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Abstract: Current applications, consisting of multiple replicas,
are packaged into lightweight containers with their execution
dependencies. Considering the dominant impact of distribu-
tion efficiency of gigantic images on container startup (e.g., dis-
tributed deep learning application), the image “warm-up” tech-
nigue which prefetches images of these replicas to destina-
tion nodes in the cluster is proposed. However, the current
image “warm-up” technique solely focuses on identical image
distribution, which fails to take effect when distributing different
images to destination nodes. To address this problem, this
paper proposes Hound, a simple but efficient cluster image dis-
tribution system based on Docker. To support diverse image dis-
tribution requests of cluster nodes, Hound additionally adopts
node-level parallelism (i.e., downloading images to destination
nodes in parallel) to further improve the efficiency of image distri-
bution. The experimental results demonstrate Hound outper-
forms Docker, kubernetes container runtime interface (CRI-O),
and Docker-compose in terms of image distribution perfor-
mance when cluster nodes request different images. Moreover,
the high scalability of Hound is evaluated in the scenario of ten
nodes.
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1. Introduction

With the advancement of lightweight container-based
virtualization technologies like Docker [1-3], developers
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can package application which consists of multiple repli-
cas into the container with their execution dependen-
cies [4—6]. The identical image of these replicas requires
to be fetched from the image registry, e.g., Docker Hub
(https://hub.docker.com/) or the private registry, to desti-
nation nodes during the container startup progress. How-
ever, the distribution process of gigantic images (e.g., dis-
tributed deep learning application [7—9]) is time-consum-
ing which will delay the container startup and further pro-
long the task makespan. Thus, the image “warm-up’
technique which prefetches images to destination nodes is
proposed instead of downloading images during the con-
tainer startup process.

The current image “warm-up” technique focuses on
identical image distribution. However, it fails to take
effect when different images are requested by cluster
nodes. For example, Docker presents Docker-compose
(https://docs.docker.com/compose/) to provide multi-
image parallel downloading on a single node. It can be
easily migrated to the whole cluster by initiating the
Docker command simultaneously.

To address this problem, we propose a simple but effi-
cient cluster image distribution system based on Docker,
named Hound. Our project is open source on GitHub at
https://github.com/NJUPT- ISL/Hound. Our contributions
are summarized as follows:

(i) We propose a novel image distribution mechanism,
consisting of node classification and node-level paral-
lelism (i.e., downloading images to destination nodes in
parallel), to accelerate container startup.

(i) We propose a simple but efficient cluster image
distribution system based on Docker, named Hound.
Hound adopts master-worker architecture which consists
of Hound master and Hound workers to achieve parallel
image distribution in the cluster view.

(iii) The experimental results demonstrate that Hound out-
performs Docker, CRI-O (https://github.com/cri-o/cri-o),
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and Docker-compose in terms of image distribution per-
formance when nodes in the cluster request different
images. Moreover, the high scalability of Hound is evalu-
ated in the scenario of ten Hound workers.

The remainder of this paper is organized as follows:
Section 2 discusses the related works about efficient
image distribution strategies. Section 3 describes the
image distribution mechanism of Hound. Section 4 intro-
duces the system design of Hound. In Section 5, we eva-
luate the image distribution performance and scalability
of Hound, followed by discussions about our future work.
The conclusions are drawn in Section 6.

2. Related works

A few efforts have been devoted to exploring efficient
image distribution strategies in recent years. We divide
them into three categories: (i) pruning image size based
on various deduplication techniques (Subsection 2.1);
(i1) modifying the original image distribution mechanism
(Subsection 2.2); (iii) reducing the network bandwidth of
the data center (Subsection 2.3).

2.1 Deduplication techniques

The evaluation in [10] shows that only 3% of the files are
unique over 167 TB of uncompressed Docker Hub
images, which demonstrates deduplication techniques
have a great potential to reduce image size. With the
assistance of various deduplication techniques, the
amount of data transmitted between the registry and des-
tination nodes is dramatically reduced, which further
improves the efficiency of image distribution. Lee et al.
proposed a deduplication system based on the peer-to-
peer protocol for virtual machine (VM) images [11],
which deduplicates images according to their similarity,
to improve the performance of VM image distribution.
Du et al. [12] presented a rapid Docker container deploy-
ment system based on shared network storage called
Cider by minimizing the data transferred during the pro-
cess of image download to accelerate the deployment
process. Zhang et al. proposed a block-level deduplica-
tion system called block-level deduplication (BED) for
container images [13], which deduplicates images in the
registry according to the fingerprint list and downloads
image blocks that are unavailable locally, to accelerate
the image downloading process. However, the above
methods achieve image deduplication by hash calcula-
tion and comparison in the fingerprint list, which is a time-
consuming operation. To reduce the computation over-
head during the deduplication process, Zhao et al. pro-
posed a deduplication file system called Liquid for VM
images, which only performs deduplication operations on
modified image blocks [14]. Moreover, Saharan et al.
proposed a VM deduplication system called QuickDedup

which divides images into different block classes and
only performs deduplication operations in each class to
reduce the deduplication time [15].

The above deduplication techniques make attempt to
improve image distribution efficiency by reducing the
amount of transmitted data, which could be combined
with Hound for further acceleration.

2.2 Modifications on the original distribution
mechanism

These methods aim to complete the container startup pro-
cess in advance by designing a custom image distribution
mechanism. To speed up the startup of the container, Har-
ter et al. [16] presented a brand-new Docker storage
driver called Slacker which lazily retrievals image data
that are required during the container startup progress. To
accelerate container startup, Thalheim et al. proposed a
lightweight container called CNTR which divides images
into fat and thin images [6]. The thin image requires to be
retrieved during the startup of CNTR, and the fat image is
downloaded on demand. Civolani et al. proposed a con-
tainer deployment system called FogDocker for the fog
computing environment [17], which only fetches image
data that is required during startup and then downloads
remain data on demand, to speed up the container deploy-
ment. To reduce the network load during the image distri-
bution process, Zheng et al. proposed a sharing-enabled
file system called Wharf for Docker images which splits
images into global and local states and shares image data
with the global state in the cluster [18]. Chen et al. pro-
posed a container deployment strategy that extracts dif-
ferent files between images by constructing a direct
acyclic graph (DAG) model and transmits them to the
destination to accelerate the container deployment [19].
To accelerate the container deployment, Ahmed et al.
analyzed the container deployment process in the fog
computing environment and presented several optimiza-
tions to make sufficient use of computing resources [20].

The above methods mainly focus on designing effi-
cient image distribution mechanisms, which could be
combined with Hound for further acceleration.

2.3 Network bandwidth concerned

These methods make full use of network bandwidth to
improve image distribution efficiency. Peng et al. pro-
posed an efficient cross-image distribution system called
VM image distribution network (VDN) for VM based on
the peer-to-peer network [21], which divides VM image
into several chunks to save the available network band-
width of the data center. To accelerate large-scale VM
provision, Zhang et al. proposed a VM image distribu-
tion strategy named VMThunder which combines the
lazy download mechanism with the peer-to-peer network
[22]. Liang et al. proposed an image distribution system
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called hybrid Docker image distribution (HDID) system
for Docker images [23], which downloads image chunks
from the Docker registry or other hosts that possess the
required blocks according to the chunk size. Wang et al.
presented a large-scale image distribution system based
on the peer-to-peer network called faster image distribu-
tion (FID) to accelerate image deployment [24]. Nathan
et al. proposed a co-operative management system called
CoMICon which provides a distributed registry for shar-
ing different Docker image layers in the cluster to speed
up container deployment [25]. Unfortunately, the above
sharing-enabled methods fail to set up private images.
Moreover, the mechanism of sharing may affect the secu-
rity of the entire system. More specifically, a Trojan
image exists on all nodes once the underlying distributed
storage system is invaded, which causes irreparable dam-
age.

Although these methods make full use of network
bandwidth to improve image distribution efficiency, how-
ever, performance degradation could occur when
requested images are absent in cluster nodes.

3. Hound image distribution mechanism

The current image “warm-up” technique focuses on iden-
tical image distribution which fails to take effect when
different images are requested. We illustrate in Fig. 1 that
Docker-compose only accelerates image distribution
when identical images are requested. However, it fails to
support diverse image distribution demands in the cluster
view. Consequently, there is a lack of a general image
distribution strategy for image “warm up” in the cluster
view. In Fig. 1(a), three images (i.e., Image A, B, and C)
are required by each node before container startup. The
identical image distribution request can be initiated
simultaneously by Docker-compose using parallel flag.
However, in Fig. 1(b), different images are required by
each node, which causes Docker-compose to initiate par-
ticular image distribution request in order. Thus, it fails to
take effect when different images are requested. To
address this problem, this paper proposes Hound, a sim-
ple but efficient cluster image distribution system based
on Docker.
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Image distribution mechanism of Docker-compose in the cluster view
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In this section, we introduce the image distribution me-
chanism of Hound which consists of two parts: (i) node
classification based on requested images (Subsection 3.1),
and (ii) node-level parallelism which downloads images
in parallel in the cluster view (Subsection 3.2).

3.1 Node classification

Different from the existing image distribution strategies
(e.g., Docker-compose) which cause performance degra-
dation when different images are requested by cluster
nodes, we propose a simple but efficient mechanism to
classify cluster nodes with diverse image distribution
requests into several groups, each of which requests iden-
tical images. Specifically, nodes with identical image
demand are classified into a node group. Moreover, nodes
within the node group possess the same node label which
contains the requested image name.

For example, Table 1 shows the image demands
requested by a cluster which consists of five nodes. Sub-
sequently, Table 2 shows the classification result based
on the image demands of each node. We can observe
from Table 2 that the correspondence between images
and requested nodes is established by the node classifica-
tion mechanism. In Subsection 3.3, we combine the node
classification mechanism with the node-level parallelism
to implement the image distribution mechanism of
Hound, which efficiently improves the image distribu-
tion efficiency in the cluster view.

Table 1 Image demands of the sample cluster which consists of
five nodes
Node name Requested image

Node 1 Image A, Image B, Image C

Node 2 Image B, Image D

Node 3 Image A, Image D

Node 4 Image B, Image C, Image D

Node 5 Image A, Image B, Image C, Image D

Table 2 Node classification result of the sample cluster

Node group

i Node included
(request image)

Node label

Group 1 (Image A) Node 1, Node 3, Node 5
Node 1, Node 2, Node 4,
Node 5
Node 1, Node 4, Node 5
Node 2, Node 3, Node 4,
Node 5

ImageName: Image A

Group 2 (Image B) ImageName: Image B

Group 3 (Image C) ImageName: Image C

Group 4 (Image D) ImageName: Image D

3.2 Node-level parallelism

We illustrate in Fig. 1 that only partial parallelism is

achieved by migrating Docker-compose to cluster image
distribution. To achieve complete parallelism for further
improving image distribution efficiency, we propose a
novel node-level parallelism which downloads images in
parallel in the cluster view by means of multi-thread.
Specifically, each thread corresponds to the image down-
load request which is initiated to one of the destination
nodes. We demonstrate in Subsection 5.2.1 that the node-
level parallelism significantly improves the image distri-
bution efficiency in the cluster view.

3.3 Overall mechanism

Algorithm 1 shows the image distribution mechanism of
Hound which combines node classification and node-
level parallelism. The number of enabled threads and
image distribution information (i.e., requested images and
nodes) are served as inputs. Hound first classifies nodes
which request the identical image into a node group (Line
4-9). Then, Hound obtains the number of image distribu-
tion requests in all node groups (Line 11). To avoid unne-
cessary waste of computing resources, the number of
enabled threads is automatically adjusted to the number
of image distribution requests when the latter is less than
the former (Line 13—14). Hound enables multiple threads
to download images in parallel in the cluster view, each
of which corresponds to the image download request ini-
tiated to one of the nodes in the node list (Line 16—22).
Note that the upper limit number of enabled threads is
equal to the value of workers which can be tuned flexibly
according to user requests. A smaller value of workers
refers to relatively weak parallelism which leads to per-
formance degradation of image distribution. A large
value of workers is not preferable either, because it will
cause excessive resource consumption. Thus, a moderate
value of workers is essential in our implementation.

Algorithm 1 Hound image distribution mechanism
Input: The number of threads permitted to be enabled
workers, requested image list imageList, node list
nodeList

Output: None

nodeGroup[][] = Null

i=0

# Node classification

for image in imageList do
for node in nodeList do
for nodelmage in node.requestlmages() do
if image == nodelmage then

N NN AW N -

add(nodeGroup[image], node)
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9 break;

10 # Obtain the number of images requested in all node
groups

11 pieces = len(nodeGroup)

12 # Determine the number of enabled threads
13 if pieces < workers then

14 workers = pieces

15 # Enable threads to download images

16 While i < workers do

17 object = pop(nodeGroup)

18 if object == Null then

19 break;

20 createThread(i, imagePull(object))
21 if i == workers — 1 && nodeGroup !=Null then
22 i=0

Hound worker

Hound worker

* Invoke
L — | E
Docker ICA
engine
Custom
middleware

4. Hound design

We propose a cluster image distribution system called
Hound based on Docker. Fig. 2 shows the master-worker
architecture of Hound which consists of a Hound master
and several Hound workers. The Hound master which
plays the role of distributing images among all Hound
workers is composed of two parts: (i) a node information
database called NIDB which records the information of
all Hound workers and (ii) an image manager called IM
that forwards image distribution operations to Hound
workers. The Hound worker responsible for performing
image distribution operations is composed of two parts:
(i) an image controller agent called ICA which coordi-
nates with the Docker engine to complete the image dis-
tribution and (i) a custom middleware for identity
authentication during communication between the Hound
master and Hound workers.
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Custom Image download request
middleware
Hound worker Hound master
Invoke E
*‘ L : CRUD
Docker 1CA Connection EJ c— %
engine M NIDB
Custom
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Fig.2 Overview of Hound architecture

4.1 NIDB

The information of all Hound workers is stored in
NIDB, which is shown in Table 3. Note that all node
labels can be retrieved by IM to form the node group
which requires performing the identical image
distribution operation. To ensure secure communica-
tion between the Hound master and Hound workers,
the token information is stored in NIDB for identity
authentication which we will be mentioned in Sub-
section 4.4. In addition, execution logs of Hound are
also stored in the NIDB for DevOps engineers to trou-
bleshoot.

Table 3 Structure of information stored in NIDB

Label information Node information Token information

LabelName NodeName TokenContent
NodeList KernelVersion GenerateTime
- OperatingSystem UpdateTime
- DockerVersion -
42 IM

IM is a web server which captures image distribution
requests sent by users. Nodes and their requested
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images are first parsed by IM, followed by node classifi-
cation to form the node group. Thus, the Hound master
can forward image distribution requests to Hound wor-
kers in all node groups in parallel. To discover node fai-
lure in time, IM receives the heartbeat information from
all Hound workers. The state of each Hound worker is
updated periodically by overwriting the last heartbeat
information stored in NIDB with the received informa-
tion.

43 ICA

ICA is a web server running on each Hound worker,
which captures image distribution requests forwarded by
the Hound master. Note that the image list in the request
is parsed so that ICA can download images in parallel.
The role of ICA is to perform image distribution opera-
tions according to the image list and send the heartbeat
information to the Hound master periodically to inform
its health state.

[ | i ===

4.4 Custom middleware

The custom middleware is designed to ensure secure
communication of Hound by verifying the consistency of
the token carried in the image distribution request and the
one which the Hound worker possesses. The token is
encapsulated by the SHA256 algorithm according to the
hostname and timestamp. Note that the token of each
Hound worker is updated periodically by attaching a
refresh flag to the request. The updated token will be sent
to the Hound master for further communication. To pre-
vent the Hound master from failing to receive the token,
an environment variable called Hound key is presented.
The latest token will be sent to the Hound master if the
correct Hound key is included in the request.

4.5 Hound workflow

Fig. 3 shows the workflow of Hound which is divided
into four steps and each step corresponds to a black
bounding box.
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Fig.3 Workflow of Hound

Step 1 Establish Hound cluster.

Both the Hound master and Hound workers re-
quire to perform initialization first multi-thread. The
initialization for the Hound master is mainly about
establishing a connection between the IM and the NIDB.
As for Hound workers, the initialization includes token
generation and the ICA startup. After initialization,
the Hound worker sends an application programming
interface (API) request to the Hound master for apply-
ing to join the cluster. After the worker is successfully
joined, the token is sent to the Hound master for
further communication. The heartbeat information is

sent to the Hound master periodically (every five
minutes in our implementation) to inform its health
state.

Step 2 Request parsing and node classification.

After the cluster is established, users can initiate an
image distribution request to the Hound master. Nodes
and their required images are parsed by IM. Then, the
Hound master classifies nodes into multiple node groups
according to the requested images. After that, the Hound
master asynchronously forwards the image distribution
requests to Hound workers in all node groups by adopt-
ing multi-thread.
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Step 3 Execute image distribution operations.

Note that the token in the request is verified by the
custom middleware and the request will be discarded if
the token in the request is inconsistent with the one which
the Hound worker possesses. After that, the request is
parsed by ICA to obtain the image list. Images in the
image list are downloaded in parallel by invoking Docker
APIL.

Step 4 Return execution result.

The execution result will be sent to the Hound master
after the image distribution operation is completed. The
Hound master stores the execution result to the NIDB,
followed by informing the user that the request is com-
pleted.

5. Evaluation

In this section, we first briefly describe the experimental
setup. Furthermore, we compare Hound with the native
Docker, CRI-O, and Docker-compose in terms of cluster
image distribution performance, followed by the demon-
stration of Hound scalability.

5.1 Experimental setup

In our experiments, Hound is deployed on a cluster with
11 servers. Each server is equipped with four Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20 GHz (40-cores CPU),
four 16 GB DDR4 memory (64 GB of RAM), and four
WD Black 1TB hard-disks. Each server possesses exclu-
sive gigabit network bandwidth. We select one of them as
the Hound master, and the others serve as Hound work-
ers. All the experiments of Hound are performed with
Docker engine 19.03 while the image distribution
requests are sent to the Hound master through Postman
7.25.3. We repeat each experiment three times to obtain
the average results in all experiments for ensuring the
validity of the results.

We have selected several container images from
Docker Hub, which are shown in Table 4. The selec-
ted images such as

cover multiple aspects deep

learning  framework, web server, programming
language, compiler, operating system, etc. Images are
downloaded from the private registry we establi-
shed instead of Docker Hub

Considering the image list in the request contains more

in all experiments.

than one image, different image combinations are
required to be involved in the experiments. We de-
fine the request number to denote different image combi-
nations involved in the request, which is shown in
Table 5.

Table 4 Information about the selected images

Content Image size
Tomcat 140 MB, 329 MB
Jetty 225 MB
Django 267 MB
Gee 409 MB
Rust 543 MB
Ros 768 MB
Silverpeas 845 MB
Nuxeo 910 MB
MXnet 1.34 GB
Tensorflow 1.52 GB, 2.25 GB
Pytorch 3.39GB, 4.2GB

Table 5 Correlation between the request number and the image
combination

Request number Image combination

1 140 MB + 225 MB
2 267 MB + 329 MB
3 409 MB + 543 MB
4 768 MB + 845 MB
5 910 MB + 1.34 GB
6 1.52 GB +3.39 GB
7 225GB+4.2GB
8 140 MB + 267 MB + 409 MB
9 768 MB + 845 MB + 910 MB
10 1.34GB +1.52 GB +3.39 GB

5.2 Experimental results

5.2.1 Image distribution performance

The image distribution performance is evaluated by the
time consumed from the creation of the image distribu-
tion request to the download completion. We compare
Hound with the native Docker 19.03, CRI-O 1.17.0, and
Docker-compose 1.25.5. Note that Docker and CRI-O
implement image download function by using docker pull
command and crictl pull command (https://github.com/
containerd/cri/blob/master/docs/crictl.md), respectively.
While the method for Docker-compose to download
images is to use the docker-compose pull command with
the --parallel flag (https://docs.docker.com/compose/re-
ference/pull/), the required YAML configuration file is
set in advance.

We first illustrate the effectiveness of Hound when all
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nodes request to download the identical image combina-
tions, which is shown in Fig. 4. The x axis represents the
request numbers of different image combinations, and the
v axis represents the time required for image distribution.
We can observe that Hound can improve the image distri-
bution performance in the range of 31% to 53% com-
pared to the native Docker and CRI-O. Moreover, the
margin between Hound and these two schemes becomes
larger when the image size grows. This is because images
are downloaded sequentially by both Docker and CRI-O,
while images are downloaded in parallel by Hound owing
to the multi-thread technique. Moreover, Hound achieves
performance comparable to Docker-compose because
both of them achieve parallel image download through
the multi-thread technique and invoking Docker API in
the background.

600

wn

(= ]

S O
T T

Time required/s
Now b
S S
S 3
:

—_

(=3

(=)
T

1 2 3 4 5 6 7 8 9 10
Request number

M : Docker; M : CRI-O; M : Docker-compose; [ : Ours.

Fig. 4
Docker, CRI-O, Docker-compose, and Hound when all nodes

Comparison of image distribution performance between

request the identical image combination

Then, we further consider the image distribution per-
formance of Hound and Docker-compose when nodes
request different image combinations, which is shown in
Fig. 5. Three cases (i.e., Case A, Case B, and Case C) are
selected to represent requests of nodes for different image
combinations, which is shown in Table 6. Compared with
Docker-compose, we can observe Hound reduces image
distribution time by 11.7%, 20.3%, and 31.6% in three
cases, respectively. This is because Docker-compose has
to initiate a particular image distribution request when
different images are requested, which is relatively time-
consuming. For example, given the node which requests
the 2nd image combination and another node which
requests the S5th image combination, Docker-compose
requires to initiate different image distribution requests to
these nodes. While Hound classifies nodes with the iden-
tical requested image combination into a node group and
forwards requests to each node in all node groups in para-
llel by the multi-thread technique. Consequently, Hound
outperforms Docker-compose in terms of image distribu-
tion performance when nodes in the cluster request diffe-
rent image combinations.
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Fig. 5 Comparison of image distribution performance between
Docker-compose and Hound when nodes request different image
combinations

Table 6 Three selected cases of node request for different image
combinations

Requestnumber 1 2 3 4 5 6 7 8 9 10
Case A o 3 0 0 3 0 0 0 0 4
Case B 2 0 0 2 0 2 0 0 2 2
Case C 11 1 1 1 1 1 1 1 1

5.2.2 Hound scalability

We demonstrate the scalability of Hound in terms of the
image distribution performance, resource consumption,
and response time as the number of Hound workers
grows from 1 to 10.

Fig. 6 shows the image distribution performance of dif-
ferent numbers of Hound workers. Although the number
of Hound workers grows from 1 to 10, we can observe
that the margin of the required time for downloading
these image combinations is negligible (the maximum
margin is within 5 s). The result demonstrates that Hound
achieves high scalability in terms of image distribution.
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Hound workers

Image distribution performance of different numbers of

Then, the resource consumption of Hound, which
includes average load, CPU usage, disk write speed, and
network bandwidth, is evaluated as the number of Hound
workers grows. We adopt several testing tools to monitor
the consumption of these resources during the image dis-
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tribution process:

Average load: We monitor the average load by watch-
ing the /proc/loadavg at a 1-s granularity.

CPU usage: We monitor the CPU utilization with the
top command which monitors the CPU utilization by the
process in real-time at a 1-s granularity.

Disk write rate: We monitor the disk write speed with
the iotop command which monitors the number of bytes
written to the disk by the process at a 1-s granularity. The
average value is shown in the result.

Network bandwidth: We monitor the traffic to the

Docker daemon (excluding other unrelated processes) on
the Ethernet interface using NetHogs tool at a 1-s granu-
larity.

The comparison result is shown in Table 7. Our experi-
ment is implemented in the case of downloading the 10th
image combination. It can be observed that the average
load, disk write rate, and network bandwidth maintain a
relatively stable state as the number of workers increases
during the image distribution process. Thus, the result
demonstrates that Hound achieves high scalability in
terms of resource consumption.

Table 7 Resource consumption of different numbers of Hound workers (request number: 10)

Resource
Scenario
Average load(idle) Average load(busy) CPU usage/% Disk write rate/(MB/s) Network bandwidth/(MB/s)
Single worker 0.14 3.98 339.8 63.47 90.98
Five workers 0.14 3.81 342.4 61.83 90.68
Ten workers 0.14 3.72 327.2 60.58 90.27

Finally, we evaluate the response time of different
numbers of Hound workers, which is shown in Table 8.
Likewise, our experiment is implemented in the case of
downloading the image combination which corresponds
to the request number 10. Note that the response time of
the Hound master is denoted as the time elapsed from the
request initiation to the receipt of the reply from all
Hound workers. The response time of the Hound worker
refers to the time elapsed from the receipt of the forward-
ing request to the start of the image download. We can
observe the response time of the Hound master increases
but within an acceptable range (from 12 ms to 21 ms) as
the number of Hound workers grows. This is because the
Hound master requires to forward the image distribution
request to more Hound workers in parallel and keep wait-
ing until all Hound workers reply to it. The same trend is
seen in the response time of the Hound worker due to the
increasing transmission overhead of requests. Conse-
quently, the result demonstrates that Hound achieves high
scalability in terms of response time.

Table 8 Response time of different numbers of Hound workers
(request number: 10)

Scenario Master response time/ms ~ Worker response time/ps
Single worker 12.68 183.87
Five workers 17.37 245.24
Ten workers 21.05 268.18

5.3 Discussions

Note that the maximum number of Hound workers in our

experiment is 10, which is relatively small compared to
the current cluster size of the production environment.
Thus, the scalability of Hound in the scenario of a large-
scale cluster remains to be evaluated, which is served as
our future work.

In Subsection 5.2, we can observe that the response
time increases as the number of Hound workers grows
because of the request forwarding overhead. Based on
this observation, we infer that the only Hound master will
become the bottleneck in the scenario of a large-scale
cluster. Meanwhile, the only registry will also become the
bottleneck in the scenario of a large-scale cluster because
of the image download overhead. Thus, multiple Hound
masters and registries require to be deployed in the sce-
nario of a large-scale cluster. In the future, we will focus
on designing the load balancing scheme of Hound master
for efficient request forwarding and the image distribu-
tion strategy which selects the optimal registry to fetch
images.

Note that Hound attempts to achieve parallel image
distribution in the cluster view, which is orthogonal to
works dedicated to improving image distribution perfor-
mance. Thus, these works can be combined with Hound
to further improve the image distribution performance. In
the future, the combination of single-node image distribu-
tion strategy and Hound requires to be further explored.

6. Conclusions

In this paper, we propose a cluster image distribution sys-
tem based on Docker called Hound which downloads
images to the destination nodes in parallel. We observe
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that the existing image distribution strategies only take
effect when distributing identical images to the destina-
tion nodes. To support diverse image distribution
demands in the cluster view, we propose a novel image
distribution mechanism which consists of node classifica-
tion and node-level parallelism. Experimental results
demonstrate that Hound achieves better image distribu-
tion performance compared to Docker, CRI-O, and
Docker-compose when nodes in the cluster request differ-
ent images. Moreover, the high scalability of Hound is
also evaluated in the scenario of ten Hound workers.
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