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for space surveillance network
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Abstract: With
scheduling and tasking of the space surveillance network (SSN)
are vitally important. The multi-sensor collaborative observation
scheduling (MCOS) problem is a multi-constraint and high-con-
flict complex combinatorial optimization problem that is non-
deterministic polynomial (NP)-hard. This research establishes a
sub-time window constraint satisfaction problem (STWCSP)
model with the objective of maximizing observation profit. Con-
sidering the significant effect of genetic algorithms (GA) on solv-
ing the problem of resource allocation, an evolution heuristic
(EH) algorithm containing three strategies that focus on the
MCQOS problem is proposed. For each case, a task scheduling
sequence is first obtained via an improved GA with penalty
(GAPE) algorithm, and then a mission planning algorithm (heuris-
tic rule) is used to determine the specific observation time. Com-
pared to the model without sub-time windows and some other
algorithms, a series of experiments illustrate the STWCSP model
has better performance in terms of total profit. Experiments
about strategy and parameter sensitivity validate its excellent

increased dependence on space assets,

performance in terms of EH algorithms.
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1. Introduction

Space domain awareness (SDA) has been a topic of
interest ever since the launch of Sputnik. With decreas-
ing launch costs and the growth of the small satellite
industry, the number of resident space objectives
(RSOs) has grown significantly [1,2]. There are currently
more than 4 000 active satellites in low-Earth orbit
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(LEO), and researchers estimate that by 2025 over 1 000
satellites can be launched each year [3]. The number
of satellites may significantly exceed the current ability
of SDA. Hence, in order to alleviate the burden from
extreme increases of RSOs, we investigate the multi-
sensor collaborative observation scheduling (MCOS)
problem arising from the lack of sensor resources
[4,5].

Generally, the space target has multiple time windows,
and sensor resources need to observe the target within the
time windows. Once an object is detected, a two-line ele-
ment (TLE) set can be developed, and the RSOs can be
tracked [6]. The tracking purpose involves determining
and maintaining RSOs orbital parameters, according to
which the current and future locations can be determined
and predicted [7]. In this paper, we discuss the MCOS
problem when the sensor resources observe targets con-
templating which targets could be observed. Fortunately,
although there is little research on the MCOS problem,
tracking telemetry and command (TT&C) scheduling and
other satellite resource scheduling can be useful refer-
ences [8—11].

Fouad et al. developed a general framework for radar
resource scheduling to allow scheduling flexibility and to
handle multiple tasks using a single radar and then
designed a taboo search heuristic algorithm [12]. Gao et
al. proposed a multi-source heterogeneous sensor
scheduling multiple objectives optimization model and
used a multiple objective flexible fruit fly algorithm to
solve it [13]. For the problem of scheduling time frag-
mentation, Gao et al. designed object time sensor coding
and proposed individual feature cross and variation oper-
ations to prevent the results from being locally optimal
[13]. Zhang et al. proposed an optimization model and a
hybrid adaptive genetic algorithm (GA), then validated
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their feasibility by using simulation experiments [14].
Kanit developed and compared novel scheduling models
to a model reacting to the 2004 USSTRATCOM Strate-
gic Directive 505-1 (SD 505-1) [15]. This scheduling
model was developed to reduce time gaps between obser-
vations, prioritize high-value RSO, and retain maximum
observation quality. Michael used parallel computation to
optimize the geosynchronous (GEO) SDA [16]. He
solved the problem of finding the most cost-effective
combination for a high fidelity GEO SDA system and
concluded that the optimal architecture had to change
because of Earth-Sun angle variations. Yan et al. estab-
lished a mathematical model with multiple constraints to
solve the large-scale and complex scheduling problem of
ground-based surveillance of space objects and con-
structed a hybrid algorithm with GA that used a simu-
lated annealing algorithm for optimization [17]. They
then discussed the rescheduling problem of ground-based
space surveillance and proposed an ant colony algorithm
to find the solution [18]. Along the same lines, Luo et al.
considered multi-platform task co-allocation and estab-
lished an oriented scheduling model of space objects
using emergency observation among heterogeneous plat-
forms, and this method was validated by simulation based
on system tool kit (STK) and improved non-dominated
sorting genetic algorithm (NSGA)-II algorithms [19]. For
TT&C scheduling, there are some papers to be refer-
enced [20—22]. Chen et al. established a mathematical
model with the hybrid objective of maximizing profit as
well as task completion rate [23]. They proposed a popu-
lation perturbation and elimination strategy based on a
GA and used simulation experiments to validate its effec-
tiveness. Xue et al. presented the problem of multiple
class TT&C resources using different networks to per-
form TT&C tasks jointly [24]. Then, they established the
optimization model and proposed an improved GA. Mean-
while, deep learning has also been used to solve this
problem [25].

However, most previous studies use an entire time win-
dow or arc segment as the scheduling basic unit, without
considering the waste of resources when the real observa-
tion time is far less than this time window. In addition,
RSOs tracking is accomplished quite frequently, and the
sensor resources can observe many targets at the same
time [15]. In order to solve the problem of MCOS, we
propose a sub-time window constraint satisfaction prob-
lem (STWCSP) model and design an evolution heuristic
(EH) algorithm. First, for comparative experiments, we
design a general model without sub-time windows and

solve it by the methods of first come first service (FCFS),
improved FCFS (IFCFS), and a GA with penalty
(GAPE). Second, we propose an STWCSP model and
design an EH algorithm to solve it. Finally, we add simu-
lation experiments to show the feasibility and efficiency
of the proposed algorithm and the STWCSP model.

The rest of the paper is organized as follows. Section 2
introduces the process of scheduling, analyzes the exist-
ing problem, makes fundamental assumptions about the
MCOS problem, and then establishes an STWCSP model.
Section 3 describes the process of the EH algorithm,
which includes a GAPE and heuristic rule. Section 4 adds
the simulation environment and a series of experiments
for testing the EH algorithm and the STWCSP model.
Section 5 concludes the paper.

2. Preliminaries
2.1 Problem statement

The space surveillance network (SSN) currently tracks
and maintains orbital information on objects in various
orbits [16]. With limited resources and aging equipment,
the current assets within the SSN’s inventory, compris-
ing earth-based optical telescopes, space-based optical
telescopes, and radar tracking sites, cannot keep up with
an increasingly demanding mission.

This section mainly describes the MCOS problem and
establishes the mathematical model. There are many tar-
gets and several ground sensors in the MCOS problem.
Every target has a fixed state of motion, and each ground
sensor has a fixed geographic location.

As shown in Fig. 1, the time window for each
ground sensor to observe the target is limited, and the
observation can only be completed within this time win-
dow. The flow of the time window calculation is shown
in Fig. 2.

Time window

/\ ,
. .
~ 4
R . . P
¥, Observation time 4
P Y
Target % S,
VK N

Orbit’

Fig. 1 Conventional observation scenario
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Fig. 2 Flow of time window calculation

Meanwhile, the antenna of the ground-sensor resources
needs to point toward the space targets to complete the
MCOS task. This means that after completing a current
task, the same ground sensor needs to rotate the antenna
to a specified angle before proceeding to the next task.
Moreover, as shown in Fig. 3, because of the use of large
power sensors, an antenna can observe multiple targets
simultaneously.
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Fig.3 Simultaneous observation of multi-targets

In addition, in our formulation of the MCOS problem,
the real observation time is far less than the length of the
time window. Taking previous studies [17—19] as an
example, if only one target is observed in the whole time
window, sensor resources will be wasted (as shown in
Fig. 4). In this paper, a concept of sub-time windows is
proposed, whose durations are the short actual observa-
tion times. In previous studies, the released time win-
dows are abandoned immediately or not considered at all.
In this paper, if the observation task is executed, the rest
of the time in the time windows is released and it can be
reused to generate new time windows. The start time of
observation in this time window is obtained by an opti-

mal algorithm. According to the above analysis, the outer
result is which time window is used to observe the target,
and the inner solution is the specific observation time, as
shown in Fig. 4.

Time window Observation

Waste time window

Fig. 4 Actual observation scenario

Overall, the MCOS problem’s essence is to allocate
sensor resources and execution time under various con-
straints such as visible time windows. This paper assumes
that target priority, sensor resources, and mission requests
are known before the scheduling algorithm is used.

We abstract and simplify the problem of MCOS, then
make the following assumptions:

(1) The observation resource (sensor) is assumed to
work generally throughout the scheduling cycle without
damage.

(i1) The target does not maneuver during the schedul-
ing period, and the time window does not change.

(iii) Once the observation starts execution, it cannot be
allowed to be interrupted or preempted by other tasks.

2.2 STWCSP model

This section establishes the STWCSP model that con-
tains the decision variables, constraints, and objective
functions.

(i) Decision variables

To facilitate the concept of sub-time windows and
reduce the complexity of traditional decision variables,
this paper presents mixed decision variables & that
combine Boolean and real number variables. & is an
indicator variable that takes the value 1 when the target is
observed in the kth rank of the ith target in its corre-
sponding jth time window and takes the value O other-
wise. Fig. 5 shows the schematic diagram of the decision
variable.

KE[tw,

ijstart> twyend]

Fig.5 Schematic diagram of decision variables
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In Fig. 5, symbol tw is the time window and &;
represents the ith target is observed in its jth time
window, which is proposed by the conventional inte-
ger programming problem model [17]. Unlike exis-
ting studies, this paper introduces the real-number
indexing k, taking values continuously between the
relevant time window. Therefore, & is a mixed deci-
sion variable that contains both integer-only and real
numbers, and it is also a vector defined in each time win-
dow as

fijk = [fijhfijZ"”

(i1) Constraints
The MCOS is a complex optimization problem involv-

i

> fi jend lime]~
Jend_|

ing various constraints. The constraints can be deter-
mined from targets and sensor resources.

For sensor resources, we can obtain the following con-
straints.

C1: The constraint of sensor observation distance. We
assume the effective distance of the radar observation
objective is limited, beyond which the target cannot be
observed.

Yie ReS,j € JOb,Rl‘j < Ri

‘max

where Res represents the set of sensor resources, Job
represents the set of targets, and R represents the max
observation distance of sensor i.

C2: The constraint of sensor minimum elevation
angle. Only when the target is in the time window can the
sensor observe it. Considering the ground is not horizon-
tal, however, there may be high mountains and other
obstacles that block the sensor limiting the effective

angle,
6 = 6min

where ¢ is the elevation angle of sensor resources, and
Omin 18 the minimum elevation angle.

C3: The constraint of sensor switching time. When the
sensor conducts observation, the sensor needs a switch-
ing time during adjacent target observations. For the same
sensor resource,

>,
where 7" represents the (i+ I)th start observation time
for the gth sensor resources, £ is the ith end observa-
tion time for the gth sensor resources, and 1y, is the trans-
fer time on the gth sensor resources.
C4: The constraint of sensor maximum observation

capabilities. Only a certain number of targets can be
observed simultaneously for one sensor resource. This
number cannot exceed the upper limit of the sensor
resources.

Assuming only m targets are observed at the same
time, we have

m

Vi€ Res, j € Job, Z #_  <Res'

Jj—goal track

i=1

i
where £,

lated time for the jth objectives, and Res;,, is the sensor

, represents the ith sensor resources accumu-

i maximum observation capabilities.

For each objective, we obtain the following const-
raints.

C5: The constraint of the shortest observation time for
each target. The shortest observation time influences the
accuracy of orbital parameters and is related to the objec-
tives’ effective cross sections and radar resident times. If
the radar parameter and target cross section are obtained
for each target, the shortest observation time can be
obtained as follows:

twe™ twin =1, VjeJob

j—true—time Jj—true—time

start
Jj—true—time

where tw represents the real start observa-

tion time for target j, two

Jj—true—time

is the corresponding
end time, and tj" is the real observation time of objec-
tive J.

C6: The constraint of time windows. Only when the
target is in the time window of the sensor can it be
observed.

Vj € Job,
start end start end
[tW j—true—time? th—lruc—timc] c [twj—timc’ tw_j—timc]
where tw%{ is the start time of the time window, and
tws' . is the corresponding end time.

C7: The constraints of observation frequency [26].
According to the characteristics of the target, the adja-
cent observation time of the same target cannot be too
short. Observation frequency is varied for different tar-
gets over a scheduling period. When the number of obser-
vation for the same target is greater than 1, two adjacent
observation times must be extended.

T T

Linterval 2 [m, N]

where T represents one scheduling period, and N repre-

sents the number of times the target needs to be
observed.
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In the constraints described above, constraints C1 and
C2 need to be considered when generating time window
information, and constraints C3, C4, C5, C6, and C7 dur-
ing scheduling.

(iii) Objective function

We take the total observation profit as the objective
function defined as

=1 j=1 k=twin

i—time

where P; is the priority of target i. The larger P; is, the
more important target i is.

According to the above analysis, the scheduling model
can be given as follows:

find &y

end
Job ;Wi

maxf:ZZ Z &P

=1 j=1 k=twin

i—time

S.t.

ke [twstart twend ]’

j—time? Jj—time

end start __ 40b
twj—true—lime —t Jj—true—time — tj ’
start end start end
[tw tw ] C[tw tw 1,

Jj—true—time? Jj—true—time j—time? j—time

m

E i i
t_/—goal < Reslrack’

j=1

start __ gend

trm tq, = Yoo

T T].

Hinterval 2 [m, N

So far, the mathematical model of STWCSP about
MCOS has been fully developed. However, because of
the constraints mentioned above, and its higher-dimen-
sional, NP-hard characteristics, it is almost impossible to
find the optimal solution in practice. In many cases, it is
also difficult to find a relatively good solution. Therefore,
it is necessary and important to propose a specific algo-
rithm for this problem.

3. Algorithm design

As an important part of bionic algorithms, GA has been
widely used in various fields of combinatorial optimiza-

tion [27-29]. However, GA cannot perform better in a
mixed planning problem such as the one in this paper. To
handle the MCOS problem better, we propose a method
that consists of two parts. The first part (and the main
framework) is GAPE and it is used in the outer optimiza-
tion. By adaptively improving the flow of traditional GA
genetic operators in the MCOS problem, the shortcom-
ings of GA such as low efficiency and slow convergence
can be overcome.

The second part is the mission planning algorithm
(MPA), which is the inner optimal algorithm. If the outer
task is executable, the start and the end time of it in the
available time window can be determined by MPA. In the
MPA, this paper takes the heuristic rules relating to pre-
ference, delay, and random strategies [30,31]. When the
GAPE and MPA are terminated, the best solution in all
the population is used as the final task sequence, and the
final schedulable task sequence is obtained through an
EH.

3.1 GAPE

Based on analysis and understanding of the MCOS prob-
lem, we optimize the population initialization, the coding
method, selection operation, fitness function, crossover
operation, mutation operation, and termination condi-
tions. Standing on these improvements, we combine the
heuristic rule with GAPE, and then propose an EH algo-
rithm.

3.1.1 Population initialization

The process of population initialization aims to en-
sure the diversity and difference of individual. An
absolutely random method of population initializa-
tion is utilized herein to ensure the significant differ-
ences among the gene fragments of each resulted indi-
vidual. Therefore, the order of each schedule is
random.

3.1.2 Coding method

In the coding method of GAPE, we use real number
encoding, which shows the one-to-one correspondence
between the task number and GAPE coding. As shown in
Fig. 6, the coding method represents that the first task is
executed in its second time window, the second task is
completed in the corresponding jth time window,- -, the
Nth task is performed in the last time window, etc. In the
above encoding, the range of integer variables’ va -
lues depends on the number of corresponding time win-
dows.
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Fig. 6 Coding method

3.1.3 Fitness calculation

In the process of GAPE, fitness calculation plays an
important role because it affects the probability of indi-
viduals’ being selected to complete genetic operations.
For closely combining the GAPE with the multi-sensor
scheduling, this paper uses a previous model’s section as
the fitness function. The difficulty is that each individual
task sequence should be input into the MPA (heuristic
rule) to obtain an executable task scheme. The corre-
sponding objective function value is calculated as the fit-
ness of the current individual.

3.1.4 Selection

The selection should reflect the purpose. The individual
that has a higher fitness can be selected with a high
probability. In this paper, we take only the elite popula-
tion to ensure the evolution process always increases in
fitness.

3.1.5 Crossover

After selection, we compare a random number with
crossover probability p. and then use this to determine
whether to perform the crossover operation on the cur-
rent individual. In this paper, the coding method takes
real numbers on upper optimization. Because of the real
numbers, if two individuals are exchanged, then dupli-

cate sequence fragments may occur for both individuals.
To avoid this problem, this paper uses the crossover oper-
ation of two segments within an individual to maintain
the feasibility of the solution.

As shown in Fig. 7, the whole length means that there
are N tasks that need to be scheduled, and the p, repre-
sents the crossover probability. When the crossover
length is three, two break points containing the three alle-
les are randomly generated in two individuals. Then, the
two segments are crossed, and two sequencesare obtained
after the exchange. This is the completion of the
Crossover operation.

i |
. Xy) (X5) (X3) (X! e Xy Xy Xy i
Selection ©F T2 T8 T :e @ 9; N2 3N Individual,
h 4 & & i v ' ..
crossover g iy &5 )€Y @ € - G545 &) Individual,

P Generation
c ’ ’ ’ ..
g & & & e @ @ -+ My Xy Xy Individual,

X)) %) ) @ @ @ -+ My Xyt Xy New individual

Fig. 7 Crossover operation

3.1.6 Mutation

After the above operations, we take the mutation
operations to maintain the algorithm’s feasibility. We
design three mutation methods, which are shown in
Fig. 8.
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A random number between 0 and 1 is compared with
the mutation probability p,, to determine whether to per-
form a mutation, but a mutation is less likely to occur
than a crossover. Selection mutation is the same as selec-
tion crossover, and ps.,, parameter represents the selec-
tion mutation probability. In reversion mutation, continu-
ous alleles on the chromosomes are randomly selected for
mutation according to our constraints. The parameter
Preversion Tepresents the probability of reservation muta-
tion. In insertion mutation, discrete alleles on the chromo-
somes are randomly selected for mutation and the piaserion
represents the inversion probability. We must have:

pSWap + PRreversion + Phnsertion = 1 .
3.2 Heuristic rule

The heuristic rule is applied to arrange the specific execu-

2
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tion time of the multi-sensor observation mission after the
GAPE algorithm gets the new task scheduling sequence.
In order to decrease calculation time, this paper uses the
preference, delay, and random strategies [32,33]. The fit-
ness value of the scheme is calculated based on the
mutual selection of the task and the time window to
determine whether the task is executed.

3.2.1 Preference strategy

Fig. 9 is the explanation of the preference strategy. This
strategy means that if the time window is executed, the
first target needs to be observed at the beginning of the
window. The end time depends on the observation time,
and the later missions are replenished in order. This
method avoids the process of optimization and can signi-
ficantly reduce the computational complexity.

Vi
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Vstart Vena Wgar Ttyeng

]

.

twsta W e

W, etime twih

ik-1 truc time
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Fig.9 Schematic diagram of preference strategy
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The pseudo-code is labeled as Algorithm 1.

Algorithm 1 preference_strategy(S,W,C)

Input: S,W,C # S is the individual task, W is the set of
available time windows, C is the set of constraints.
Output: Sol # Output solution

1 Sol =[] # is the set of executable scheduling solution

2 foriin S

3 forjinW

4 if S [{] meets the requirements of C
5 Sol =S [{]

6 End if

start Zstart

7 End for
8 End for
9 sol =
task

10 return sol

Sol[1]# select the first satisfies the constraints

11 End procedure

3.2.2 Delay strategy

As shown in Fig. 10, the delay strategy is similar to the
preference strategy, but it shows the opposite process.
The first tasks start observation at the end of the time
window.

4 T

tw tw e tw
]/sl.m l/eml ]”mm

j

twh

twie

ik lruc‘ -time ik lruc time

Each step needs optimal

Lart end
tw Wi true-time

il-true-time

start
Wiietime  tWen

ik (me time

Delay strategy

Fig. 10 Schematic diagram of delay strategy

The pseudo-code of the delay strategy is labeled as
Algorithm 2.

Algorithm 2 delay_strategy(S,W,C)

Input: S,W,C # S is the individual task, W is the set of
available time windows, C is the set of constraints.
Output: Sol # Output solution

1 Sol =[] # is the set of executable scheduling solution

2 foriin S

3 forjinW

4 if S [{]meets the require ments of C
5 Sol =S [i]

6 End if

7 End for

8 End for

9 sol = Sol [len(Sol)]# select the last task

10 return sol
11 End procedure

3.2.3 Random strategy

Different from the preference and delay strategies, the
random strategy emphasizes a random process as shown
in Fig. 11. When the first target comes, it is randomly
assigned for observation within the window. When
the second target comes, it is also randomly assigned, but
the two windows are allocated so that they do not over-
lap.

start twe

-
Wi rue-time 2-true—time

start

t e
Wil —true-time Wil —true-time

Z

start
ik—true—time

tw, tw,

ik—true—time

Fig. 11 Schematic diagram of random strategy
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The pseudo-code of the random strategy is labeled as
Algorithm 3.

Algorithm 3 random_strategy(S, W,C)

Input: S,W,C # S is the individual task, W is the set of
available time windows, C is the set of constraints.
Output: Sol # Output solution

1 Sol = []# Sol is the set of executable scheduling solu-
tion

2 foriin S

3 forjinW

4 if § [{] meets the requirements of C
5 Sol =S [i]

6 End if

7 End for

8 End for

9 sol = random (Sol)# select the random task
10 return sol

11 End procedure

3.3 EH algorithm

Subsections 3.1 and 3.2 introduce the GAPE and MPA
algorithms, respectively. According to the problem analy-
sis in Section 2, each target has many time windows in
one scheduling period. We not only need to find the best
time window for the sensors to observe the target, but
also to determine the optimal observation moment within
the corresponding time window. Taking N as the num-
ber of target, N; as the number of time window of RSO;,
tw/,. and tw’  as the start and end observation moment
for time window j, the decision space could be

N,
Ng . . . .
l_L:u Z (tw/ , —twl,), which is extremely large for tra-
j=1
ditional algorithms. Moreover, the size of the decision

space increases rapidly as the target scale increases. If the
MPA is only used to solve this model, the computation
time will decrease but could lead to a poor solution. If we
only use the GAPE, this is a mixed-integer programming
problem. There is no better solution algorithm, and
almost all methods require a lot of calculation time.
Therefore, to improve the observation profit, we intro-
duce the sub-time windows, and consider the calculation
time and solution quality, to propose an EH algorithm.
The EH algorithm is the combination of a GAPE and
MPA (heuristic rule). In the outer optimization, this algo-
rithm uses GAPE to get the time window in which a tar-
get is observed. Then, it uses MPA to get the specific task
time. The rest of the time windows are released. After
taking this operations, the outer decision space becomes

NR . ..
| | 1Ni’ and the inner decision space becomes
-

—tw/,,. This splitting of the problem into upper and
lower spaces decreases the size of total decision space.
The pseudo-code is labeled as Algorithm 4.

'[Wj

end

Algorithm 4  evolution_heuristic(n, P, t,n¢,, W, P1y» Pswap
pReservation ) plnserlion 5 pq ) pc

Input: n, P,t,n.,,w,S # n: task number, P: task priority,
t: detection time, n,,: number of equipment, w: time win-
dow

Output: f..,ep # Output the specific execution time of
each task and the execution of each task by which equip-
ment in the entire scheduling period.

1 W =random gen win(n) # generate windows for each
tasks

2 S = find ((W)# find time window for each target

3 target = cal_fitness(S, P)

4 foriinrange (Iterations) :

5 select(P,)

6 crossover(P,)

7 mutation(p,, Pswap» PReservation> Pnsertion)

8 wupdate population

9 set[1] = preference_strategy(S, W,C)# Algorithm1
10 set[2] = delay_strategy(S, W, C) # Algorithm2

11 set[3] = random_strategy(S, W,C) # Algorithm3
12 target = cal fitness(S, P)

13 if population individual better than the global

14 globalbest = popindividual

15 Endif

16 Record(globalbest) # generate the best generation
17 End for

18 Cal total benefits ()

19 gen_sche list()

20 End procedure

Fig. 12 shows the process of the EH. The basic parame-
ters of this algorithm are input at the execution of the pro-
gram, including the task number, task priority, observa-
tion time, equipment number, time window, crossover
probability, and variation probability. Then, it generates
the initial population and defines the execution time win-
dow for each target. Later, based on the above solution
and calculating the fitness by Algorithm 1, Algorithm 2,
and Algorithm 3, and the best individual for each itera-
tion can be defined. If the above procedure is within the
algorithm iteration, the optimal individual and the elite
population are retained in each generation. The remain-
ing individuals perform crossover and mutation opera-
tions, and the specific process of cross variation is
detailed in Subsection 3.1. After finishing the algorithm,
the best solution can be obtained.
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Fig. 12 Process of the EH algorithm

4. Numerical simulation

In this section, we design a series of comparative experi-
ments to investigate the performance of models in vari-
ous aspects thoroughly.

4.1 Experimental design

(1) Experimental instances

This paper takes three radars as the sensor resources.
The position of sensors are (40.0386°N,75.596 6°W),
(30.0386°S,15.5966°E), and (10.0386°S,105.597°E),
respectively. The sensors’ transfer time is 5 s, 100 s, and
80 s. The task size of test instances ranges from 500 to
1300, and the relevant orbital database can be obtained
from the well-known CelesTrak website. Each target pri-
ority ranges from 1 to 10, and the observation time ranges
from 200 s to 500 s.

(i1) Comparison algorithms

This paper selects three algorithms for comparison
experiments, and these algorithms all optimize the model
without sub-time windows. The first algorithm is FCFS,

and the second is IFCFS. Compared to FCFS, IFCFS
adds a cycle policy, and generally achieves a better solu-
tion with a higher total priority, although it is a heuristic
algorithm. The third is GAPE, which optimizes integer
time window planning. The EH algorithm contains GAPE
preference strategy (GAPE-HP), GAPE delay strategy
(GAPE-HD), and GAPE random strategy (GAPE-HR).

(1) Parameter settings

Default parameters of GAPE are shown in Table 1, and
the parameters of GAPE-HP, GAPE-HD, and GAPE-HR
are the same as those involved in GAPE.

Table 1 GAPE parameters

Parameter Value
Gen 500
NP 200
Pc 0.8
Pm 0.1
PSwap 0.2
PReversion 0.5
Pilnsertion 0.3
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4.2 Experiments on different target scales with dif-
ferent algorithms

In order to validate the performance of the proposed algo-

rithms, we first conduct some experiments that include

nine scenarios of different target scales ranging from 500
to 1300. The comparison experiments are catrried out by
using the three comparison algorithms mentioned in Sub-
section 4.1, and the final results are shown in Table 2.

Table 2 Experimental results of different algorithms at different target scales

Model without sub-time windows STWCSP model
Target scale EH average result
FCFS IFCFS GAPE GAPE-HP GAPE-HD GAPE-HR
500 518 2257 2449 2515 2496 2554 2521.67
600 554 2307 2760 2882 2974 3024 2960
700 595 2348 3011 3270 3314 3317 3300.33
800 595 2369 3199 3674 3498 3512 3561.33
900 612 2389 3479 3927 4038 4149 4038
1000 640 2399 3726 4142 4135 4233 4170
1100 642 2402 3885 4409 4583 4373 4455
1200 656 2425 4073 4631 4617 4635 4627.67
1300 665 2449 4231 4858 4782 4801 4813.67

As can be seen from Table 2, when the scale of the tar-
get increases, the total task priority also increases. Fur-
thermore, the EH algorithm proposed herein can solve the
STWCSP model and obtain a better solution compared
with the conventional methods, regardless of the number
of targets. Fig. 13 represents the observation profit of dif-
ferent algorithms at different target scales, and it shows
that the STWCSP model and the EH algorithm are better
than conventional methods.

5000
4500
4000
3500
3000
2500
2000
1500
1 000 -

Profit

| — t

500 ! 1 .
500 600 700 800 900 10001 10012001 300
Target number
—o—: Average, —— : FCFS; :IFCFS; —¢—: GAPE;
—o— : GAPE-HP; —+—: GAPE-HD; —— : GAPE-HR.

Fig. 13 Comparison of profit between EH and conventional algo-
rithms at different target scales

In addition, as shown in Fig. 14, when the target scale
increases, the performance of the EH algorithm becomes
better compared to the conventional algorithm. Although

profit difference decreases when the target scale is 1000
and 1200, this is because the EH algorithm is a random
search algorithm, and is not guaranteed always to find the
global optimum solution. Overall, however, the nine
curves increase on average over the tested domain of the
target scale.
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2000
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am

Profit

0 1 1 1 1 1 1 1
500 600 700 800 900 10001 10012001300
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—e—: GAPE-HD-FCFS;~=: GAPE-HD-IFCFS;—a~ GAPE-HD-GAPE;
~o—: GAPE-HR-FCFS;==-: GAPE-HR-IFCFS;-a~ GAPE-HR-GAPE.

Fig. 14 Profit gain of EH algorithm with increasing target scale

Fig. 15 shows the evolution process of the GAPE and
EH algorithms. From the curve comparison of EH and
GAPE in this figure, EH has evidently outperformed all
tests, but the three strategies of EH does not have signifi-
cant characteristic. However, in this paper’s test, when
the target scale is small, the GAPE-HR might perform
better than GAPE-HP and GAPE-HD.
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Fig. 15 Historical best profit of different algorithms at different target scales versus iterations

When the target scale is large, the three strategies
result in similar profit values.

4.3 Experimental results on different sensor obser-
vation capabilities

To validate the effect of different sensor observation
capabilities on the EH algorithm and STWCSP model, we
conduct experiments on instances that include nine sce-

narios. In this part, we assume that each sensor has a dif-
ferent observation capabilities. Combining this with the
simulation data presented in this paper, we assume that
the number of targets observed by different sensors at the
same timeare (1 11),(115),(151),(155),(222),(333),
(444),(511),and (555). The other parameters are the
same as in Subsection 4.1. Table 3 presents the final
results under different sensor observation capabilities.

Table 3 Experimental results with different sensor observation capabilities

Capability GAPE GAPE-HP GAPE-HD GAPE-HR
(a1t 2128 2676 2660 2516
(115) 3317 3699 3709 3742
asn 3797 4283 4380 4268
(155) 4939 4874 4645 5015
(222 4231 4808 4898 4878
(333) 4838 5226 5251 5257
444 5108 5339 5358 5389
G110 3726 4142 4135 4233
(555) 5350 5406 5414 5420
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As shown in Table 3, if the sensor has bigger observa-
tion capabilities, the number of the observed targets is
larger. The regulation can be obtained in Fig. 16.

5500
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Sensor observation capability
—6—: GAPE; —s—: GAPE-HP; —4—: GAPE-HD; ——: GAPE-HR.

Fig. 16 Influence of sensor observation capabilities on profit

of Systems Engineering and Electronics Vol. 34, No. 4, August 2023

In addition, we also find that when the total number of
sensor observation capabilities is the same but each sen-
sor has a different number of observations, the solutions
obtained by all types of GAPE are relatively similar,
but those solved by EH are better than by all types of
GAPE.

Fig. 17 is the historical best profit of each different
algorithm for each iteration with different sensor observa-
tion abilities, from the curve comparison of EH and
GAPE in this figure, EH evidently outperforms all tests,
but the fourth sub-figure shows different characteristics.
In this result, the GAPE-HP and GAPE-HD algorithm
both are lower than GAPE. In addition, when all sensors
have an observation capability of 5, the evolutionary
curve quickly converges to the optimal solution, and
all tasks are completed. This is because all targets
can be observed when the sensor has a higher observed
ability.
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Fig. 17 Historical best profit of different algorithms with different sensor observation abilities versus iterations

From the above analysis, we can see that different sen-
sor capabilities can cause different solutions. In future

work, we aim not only to develop the scheduling algo-
rithm of the multi-sensor problem but also to study sen-
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sor performance as well.
4.4 Experiments on target observation time

This section discusses the different target obser-
vation time’s influence on the EH algorithm and
STWCSP model. We conduct a nine-scenarios
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comparison that includes 0 to 900 s. The ranges
of observation time are [0 100], [100 200], [200
300], [300 400], [400 500], [500 600], [600 700],
[700 800], and [800 900]. Table 4 shows the results with
different target observation time’s influence on the solu-
tion.

Table 4 Experimental results with different target observation time

Observation GAPE GAPE-HP GAPE-HD GAPE-HR

[0 100] 3762 4998 4963 4993
[100 200] 3765 4756 4617 4586
[200 300] 3813 4430 4394 4448
[300 400] 3740 4193 4237 4184
[400 500] 3705 3828 3994 3797
[500 600] 3826 3709 3715 3558
[600 700] 3708 3468 3419 3343
[700 800] 3784 3186 3182 3705
[800 900] 3783 2982 2898 2951

As shown in Table 4, we know that the target observa-
tion time has little influence on the GAPE algorithm and
traditional model, but it has a significant influence on the
EH algorithm and STWCSP model. The specific relation-
ship between the STWCSP model and EH algorithm’s
solution is shown in Fig. 18.
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Target observation time
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Fig. 18 Influence of observation time on profit

Fig. 18 shows the total observation profit change
curves of different observation time for the different algo-
rithms. Here we can see the different target observation
times have little influence on the GAPE. However, the
same cannot be said of the EH algorithm. When the tar-
get observation time becomes larger, the profit of task
completion decreases. From the above analysis, we con-
clude that in the STWCSP model and the EH algorithm
proposed, these methods do not apply if the target obser-
vation time is very long. In practice, however, some tar-
gets need longer observation time, while some need
shorter observation time. Fortunately, the method pre-
sented in this case still works (Subsection 4.2) univer-
sally.

Fig. 19 shows the historical best profit of different
algorithms for each iteration at different target observa-
tion time. From this figure, we can see that the models
and algorithms designed are more efficient when the tar-
get observation time is short. When the target observa-
tion time is long enough, however, the traditional models
and algorithms are more effective.
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Fig. 19 Historical best profit of different algorithms with different target observation time versus iterations

Specifically, the traditional model performs better
when the target observation time exceeds 500 s. In
practice, the target is randomly distributed, and each
target observation time is determined by its cross-
section, which is generally more random, and hence our
proposed model and methods will be more effective com-
pared to existing models than in our experiments (Sub-
section 4.2).

As mentioned above, the models and algorithms pro-
posed are not applicable when the target observation time
is long, but in practice, the cross-section of each target
varies greatly and it results in that the observation time

for each target varies much.

4.5 Experimental results on different sensor
transfer time

To measure the influence that different sensor transfer
time have on the STWCSP model and EH algorithm, this
section conducts six experiments where the sensor trans-
fer time are [20 100 80], [5 10 10 ], [5 100 801, [5 25 20],
[5 50 40], and [50 100 80]. The other parameters are the
same as in Subsection 4.1. We use GAPE, GAPE-HP,
GAPE-HD, and GAPE-HR to solve these six problems,
and the results are shown in Table 5.

Table 5 Experimental results with different sensor transfer time

Transfer time GAPE GAPE-HP GAPE-HD GAPE-HR
[20 100 80] 3802 4080 4293 4119
[51010] 3740 4293 4380 4218
[5 100 80] 3726 4142 3650 4233
[52520] 3788 4368 4304 4302
[55040] 3842 4329 4316 4294
[50 100 80] 3645 4110 4149 4219

As shown in Table 5, we see that the EH algorithm and
STWCSP model proposed here are better than the tradi-
tional methods regardless of sensor transfer time. Further-
more, the transfer time of different sensors has some
effects on the final profit. In the experiments presented
here, we see that total profit increases if sensor transfer
time decreases slightly.

Fig. 20 shows the historical best profit of different
algorithms for each iteration at different sensor transfer
time. We can see that the proposed model and algorithms
all perform better than the model without sub-time win-
dows. Additionally, in this experiment, we find that the
total magnitude of sensor transfer time is little related to
the total profit.
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Fig. 20 Historical best profit of different algorithms with different sensor transfer time versus iterations

4.6 Experimental results on EH sensitivity validation
To explore the effect of experimental parameters on the
results thoroughly, we carry out extensive experiments
of the parameter sensitivity validation of EH. In this
part, we set up six experiments over the parameters
Des P> Pswaps PReversion» 1-€., [0.5 0.4 0.3 0.3], [0.5 0.5 0.4

041, [0.7 0.2 0.3 0.4], [0.8 0.1 0.2 0.5], [0.8 0.1 0.3 0.4],
and [0.9 0.1 0.4 0.3]. Here, the sensor transfer time is [50
80 100], the target observation time is randomly dis-
tributed from 200 s to 500 s, and the sensor observation
ability is [5 1 1]. The model is solved by different algo-
rithms, and the final result are shown in Table 6.

Table 6 Experimental results with different algorithm parameters

Probability GAPE GAPE-HP GAPE-HD GAPE-HR
[0.50.40.30.3] 3413 3929 3765 3732
[0.50.50.4 0.4] 3341 3872 3838 3813
[0.70.20.30.4] 3735 4059 4093 4105
[0.80.10.20.5] 3726 4142 4135 4233
[0.80.10.30.4] 3700 4214 4334 3722
[0.90.10.40.3] 3846 4277 4271 4242

As shown in Table 6, we can see that changing the

parameters of the EH algorithm hardly influences the
total task profit. The performances of our proposed

algorithms for each iteration at different algorithm param-
eters. When the crossover probability is high, a better
result can be obtained, but this influence is small. Addi-

STWCSP model and EH algorithm are all better than that  tionally, if the crossover probability is in a certain
of the model without sub-time windows. interval, the other parameters have little effect on the
Fig. 21 shows the historical best profit of different  results.
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Fig. 21 Historical best profit of different algorithms with different algorithm parameters versus iterations

5. Conclusions

As the number of RSOs increases, enhancing SDA capa-
bilities for detecting, cataloging, and tracking RSO
becomes more critical for sustaining long-term space
operations. In this paper, taking three ground sensors for
example, we study the problem of their optimal daily
scheduling. The main contributions are as follows:

(i) The concept of sub-time window is proposed, and
an MCOS STWCSP model which avoids the waste of
sensor resources is established.

(i1) The algorithms are tested in a series of scenarios.
According to the results of the simulation, our proposed
algorithm has a better performance in total profit com-
pared with GAPE, FCFS, and IFCFS.

(iii) The influence of target observation time, sensor
transfer time, sensor observation capabilities, and algo-
rithm parameters on our proposed STWCSP model and
EH algorithm is analyzed.

However, there are still some issues for further
research, such as the scheduling method in emergency situa-
tions and the resource constraint reasoning methods of
MCOS, which will be addressed in the future.
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