). Although SVM owns better generaliza-
tion performance compared with other machine learning
methods, solving QPP is time-consuming and its compu-
tational complexity is O(m?), where m is the number of
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training samples. Twin SVM (TWSVM) [7] based on two
nonparallel proximal planes is emerged in recent years. In
TWSVM, each proximal plane is close to one class of
samples and far away from another. Compared to SVM,
TWSVM solves two smaller sized QPPs and the compu-
tational complexity of TWSVM is only one fourth of that
of SVM. Therefore, TWSVM works faster than SVM
whereas the performance of TWSVM is similar to that of
SVM [8].

Projection twin support vector machine (PTSVM) [9]
is an improvement of TWSVM. It searches for two opti-
mal projection directions, so that the projected samples of
one class are closer to its projection centroid, and those of
another class are farther away from it as much as possi-
ble. PTSVM has been studied from various perspectives.
Specifically, in order to reduce the time complexity, least
squares PTSVM (LSPTSVM) [10,11] was proposed,
which solves two linear equations instead of QPPs. How-
ever, LSPTSVM has two limitations, one is that it is sen-
sitive to outliers, the other is that its solution lacks spar-
sity. Therefore, LSPTSVM is difficult to solve large-scale
datasets, especially the dataset containing outliers.

Many works have been presented to improve the spar-
sity of solution of least square models, Suykens et al. [12]
proposed a pruning method to improve the sparsity of the
dual LSSVM (D-LSSVM) by iteratively discarding 5%
samples with the smallest absolute values of present solu-
tion. Jiao et al. [13] proposed a fast sparse approximation
algorithm (FSA-LSSVM) for D-LSSVM by iteratively
constructing an approximation classification function by
adding the basis function from a kernel-based dictionary
one after another until the termination condition is
reached. Zhou [14] presented a pivoted Choleskian of pri-
mal LSSVM (PCP-LSSVM) by using low rank approxi-
mation of the kernel matrix. Zhou et al. [15] proposed a
revised least angle regression LSSVM (RLARS-LSSVM)
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and got its sparse solution by solving a least absolution
shrinkage and selection operator problem. Cheng et al.
[16] introduced an iterative pruning error minimization
algorithm and L,-norm minimization algorithm to
improve the sparsity of LSSVM. Sun et al. [17] intro-
duced a localized generalization error model to prune the
support vectors in LSSVM. Ma et al. [18] proposed a
global-representation-based sparse LSSVM  (GRS-
LSSVM) based on the selection of globally representa-
tive points according to the density and dispersion of the
points in the feature space.

In terms of enhancing the robustness of models to out-
liers, Suykens et al. [19] proposed a weighted LSSVM
(W-LSSVM) by setting weights on samples based on the
error distribution. Wei et al. [20] proposed an LSSVM
with linear programming method (LSSVM-LP) based on
the idea of basis pursuit (BP) in the whole feasible region.
Wen et al. [21] presented a recursive outlier elimination-
based LSSVM (ROELS-SVM) algorithm by employing a
criterion derived from robust linear regression. Yang et al.
[22] proposed a novel robust LSSVM (R-LSSVM) by
using the truncated least squares loss function, and Chen
et al. [23] proved the robustness of R-LSSVM in theory.
Ye et al. [24] proposed a L,-norm LSSVR by using the
L,-norm regularization term and the absolute constraint.
Lu et al. [25] proposed a robust LSSVM by minimizing
both the mean and variance of the modeling errors.

In this paper, we propose a robust LSPTSVM by using
the truncated least squares loss to solve the defect of
LSPTSVM being sensitive to outliers, and derive the
sparse solution of the robust LSPTSVM by using the low-
rank approximation of the kernel matrix. The sparse
robust LSPTSVM algorithm is proposed to handle large-
scale dataset with outliers.

The paper is organized as follows. Section 2 briefly
introduces PTSVM and LSPTSVM. Section 3 proposes
our robust LSPTSVM and derives its sparse solution.
Furthermore, we interpret the robustness of the robust
LSPTSVM and analyze the convergence and complexity
of the sparse robust LSPTSVM algorithm. Experimental
results and conclusions are given in the last two sections.

2. Background

In this section, notations used throughout the paper,
PTSVM [9], and LSPTSVM [10] are introduced.

2.1 Notations

Consider a binary classification problem in n-dimen-
sional real space R". The training set denotes as
T={xy"i=1,2;5=1,2,---,m;} where x? ¢ R" is the
sth sample belonging to the ith class and m; +m, = m,

y =1, y® =—1. Let matrices A € R"** and B € R™*"
represent the samples belonging to class +1 and -1
respectively. Let row vectors A and B denote the sample
mean of class +1 and —1, respectively.

2.2 PTSVM

PTSVM aims to seek two nonparallel projection direc-
tions such that in each projection direction the within-
class variance of its own class instances is minimized
while the other class projection instances are scattered as
far as possible. Let

m
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The PTSVM model is expressed as
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where ¢;,c, > 0 are penalty parameters.
Denote @, as the solutions of the dual problems of (1)
and (2). The projection axes can be constructed as

w =S'E'a, 3)

w,=S,'F'B, @)

where E=B—-e,A, F=A—-e¢,B, and e,,e, are vectors
whose elements are all 1.

2.3 LSPTSVM

Different from PTSVM, LSPTSVM adopts least squares
loss function and equality constraints. Moreover, it intro-

. . L C3
duces maximum margin regularization 3||w.||2 and

%Ilwzllz. The model of LSPTSVM is given by

! c C;
min EwlTSlw. + EI§T§+ Eg||W1||2

wi,

st. Bw, —Aw, +&=e,, Q)
1 c c

min S w]S,w + f:fw 54”"’2“2
st. Aw,—Bw,+n=e,, (6)

where c;,c4 > 0 are regularization parameters.
Setting the gradient of the objective functions with
respect to w, and w, to zero, we obtain the projection
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axes in primal space as

S -1

W, = (—1 +E'E+ 91) E'e,, 7
Cy Cy
Sz T Cy - T

wr =2+ F F+21| Fle,, (8)
Cy Cy

where I is an identity matrix.
3. Sparse R-LSPTSVM algorithm

In this section, we propose a robust LSPTSVM (R-
LSPTSVM), model and the sparse R-LSPTSVM (SR-
LSTPSVM) algorithm to achieve the sparse solution of R-
LSPTSVM. Then, we analyze convergence and complex-
ity of SR-LSPTSVM. Finally, we discuss the robustness
of R-LSPTSVM from a weighted perspective.

3.1 R-LSPTSVM

Because the value of least squares loss function L (£)
increases infinitely as € increases and the & value of out-
lier is usually large, LSPTSVM is sensitive to outliers. To
overcome this defect, we introduce the truncated least
squares loss function L.(£) = min(7%,&2)/2 and propose
R-LSPTSVM, where 7 is the truncated parameter that
can limit the value of loss function.

The truncated least squares loss function L.(§) has the
following good properties. It is bounded and non-convex,
whereas it can be decomposed into the difference
between two convex functions. Therefore, the model with
L.(¢) is simple and we can use the convex concave pro-
cedure (CCCP) to solve it iteratively. Zhou et al. dis-
cussed other loss functions with similar performance in
[26]. Among those functions, L.(§) is a simpler and
effective function.

According to the above analysis, we choose the
bounded loss function L.(£€) to improve the robustness of
LSPTSVM. The proposed R-LSPTSVM model is repre-
sented as follows:

WisSk

! T C3 O S
min —w, S,w, + =|wi|I"+— > L,
in SwiSw+ = Iwil mZ &)

1-(wix?—Aw,) =&
S.t. (wi; =6 .0
k= 1729”"m2
. 1 C C my
{vrzunrkl Ewgszwz + 54||Wz||2 + m_21 ;Lr('h)
1+wix" - Bw, =
s T B = (10)
k=1,2,---,m

Fig. 1 shows L.(¢) with 7=1. In Fig. 1, L.(¢) repre-
sents truncated least squares loss function, L(¢) repre-

sents least squares loss function, LI™°™(£) represents
smooth truncated least squares loss function. L,(£) can be
calculated by L.(€) = Ly (&) — L,(€). The calculations of
Lo (€) and L,(€) are shown in Subsection 3.2.2. Obvi-
ously, the value of truncated least squares loss function is
limited by 72/2 and thus the impact of outliers is reduced.
The robustness of R-LSPTSVM will be further inter-
preted from a weighed perspective in Subsection 3.3.
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Fig.1 Loss functions L. (£), Li‘“‘""h(f), Lsq(é), and Ly(¢)

3.2 Sparse solution of R-LSPTSVM

3.2.1 Primal R-LSPTSVM

To obtain sparse solutions to problems in (9) and (10), we
first represent R-LSPTSVM in primal space by represen-
ter theorem [27,28].

Theorem 1 (Representer theorem) Suppose we are
given a non-empty set Y, a mapping ¢ from X to a
Hilbert space, training samples (x;,y;),(X2,¥2),",
(x,,Ym) € x xR, a monotonically nondecreasing real-va-
lued function g: R, — R and an arbitrary cost function
f:R”" = R. Then, minimize the regularized risk func-
tion:

J(w,@(x1)), (W, 0(x2)) -+ (W, 9(x,))) + g(lIwl])

m

admits a representation as w = Z a;p(x;).

i=1
It is easy to prove that the R-LSPTSVM model in (9)
and (10) satisfy the representer theorem. Therefore, there
exists vectors a@€R™ and BeR™ such that

m my

w= Za,«go(x,-) and w = Z}: Bip(x;) are optimal solution

of in (9) and (10) respectively. Therefore, we set
1

0.=K, (I— —e,e,T)K,T +c,K, t=1,2
n

where K, = K(x,x"?). R-LSPTSVM in primal space with-
out feature map ¢(x) can be expressed as
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min aTQla+—ZL &), (1n
mln —ﬂTQz,B-i- — ZL (M), (12)
where
&=1 —(K(x(z) x)— ieleT)a', (13)
nm,
me=1+ (K(x‘“ x)— mlegK"{) B. (14)
2

In (13) and (14), K = ¢(x)¢(x)" is the kernel matrix
calculated with all training samples, K; and K, are the
kernel matrices calculated with positive and negative
samples, respectively. We call (11) and (12) the primal R-
LSPTSVM.

3.2.2 Solving R-LSPTSVM based on CCCP

In this subsection, we derive the sparse solution of (11),
and the sparse solution of (12) can be derived similarly.

Obviously, L.(€) is non-convex, but it can be repre-
sented as the difference of two convex functions, i.e.,
L(€) = Ly, (§) — Ly(€), where L, = £* is the least squares
loss function and

0,
Ly(é) = {

Then, (11) can be rewritten as a difference of convex
(DC) programming:

lgl<t
-

otherwise

min H,(a) - H,(@) (15)
where
B l T Cl ny
Hi@) = 50/ Quar+ - ;qu(fk)
and

Hy(@) =

c] my
— > L
. Z (&)

are convex functions.
Problem in (15) can be solved by CCCP [29-31], i.e
iteratively solving the following convex QPP:

a([+1) — argg‘,{,ﬂ {Hl (a) - <(l, aHz(a(t))>} =

. > g
argmép{Hl(a)—%'Zyi)(l—&)} (16)
e 1 2 =
where " is the derivative of L,(&). Calculating y\" is
not easy because L,(£) is nondifferentiable at some
points. Inspired by [32], we smooth L,(§) through

entropy penalty function as

Lsmooth ( f)

—max(O -+
1
Eln(l +exp(—plé* —T2|))

where p is a smooth parameter. When p — +oo,
L™ — I,. In practice, we can set p as a sufficiently
large number, such as p=10*. By using L{™",
Limoon(€) = Ly (&) — L™ (€). Fig. 1 shows Li™" with
p=10.

Using L™"(&,), ¥\ can be computed as

o _ & min{Lexp(p(&” — 7))
‘ L+exp(—ple” —-72)

Thus, the solution of R-LSPTSVM1 can be obtained
by solving the following linear equations:

(17)

(Ql + :TIRTR)a = ~LR'(e:-7") (18)
2 2

1
where R = K} — —e,e[ K.
m
The coefficient 1matrix in (18) may be low-rank if the

kernel matrix is low-rank, which may make the solution
of (11) sparse.

3.2.3 Sparse solution for R-LSPTSVM

In this subsection, we seek the sparse solution of (11) by
the low-rank approximation of the kernel matrix.

Adopt the pivoting Cholesky decomposition method
[14], and the kernel matrix can be decomposed as
K = PP", where Pc R™, and r denotes the number of
elements in the work set B. Let P=[P],P;]", then
K] =P, P", K] = P,P", where P, e R"" and P, e R™",

Therefore, linear equation (18) can be rewritten as

1
(PITPI ted,——Plee™ P+ LTy,
niy ny

Pla=1Je=") (19)

1 . . . .
where J, = P,— —e,e| P, is an identity matrix. Further-
m

more, by permu'éing rows of matrix P, we get

= [P}, Py]", where Py is full-rank and lower triangular,
Py, consists of the remaining rows of P. Correspondingly,
« can be rewritten as « = [e},@},]", thus the sparse solu-
tion of (11) can be obtained by iteratively computing

{ag+“ (P) T I (e —y")

(t+1) _
a, =0

(20)

1
where Ty = PIP, +c;I,— —Plee! P, + iJITJl.
my my

Similarly, we can get the sparse solution of (12) by
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iteratively computing
+ C - -
{BE; V=P T e~y
1

B;\t;l) -0

@1
where

1

T2 = P;P2+C4Ir__P;eZe;PZ-FﬁJ;FJZ’
m, n
1 T
J,=P - _elezpz-
ny

3.2.4 SR-LSPTSVM algorithm

Based on the above analysis, SR-LSTPSVM is listed as
Algorithm 1.

Algorithm 1
LSPTSVM

SR-LSPTSVM: sparse algorithm for R-

Input: Training set T ={(x?,yM)i =1,2;5=1,2,--- ,m;},
parameters c,cs,c3,¢4 >0, the stop criterion 6> 0,
r=|B].

Output: o and SB;.

1. Find P and B such that K=~ PPT
YW =0eR", Y =0eR™.

2. Compute T, and T, let = 0.

3. Update o™ and B4"" according to (20) and (21), itera-
tively.

4. Let £V =e,— J  Pray”, "V = e, + L, PIB,"",

holds, let

compute ¥|*" and y{*" according to (17).

S5 IV =Vl < S or [lyyY — 9|l < 6, then
6. stop with @y = ™" and B = B"".

7. else

8. t=t+1, go to Step 3.

9. end if

After obtaining the optimal @ and S5 by Algorithm 1,
the label of a test sample x™" is

label(x™") = argr_[111121 {d;}
where
d, = K(x"",xp)ap - b,

d, = K(x"™",x5)B5— b,

1
T 1
b, = —elK(x( ) xp)ag,
my

1
b, = _e;K(x(z)axB)ﬂB-
ny

Compared with the recursive algorithm of LSPTSVM
in [10,11], which needs to update all samples many times

to get projection axes, Algorithm 1 only needs to calcu-
late the low rank approximation of the kernel matrix to
update ap, Bz. Therefore, our algorithm is more efficient
than the LSPTSVM algorithm.

3.2.5 Convergence analysis

Based on the convergence of DC programming [33], we
have the following theorem.

Theorem 2  Assume error variable £ = e, — J, PLag is
bounded for all training samples x with selected para-
meter w;, then limit point of sequence @'V is the genera-
lized Karush-Kuhn-Tucker (KKT) point of the optimiza-
tion problem in (11).

Similar conclusion can be obtained for (12). Therefore,
Algorithm 1 is convergent.

3.2.6 Complexity analysis

For SR-LSPTSVM, the computation cost of Step 1 and
Step 2 are both O(mr?) (r < m). The complexity of itera-
tively calculating Step 3 is O(Nmr), where N is the num-
ber of iterations. Then, the overall computational com-
plexity of SR-LSPTSVM is O(mr?+ Nmr). In contrast,
the computational complexity of nonlinear LSPTSVM
[11] is O@m?). Therefore, our SR-LSPTSVM algorithm
has lower computational complexity than the existing
approach.

3.3 Robustness of R-LSPTSVM

As we know, weighting is a common method to improve
robustness of the model. In this subsection, we first pro-
pose weighted LSPTSVM (W-LSPTSVM) for binary
classifications, and then explain the robustness of R-
LSPTSVM by analyzing the relationship between W-
LSPTSVM and R-LSPTSVM.

33.1 W-LSPTSVM

By introducing weights in the model, W-LSPTSVM can
be written as

n;

. 1 T Cy 1 C3
WIS+ 23 o D
min o wiSiwi+ - 2 LT 2||wl||

wi, §k

wix?—Aw, +& =1
) 1% 1 fk , (22)
k=1,2,---,m,
min leszwz + & i lvm2 + 2||Wz||2
wone 2 m ‘= 2 )
—wix" —Bw)+m, =1
s T B L)
k= 1»25“'3m1

where p, > 0 and v, > 0 are the weights. When p, = 1 and
vy =1, (22) and (23) are equivalent to LSTPSVM mo-
dels in (5) and in (6) respectively. As p, and v, decrease,
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the influence of samples on the model decreases. There-
fore, we can set smaller weights for outliers to reduce
their effect on the model.

The optimal weights p, and v, are selected based on
the error variables &; and 7, respectively. According to
the method in [19], we can set the weight p, by the fol-
lowing formula:

1, |&/8l < c

¢ =&/ 3 A
pr=q——, a1 <I&/SI<

Cr—Cy

10, otherwise

where § is a robust estimate of the standard deviation of
error variables & (k=1,2,---,m,;). § is calculated as fol-
lows:

IQR
2x0.674 5

where IQR is the interquartile difference of &, i.e., the
difference between the 75th and the 25th percentiles of
& (k=1,2,---,m;). The weight v, in (23) can be
obtained similarly. The calculation complexity of finding
the optimal weight of W- LSPTSVM is O (m).

§=

3.3.2 Robustness of R-LSPTSVM

In this subsection, we prove that R-LSPTSVM is equiva-
lent to W-LSPTSVM, hence the robustness of R-
LSPTSVM is proved.

For convenience, we rewrite W-LSPTSVM in primal
space as follows:

. 1 T Cq e 1 3
- +— Y —p&, 24
min Sa'Qiar+ - Z S0 (24)
) 1 . my
min =60+ Z SVl (25)

where &; and 7, are calculated by (13) and (14), respec-
tively.

We take R-LSPTSVM1 model in (11) as an example to
analyze the relationship between W-LSPTSVM and R-
LSPTSVM. Consider the following two models:

min min > Lo "Quat Z oo, (26)
min ana+—2L<§k> 27)

my 45

1
where L, (0, &) = Epkf,f +72(1—p)/2. In (26), if the

value of p, is fixed, the term 72(1 —p;)/2 can be ignored.
Therefore, the optimization problem in (26) is equivalent
to that in (24). Inspired by [23], we have the following
lemma.

Lemma 1
as

L.(&) = min{72,£%}/2 can be reformulated

L&) = min 20 +(p) (8)
where ¢(p,) = 72(1 - ). /2.

Lemma 1 indicates that gg}lgrll L,(ow,é) = L.(&), then we
have the following theorem.

Theorem 3 The model in (26) is equivalent to the
model (27), i.e.,

1
min min ~a'Q,a +
a  0<p<l 2

]2 iLm,fk) =

my

min a' 0@+ —ZL &). (29)

Proposition 1 Any critical point of R-LSPTSVM in
(11) and (12) can be obtained by iteratively solving

. 1 T Cy 2 l () ¢2
— +— E — R 30
maln 20' 0« my £ zpk & (30)

B A N pOp2
min QB+ S G

" are the values of the rth iteration of the

where p” and 1|
weight p, and v, respectively.
Proof Here, we only discuss the proof for R-
LSPTSVMI, and R-LSPTSVM?2 can be proved similarly.
Substituting (28) into (11), we have

1
min  P(a,p) = —aTQ,a/+

@eR™ peR)!

m

Z T Z $(p0).

Because @(a,p) is non-convex, there may be multiple
local minima for (32). We only consider one of them. Let
(a*,p") be one of the critical points of (11). By Theorem 3,

(32)

there exists p* € arg min @(a*, p) such that (a*,p*) is the
peRY!

solution of (32). On the other hand, if (a*,p") is any sta-
tionary point of (32), then a* €arg mli{l D(a,p") also
solves (11).

Hence, we can iteratively solve (32) by alternating
direction method (ADM) [33] as follows:

a" € arg min &(a, P, (33)
p” € argmin d(a?, p). (34)

peR}!

Obviously, the optimization problem in (34) has the
closed form solution. The optimization problem in (33) is
just the standard weighted LSPTSVM after removing the
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constant term. Therefore, the solution of R-LSPTSVM
can be obtained by iteratively solving (30) and (31). O

Proposition 1 indicates that the model of R-LSPTSVM
(11) and (12) are equivalent to that of W-LSPTSVM (24)
and (25) respectively. Therefore, the robustness of R-
LSPTSVM is proved.

4. Experimental results

In order to verify the effectiveness of the proposed R-
LSPTSVM and SR-LSPTSVM, we compare classifica-
tion accuracy and computing efficiency between our pro-
posed algorithms and four state-of-the-art algorithms,
including RPTSVM, LSPTSVM, FLSPTSVM, and SR-
LSSVM.

(i) RPTSVM: Regularized PTSVM [34] improves
PTSVM by adding a maximum margin regularization
term, and expands PTSVM to the nonlinear kernel.

(i) LSPTSVM: LSPTSVM is introduced in Subsec-
tion 2.2.

(ii1) FLSPTSVM: Feature selection for LSPTSVM [35]
uses 1-norm regularization to achieve feature selection.

(iv) SR-LSSVM: SR-LSSVM [23] obtains a sparse
solution to R-LSSVM by the Cholesky decomposition of
the kernel matrix.

In SR-LSPTSVM and SR-LSSVM, we fix the va-
lues of the smooth parameter p = 10, the stop criterion
£=10" and the truncated parameter 7=1. We adopt
Gaussian kernel function K(x;,x;) =exp (—0'||x,~—xj||2) in
the experiments, where o € {27%,277,... ,27%} is the ker-
nel parameter. Other parameters, such as ¢y, ¢,, ¢3, C4,
Vi, Vs, & and A, are selected from the set
{1071,10°,---,10°}. We use five-fold cross-validation pro-
cedure and grid search to obtain optimal parameters. In
the experiments, we set the trade-off parameters ¢, = ¢,
and the regularization parameters c; = ¢4, because they
play the same role in (9) and (10).

1.0
0.8 F &%
0.6 L ++++
0.4F e
02} B+,
<0
—0.2 F 25 i #
04
706 L

0.8 FERNEE g

0 E,
~1.0 -0.8 -0.6 0.4 =02 0 02 04 06 08 10
X,

(a) LSPTSVM

833

All experiments are implemented in Matlab R2017a
and run on a 2.40 GHz processor with § GB RAM.

4.1 Experiments on binary classification datasets

In this section, we verify the performance of the pro-
posed algorithms on a synthetic dataset and several real-
world benchmark datasets.

4.1.1 Experiments on synthetic dataset
To compare the robustness of four algorithms
(LSPTSVM, FLSPTSVM, R-LSPTSVM and SR-

LSPTSVM), we experiment on a 2D-“Cross Planes
dataset [36] is generated perturbing points lying on two
intersecting lines. The dataset includes 200 training sam-
ples and 600 test samples. To simulate outliers, we ran-
domly choose 10% of samples and flip their labels. The
numbers of the outliers of positive and negative classes
are equal.

Experimental results and the dataset are shown in Fig. 2.
The horizontal and vertical coordinates of the data points
are both within the interval [—1,1]. It can be seen from
Fig. 2 that the classification boundary lines of R-
LSPTSVM and SR-LSPTSVM are almost unchanged
before and after adding outliers. In comparison, the clas-
sification boundary lines of LSPTSVM and FLSPTSVM
change greatly after adding outliers. Therefore, R-
LSPTSVM and SR-LSPTSVM are insensitive to outliers.
As for the accuracy, LSPTSVM, FLSPTSVM, R-
LSPTSVM, and SR-LSPTSVM has the accuracy of
98.17%, 97.83%, 98.17%, and 98.17% without outliers,
and 90.17%, 97.67%, 98.17%, and 98.17% with outliers.
Therefore, R-LSPTSVM and SR-LSPTSVM own the
highest accuracy among the comparison algorithms, and
their accuracy is stable before and after adding outliers.
The accuracy of FLSPTSVM before adding outliers
(97.83%) is the lowest, and after adding outliers, the test
accuracy of LSPTSVM (90.17%) is the lowest.
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Fig.2 Comparison of four algorithms

In terms of the sparsity, the numbers of support vec-
tors are only two for SR-LSPTSVM before and after add-
ing outliers, while almost all of the training samples are
support vectors for LSPTSVM, FLSPTSVM, and R-LS-
PTSVM. Therefore, SR-LSPTSVM is robust and sparse.

4.1.2 Experiments on real-world datasets

In order to further investigate the efficiency of the pro-
posed algorithms, we apply algorithms to eight real-world
datasets from University of California Irvine (UCI)
machine learning repository [37]. All attributes of the
datasets are normalized to [—1, 1]. We randomly choose
10% of samples and flip their labels to simulate outliers.
The datasets information and experimental results are
shown in Table 1. Satimage, United States Postal Service
(USPS), and Shuttle are multi-class datasets. We only
classify two classes of samples for them. The detailed
information is listed as follows. The best results are
marked in bold. “—” represents that the running result is

not obtained, because computer memory is insufficient
due to much memory consumed by computing kernel
matrix.

(1) Satimage: It is comprised by six classes. The task of
this experiments is to classify Class 1 versus Class 6.

(i) USPS: It is a multi-class dataset with 10 classes.
A binary classification is to separate Class 1 from Class 2.

(iii) Shuttle: It is a multi-class dataset with seven
classes. We only classify Class 4 versus Class 5 here.

Experiments are repeated for ten times, and the accu-
racy refers to the mean of ten times testing results. For
SR-LSPTSVM and SR-LSSVM, we set r = |B| = 0.05 m.
Table 1 gives the experimental results of eight real
datasets before and after adding 10% outliers. In Table 1,
the average values and the standard deviations of experi-
mental results are given outside and inside the brackets,
respectively. m and / are the numbers of training and test-
ing samples respectively, n is the number of features.
‘nSVs’ is the average number of support vectors.

Table 1 Comparison of different algorithms on UCI datasets before and after adding 10% outliers

0% outliers

10% outliers

Data Algorithm

nSVs Time/s Accuracy/% nSVs Time/s Accuracy/%
RPTSVM 95(0) 0.02(0.01) 90.32(0) 69.7(14.5) 0.03(0.01) 85.81(0.04)
Hepatitis LSPTSVM 124(0) 0.02(0.01) 89.25(0.03) 124(0) 0.01(0.01) 89.03(0.03)
m=124 FLSPTSVM 22.6(19.9) 0.07(0.01) 86.45(0.04) 26.7(42.7) 0.07(0.01) 80.64(0.09)
1=31 SR-LSSVM 2.4(2.6) 0.00(0.00) 90.32(0) 4.8(2.7) 0.00(0.00) 89.03(0.02)
n=19 R-LSPTSVM 62(56.8) 0.03(0.01) 90.32(0) 82(32.1) 0.03(0.03) 90.32(0.04)
SR-LSPTSVM 4.8(2.7) 0.00(0.00) 90.32(0) 1.3(1.8) 0.01(0.02) 90.97(0.01)
RPTSVM 173.2(11.6) 0.05(0.02) 70.82(0.02) 162.5(3.4) 0.04(0.02) 70.00(0.02)
Haberman LSPTSVM 245(0) 0.02(0.01) 71.80(0.02) 245(0) 0.02(0.01) 71.47(0.04)
m =245 FLSPTSVM 35(5.5) 0.18(0.08) 70.82(0.03) 72.6(21.0) 0.17(0.07) 70.00(0.02)

1=61 SR-LSSVM 7.2(6.6) 0.01(0.00) 72.13(0) 8.6(5.0) 0.00(0.00) 72.13(0)
n=3 R-LSPTSVM 166.6(28.6) 0.11(0.01) 73.77(0) 89.1(79.0) 0.03(0.03) 73.11(0.02)
SR-LSPTSVM 10(0) 0.01(0.00) 73.44(0.01) 4.3(3.1) 0.01(0.00) 72.62(0.01)
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Continued
0% outliers 10% outliers
Data Algorithm
nSVs Time/s Accuracy/% nSVs Time/s Accuracy/%
RPTSVM 123.2(86.4) 0.10(0.01) 97.06(0.01) 269.7(67.4) 0.10(0.01) 94.19(0.01)
Breast LSPTSVM 547(0) 0.22(0.00) 97.79(0.01) 547(0) 0.23(0.10) 97.50(0.01)
m=547 FLSPTSVM 62(0) 0.64(0.05) 98.53(0) 3.6(4.8) 0.64(0.56) 97.94(0.01)
1=136 SR-LSSVM 27(0) 0.01(0.00) 98.53(0) 27(0) 0.00(0.00) 97.20(0.01)
n=10 R-LSPTSVM 197(0) 0.07(0.00) 98.53(0) 226.5(129.0) 0.16(0.09) 98.53(0.01)
SR-LSPTSVM 8(0) 0.01(0.00) 97.79(0) 21.7(8.6) 0.01(0.02) 97.72(0.00)
RPTSVM 47.4(5.0) 3.60(0.11) 99.89(0) 1053.8(164.0) 3.03(1.30) 99.68(0.00)
Satimage LSPTSVM 2110(0) 0.98 (0.06) 99.81(0.00) 2110(0) 1.10(0.18) 99.74(0.00)
m=2110 FLSPTSVM 59.4(54.3) 20.43(1.75) 99.76(0.00) 115.4(201.1) 21.37(1.84) 99.70(0.00)
1=931 SR-LSSVM 105(0) 0.06(0.01) 99.77(0.00) 105(0) 0.14(0.08) 99.63(0.00)
n=36 R-LSPTSVM 1073.4(54.3) 1.23(0.05) 99.92(0.00) 1887.6(664.6) 1.67(0.20) 99.79(0.00)
SR-LSPTSVM 105(0) 0.07(0.00) 99.77(0.00) 111(11.3) 0.08(0.03) 99.64(0.00)
RPTSVM 14(0) 4.06(0.84) 99.36(0) 681.9(208.6) 4.25(0.89) 98.65(0.01)
USPS LSPTSVM 2199(0) 3.17(0.60) 99.52(0) 2199(0) 3.52(0.75) 98.74(0.01)
m=2199 FLSPTSVM 59.5(16.3) 26.79(0.05) 99.44(0.00) 34.4(51.4) 20.43(0.40) 98.62(0.01)
=623 SR-LSSVM 109(0) 1.01(0.03) 99.52(0) 109(0) 0.48(0.06) 99.12(0.00)
n=256 R-LSPTSVM 1044(0) 11.47(0.22) 99.36(0) 907.7(1130.2) 2.08(1.64) 98.65(0.00)
SR-LSPTSVM 109(0) 0.84(0.10) 99.20(0) 65.2(35.8) 0.33(0.03) 99.15(0.01)
RPTSVM 1219(1707.0) 88.65(0.35) 100(0) 3157.0(2788.0) 114.67(23.44) 99.88(0.00)
Shuttle LSPTSVM 9206(0) 39.25(0.35) 100(0) 9206(0) 39.39 (0.50) 99.87(0.00)
m=9206 FLSPTSVM 152.4(65.2) 1796.35(0.57) 99.95(0.00) 182.3(70.4) 1821.20(40.05) 99.87(0.01)
1=2964 SR-LSSVM 50.2(5.0) 0.04(0.00) 99.97(0) 126.8(84.3) 0.33 (0.31) 99.89(0.00)
n=9 R-LSPTSVM 4596(0) 48.25(1.17) 99.93(0) 4002.3(687.5) 36.42(0.24) 99.91(0.00)
SR-LSPTSVM 138.2(34.1) 0.32(0.09) 100(0) 88.2(12.0) 0.09 (0.02) 99.93(0)
RPTSVM — — — — — —
Ijennl LSPTSVM — — — — — —
m=35000  FLSPTSVM — — — — — —
1=91701 SR-LSSVM 1750(0) 28.28(1.10) 90.50(0) 1750(0) 28.68(1.67) 90.50(0)
n=22 R-LSPTSVM — — — — — —
SR-LSPTSVM 1750(0) 26.78(3.33) 90.50(0) 1750(0) 26.39(0.23) 90.50(0)
Skin. RPTSVM — — — — — —
nonskin LSPTSVM o o o o o o
= 61265 FLSPTSVM — — — — — —
I 183792 SR-LSSVM 3061(2.31) 128.39(0.86) 97.67(0.01) 3063(0) 115.25(0.26) 94.49(0.01)
n=3 R-LSPTSVM — — — — — —
SR-LSPTSVM  2532.2(21.4) 115.23(4.84)  98.02(0.00) 2661(9.4) 114.28(0.60) 95.17(0)

Table 1 illustrates that the proposed algorithms have
higher accuracy than other algorithms on all the datasets
without outliers except USPS. After adding 10% outliers,
the proposed algorithms have the best test accuracy on all
datasets. Furthermore, the accuracy of our algorithms has
little change before and after adding outliers on all
datasets.

As for training efficiency, SR-LSPTSVM greatly
reduces the training time of R-LSPTSVM. Compared
with PTSVM based algorithms, such as RPTSVM,
LSPTSVM, and FLSPTSVM, SR-LSPTSVM has faster
training speed especially when the size of training set is
larger than 1000.

We also experiments on two large scale datasets
IJCNNI1 and Skin-nonskin, which have more than 10000
training samples. Experimental results verify the advan-

tage of sparse algorithms. The non-sparse algorithms
RPTSVM, LSPTSVM, FLSPTSVM, and R-LSPTSVM
cannot process these big-scale datasets, because comput-
ing full kernel matrix consumes much computer memory.
In comparison, sparse algorithms SR-LSPTSVM and SR-
LSSVM can achieve good classification results including
accuracy and running time, and SR-LSPTSVM is slightly
better than SR-LSSVM.

In terms of the number of support vectors (nSVs),
Table 1 shows that ‘nSVs’ of SR-LSPTSVM is much less
than LSPTSVM. ‘nSVs’ of FLSPTSVM is smaller than
other algorithms on the Breast and USPS datasets, but its
accuracy is lower than R-LSPTSVM (or SR-LSP-
TSVM).

4.1.3 Robustness comparison

In this subsection, we test the robustness of RPTSVM,
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LSPTSVM, FLSPTSVM, SR-LSSVM, and our proposed
algorithms by adding 0%, 5%, 10%, 15%, and 20% out-
liers on Satimage dataset. The experimenal results are
shown in Fig. 3. It shows that the classification accuracy
of R-LSPTSVM is the highest among the compared algo-
rithms, and it decreases less than other algorithms as the
ratio of outliers increases. Therefore, R-LSPTSVM is
more robust than other algorithms.
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Fig. 3 Comparison of classification accuracy on Satimage dataset
with different outliers

4.1.4 Parameter analysis

In order to discuss the optimal value of 7, we test the
classification accuracy of R-LSPTSVM and SR-
LSPTSVM on the Breast and Satimage datasets before
and after adding 10% outliers. The value of 7 is taken
from the set {0.9,1.0,1.1,1.2,1.3,1.4}. Fig. 4 gives the
experimental results. Fig. 4 illustrates that the optimal
7 values of R-LSPTSVM and SR-LSPTSVM on Satim-
age and Haberman datasets are 1 before and after
adding outliers. Therefore, we set =1 in all of our
experiments.
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Fig. 4 Comparison of test accuracy on two datasets

4.2 Experiments on multi-classification datasets

Our model can also be extended to analyze multi-classifi-
cation problems by using one versus one or one versus all
techniques. In this subsection, we test the efficiency of
our proposed algorithms on five multi-classification
datasets. The information of the datasets is shown in
Table 2.

Table 2
tion datasets

Comparison of different algorithms on multi-classifica-

Data Algorithm nSVs Time/s  Accuracy/%
Tris RPTSVM  74.1(44)  0.02(0.00) _ 93.33(0)
m=120 LSPTSVM 120(0) 0.01(0.00)  96.33(0.03)
/=30  FLSPTSVM  88(1.7)  0.04(0.00) 92.33(0.02)
n=4 RLSPTSVM  79.1(37)  0.01(0.01) 96.34(0.02)
k=3 SR-LSPTSVM  6(0) 0.00(0.00)  96.33(0.02)
Wine  RPTSVM _ 117.93.8)  0.040.00) __ 100(0)
m=143 LSPTSVM  143(3.0)  0.020.00)  100(0)
/=35  FLSPTSVM  33.0(3.5  0.080.00) 98.86(0.01)
n=13 R-LSPTSVM  119.12.8)  0.01(0.00)  100(0)
k=3 SR-LSPTSVM _ 183(3.1) _ 0.0000.00)  100(0)
Vehicle  RPTSVM __ 290.4(10.7) _ 0.54(0.06) _ 82.72(0.02)
m=677 LSPTSVM 677(0) 0.38(0.01)  77.04(0.02)
=169 FLSPTSVM 49.8(3.7) 1.13(0.04) 70.60(0.02)
n=18 R-LSPTSVM 579.5(123) 0.05(0.00) 83.14(0.01)
k=4 SR-LSPTSVM __ 33(0) 0.01(0.01)  73.96(0.00)
Segment  RPTSVM  453.6092)  2.98(0.05) 94.67(0.01)
m=1848 LSPTSVM 1848(0) 10.8(0.16)  95.61(0.00)
/=462 FLSPTSVM  1374(3.5) 3.72(0.08) 95.26(0.00)
n=19 R-LSPTSVM 1828.7(18.0) 0.29(0.01)  96.23(0.01)
k=7 SR-LSPTSVM  91.903)  0.09(0.00) 93.77(0.00)
Pendigits RPTSVM 846.6(24.2)  5.54(0.24)  98.03(0.00)
m=7494 LSPTSVM 7494(0) 18.59(5.55)  97.45(0.00)
[=3498 FLSPTSVM 500.4(2.0) 137.34(4.80) 86.99(0.04)
n=16 R-LSPTSVM 7342.1(212) 2.95(0.06) 98.08(0.00)
k=10 SR-LSPTSVM  374(0)  1.11(0.01) 98.05(0.00)
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We use the one versus all techniques on multi-classifi-
cation datasets. For datasets with k classification, one
versus all techniques solves k subproblems. In the ith
subproblem (1 < i < k), samples of class i are regarded as
positive points, and the rest samples are regarded as nega-
tive points. By solving k optimization problems, we
obtain k decision functions. The test samples are assigned
to the class corresponding to the maximum value of the
decision function.

Table 2 shows the experimental results of RPTSVM,
LSPTSVM, FLSPTSVM, R-LSPTSVM, and SR-
LSPTSVM on multi-classification datasets. It can be seen
from Table 2 that the R-LSPTSVM algorithm has the
highest accuracy on all datasets. Although the accuracy of
SR-LSPTSVM is lower than that of R-LSPTSVM on
some datasets, the ‘nSVs and training time of SR-
LSPTSVM are the lowest on all datasets. This verifies the
sparsity and efficiency of SR-LSPTSVM.

5. Conclusions

LSPTSVM gives good performance on many binary clas-
sification problems, but it is sensitive to outliers and its
solution lacks sparsity. In this paper, we propose R-
LSPTSVM to reduce the influence of outliers to the
model. We interpret its robustness from a weighted per-
spective. In order to get the sparse solution of R-
LSPTSVM, R-LSPTSVM is further rewritten in the pri-
mal space by representer theorem and its sparse solution
is obtained by applying the pivoting Cholesky factoriza-
tion technique. Finally, we propose SR-LSPTSVM algo-
rithm and analyze its convergence and computational
complexity. Experimental results indicate that the pro-
posed algorithms have robustness. SR-LSPTSVM is a
sparsity algorithm, and the training speed of it is faster
than other comparison algorithms. Therefore, SR-
LSPTSVM is a suitable option for dealing with large-
scale classification. In the future, our methods can be
extended to multi-view learning or regression.
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