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An accurate detection algorithm for time backtracked projectile-
induced water columns based on the improved YOLO network
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Abstract: During a sea firing training, the intelligent detection of
projectile-induced water column targets in a firing video is the
prerequisite for and critical to the automatic calculation of miss
distance, while the correct and precise calculation of miss dis-
tance is directly affected by the accuracy, false alarm rate and
time delay of detection. After analyzing the characteristics of
projectile-induced water columns, an accurate detection algo-
rithm for time backtracked projectile-induced water columns
based on the improved you only look once (YOLO) network is
put forward. The capability and accuracy of detecting projectile-
induced water column targets with the conventional YOLO net-
work are improved by optimizing the anchor box through
K-means clustering and embedding the squeeze and excitation
(SE) attention module. The detection area is limited by adopting
a sea-sky line detection algorithm based on gray level co-occur-
rence matrix (GLCM), so as to effectively eliminate such distur-
bances as ocean waves and ship wakes, and lower the false
alarm rate of projectile-induced water column detection. The
improved algorithm increases the mAP, of water column detec-
tion by 30.3%. On the basis of correct detection, a time back-
tracking algorithm is designed with mean shift to track images
containing projectile-induced water column in reverse time
sequence. It accurately detects a projectile-induced water co-
lumn at the time of its initial appearance as well as its pixel posi-
tion in images, and considerably reduces detection delay, so as
to provide the support for the automatic, accurate, and real-time
calculation of miss distance.
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1. Introduction

In a sea firing training, a ship fires its naval gun at a
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moving target object towed fast at sea. Accurately calcu-
lating the miss distance of each projectile is an impor-
tant work for evaluating its firing results. In order to
calculate miss distance online and grade each firing
in a timely manner, the projectile-induced water column
targets in a surveillance video of firing range should
be automatically detected, which involves the automatic
recognition of projectile-induced water column targets
in the images taken from the video, and the pixel posi-
tions of projectile-induced water columns in these
images. The miss rate and false alarm rate of water co-
lumn detection directly affect the omissions and false
alarms in projectile firing results. Additionally, because
the shot target object moves very fast, the calculation
accuracy of miss distance also relates to whether small
projectile-induced water column targets can be detected
with low delay as soon as projectiles touch the sea sur-
face.

When a projectile fired by a ship gun falls into water, it
generates a projectile-induced water column that may last
for only 2—5 s. The water column may be small when the
projectile just touches water, and it is characteristically
similar to ocean waves, wakes of the ship towing the shot
target object, clouds and other targets in images. For this
reason, its accurate detection with low delay is highly
challenging. In recent years, target detection technology
has been quickly developing. Zhang et al. focused on the
study of detection with Gaussian and non-Gaussian noise
[1,2]. In the image detection field, algorithms such as Tri-
dentNet and CenterNet feature very high detection accu-
racy [3,4], but require a high amount of computation and
fail to realize the real-time processing of video streams.
Moreover, semantic segmentation algorithms can achieve
the accurate extraction of target contour and the high
accuracy of positioning in images [5], but face a very
high false alarm rate in the refinement of highly random
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targets such as projectile-induced water columns. How-
ever, the you only look once (YOLO) algorithm can
understand images on the whole [6—9], and realize the
automatic recognition and positioning of targets in
images. It is able to achieve satisfactorily real-time pro-
cessing, but functions poorly in the detection of small tar-
gets such as the projectile-induced water columns that are
just out of water because of the restriction of grid mecha-
nism.

For the purpose of high accuracy, low false alarm
rate and low time delay in the detection of projectile-
induced water column targets, a time backtracking
projectile-induced water column detection algorithm
based on the improved YOLO network is therefore
proposed. It is developed with the following idea: the
characteristics of projectile-induced water columns in
images are analyzed firstly. Using the advantages of
real-time processing of the YOLO algorithm [10—12],
the anchor box and the network structure of the tradi-
tional YOLO algorithm are optimized to enhance the
detection accuracy and lower the miss rate of large pro-
jectile-induced water columns that have
Besides, considering that a projectile-induced water co-
lumn target starts from the sea-sky line, the automatic
detection of the sea-sky line is employed to eliminate
such disturbances as ocean waves and ship wakes, and
reduce the false alarm rate. With the water column
bounding box obtained from the improved YOLO algo-
rithm as its benchmark, the correlation between
adjacent frame images is utilized together with mean shift
to realize the tracking of projectile-induced water co-
lumn targets in images in reverse time sequence. In this
way, the time delay of detection can be reduced by find-
ing out the accurate time when water columns come out
of water. The position of a bounding box is updated in the
process of tracking in reverse order to increase the posi-
tioning accuracy, and systematically improve the detec-
tion quality of projectile-induced water column targets.
This will subsequently provide the support for automati-
cally and accurately calculating the miss distance of pro-
jectiles.

risen.

2. Characteristic analysis of projectile-
induced water columns and selection of
data set

After a projectile fired from a ship gun touches the
sea surface, it may induce a transient water column
with the height of approximately 3—5 m and the dia-
meter of 1-2 m. If observed distantly, its size is not large
in an optical image. Projectile-induced water columns

have uncertain shapes because of various compli-
cated factors such as the projectile’s speed and attitude
of touching the sea. Their shapes are noticeably and
stochastically different. The color of water columns is
slightly white, and greatly similar to that of the sky,
clouds, and ocean waves in the background. There is
not much color difference among them. If ship
guns fire for effect or salvo, multiple projectil touches sea
surface at the same time or sequentially with short
time intervals. In this case, lots of water columns
appear in images, and there may also be some image
overlap between different water columns. Moreover,
detection is also affected by such factors in marine
environment as high ocean wave, dense fog, rain, and
strong light. The image detection method has therefore
faced very high requirements to ensure the simultaneous,
real-time and accurate detection of multiple pro-
jectile-induced water column targets featured by tran-
sient and stochastic appearance, small color difference
and small size. YOLO (version 4), abbreviated as
YOLOv4, is a deep learning network [13,14]. As an
image detection method, it has been widely applied at
present. By utilizing a lightweight network structure, it
can understand and extract targets from images on the
whole, and is characterized by strong capability of multi-
target recognition, resistance to disturbance, and capabi-
lity of real-time processing [15,16]. Hence, it is an ideal
method for the detection of projectile-induced water
columns.

The selection of training dataset has a great influence
on the final detection and recognition capability of the
YOLO algorithm. Projectile-induced water columns are
more complicated than some ordinary objects such as
vehicles and humans. After a projectile touches sea sur-
face, the water column produced by the explosion will go
through three stages: generation, development and disap-
pearance, as shown in Fig. 1. The entire process may last
for approximately 2—5 s. After a projectile-induced water
column disappears, the sea surface will restore its
smoothness, leaving no trace of firing. In the entire pro-
cess from generation to disappearance, a projectile-
induced water column changes continuously in shape,
size and color. When a water column is caused just after
the explosion, it is small and not much different from
such targets as ship wakes and waves. At this time, it is
not suitable for the dataset used in training an algorithm,
since it may lead to very high false alarm rate. At the
stage of disappearance, a water column is atomized, and
becomes too transparent, so that it is not much different
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from the sky and clouds in the background. Similarly, it
is not suitable for dataset either. Therefore, only a water
column at the stage of development is suitable for dataset
since its outline is characteristically noticeable. Follow-
ing this idea, some unsuitable data is removed in this
paper to eventually collect and sort out 2900 images for
the water columns induced by the projectiles fired by ship
guns to the sea in different scenarios, and take them as
the dataset for the detection of water column targets.
Additionally, the software Labellmg is employed to mark
the water columns in these images. In order to better
detect the center of each water column with the trained
algorithm, these water columns are marked under the fol-
lowing standards: the marking scope is limited to the
highlighted area with concentrated spray, and does not
cover the edge of each water column; the water columns
are not marked if they have diffused or their color have
faded; the sprays are not marked if they are caused by the
fall of side water columns; the triangular water columns
have only the areas with brighter color and striking shape
marked. The marking format is set to YOLO format, that
is, [class, x, y, width, height]. In the format, class repre-
sents the type of target; x and y indicate the coordinates at
the center of a target after normalization; width and
height are the width and height of a target after normali-
zation.

(c) Disappearance

(a) Generation (b) Development

Fig. 1 Process of water column

Conventional YOLOv4 network is trained with the
above dataset. The detection results of projectile-induced
water columns with the trained YOLOv4 network are
shown in Fig. 2.

False alarm?
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(c) False alarm of wave
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(d) False alarm of spray

Fig. 2
algorithm

Diagram of recognition with the conventional YOLOv4

It is evident that the YOLOvV4 network can detect water
columns with prominent development, but still easily
causes such omissions as given in Fig. 2, and mistakes
wakes, ocean waves and clouds as water columns, which
will result in the miss rate and false alarm rate in the sub-
sequent calculation of miss distance. In addition, the con-
ventional YOLOv4 algorithm has low accuracy of posi-
tioning water column targets, and the size of its bounding
box does not match with the shape of water columns,
causing some error in the calculation of miss distance.
The conventional YOLOv4 algorithm for target detection
should be therefore improved to enhance the recognition
correctness and positioning accuracy of projectile-
induced water column targets, so as to lower the false
alarm rate and guarantee the accuracy and credibility in
the subsequent calculation of miss distance and the evalu-
ation of training results.

3. An improved YOLOv4 algorithm for pro-
jectile-induced water column detection

In this paper, the conventional YOLOv4 network is
improved to cope with the problems in the detection of
projectile-induced water column targets. With regard to
the problem that bounding box is dimensionally
unmatched with the shape of targets, the K-means cluster-
ing algorithm is utilized to determine the size of the
bounding box better fitting with the shape of projectile-
induced water columns. In order to reduce miss rate, the
squeeze and excitation (SE) attention module is embed-
ded into the YOLOv4 backbone network, which allevi-
ates the disappearance of characteristics of small and
weak targets. Moreover, a sea-sky line detection algo-
rithm is employed to preliminarily process the images,
which limits the detection area to the vicinity of the sea-
sky line in order to prevent such disturbances as ship
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wakes, ocean waves and clouds in the background from
causing false alarms.

3.1 K-means clustering algorithm

When the YOLOvV4 network is employed, nine anchor
boxes must be preset to preliminarily determine the
length-width ratio of targets to be detected. The targets in
images and the areas to which they belong, that is, bound-
ing boxes, are predicted on the basis of these anchor
boxes. Projectile-induced water columns are not station-
ary. When a water column rises out of water, it is thin and
long. Its size and shape constantly vary with time. The
default anchor boxes of YOLOv4 are not applicable in
detecting the moving targets of a single type. For this rea-
son, the K-means clustering algorithm is introduced in
this paper to cluster the size of water columns in the
dataset and obtain the anchor box values that better match
with the water column targets.

The K-means clustering algorithm is an unsupervised
clustering algorithm [17-20]. The lengths and widths of
the frames for all marked projectile-induced water
columns in the dataset are used to form a data point set,
which is input into the clustering algorithm. At first, the
algorithm selects nine centroids randomly. The distance
from each point (a pair of length and width) in the point
set to each centroid is then calculated. On this basis, the
point is marked into the same class as the most adjacent
centroid. The first clustering is completed. For the clus-
tered point set, the centroids of each class are recalcu-
lated. Based on these recalculated centroids, clustering is
then carried out again for all the points. After that, cen-
troids are calculated again. The process is repeated until
no change happens to centroids. Eventually, nine cen-
troids are obtained from clustering and selected as anchor
boxes. With these anchor boxes, the YOLOv4 network
could detect and position the targets based on the sizes of
actual projectile-induced water columns, so as to enhance
the recognition capability and positioning accuracy of the
algorithm.

3.2 SE attention mechanism

In a mission of water column detection, the characteris-
tics of targets diminish as the flow of data continuously
reaches the deep layer of the network. During detec-
tion, some weak and small targets such as projectile-
induced water columns may be easily missed. For this
reason, an attention module is embedded at an appropri-
ate position in the YOLOv4 network to improve the net-
work’s capability of learning key channels, and further
enhance the recognition rate of water columns. The SE
module proposed in [21-23] is a lightweight attention

mechanism module as presented in Fig. 3 where FC
means full connected, and ReLU means rectified linear
unit. The module can be easily added into a network
model, but causes a slight increase in model complexity
and computational cost, which does not undermine the
real-time nature of processing.
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Fig.3 SE attention mechanism

In order to enhance channel characteristics before the
characteristics of small projectile-induced water columns
disappeared, an SE attention module is embedded in the
middle of the YOLOv4 backbone network in this paper.
On the one hand, the SE module is added to the ResNet
(Res) module of the original network to generate a new
SE-Res module in place of the Res module in the origi-
nal cross stage partial (CSP) module. On the other hand,
the SE module is added behind the concatenate unit of the
original CSP module to form a new SE-CSP module in
place of all CSP modules in the original YOLOv4 back-
bone network. The revised network structure is as shown
in Fig. 4.
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Fig. 4 Schematic diagram of SE-YOLOv4 algorithm modification

3.3 Sea-sky line detection based on gray level
co-occurrence matrix (GLCM)

During a firing training, optical observation equipment is
normally installed on a surface ship towing a target
object, so that the projectile-induced water columns in the
images taken are always adjacent to the sea-sky line. For
this reason, locating the sea-sky line and detecting water
columns only near the sea-sky line can further improve
detection rate and lower false alarm rate [24—27]. Based
on the GLCM, a fast sea-sky line detection method is
devised in this paper to complete the sea-sky line detec-
tion for a 1920x1080 high definition image within
0.02 s.

As a method for describing the textural characteristics
of images, GLCM has been widely applied in the field of
image analysis. It finds out the number of gray level pairs
(fi,f,) formed between any point and multiple points
with a fixed step length in a direction on a grayscale
image. Normally, it is calculated in four directions, that
is, 0°, 45°, 90°, and 135°. The gray level statistics in
these four directions form a GLCM, which can satisfacto-
rily display the textural characteristics of images. On this
basis, the sea-sky line can be located. The original image
is traversed for many times, so that computation is enor-
mous if the image size or its gray value is very large.
Enlightened by the study in [28], a WxH high resolution
image is uniformly segmented into 16x16 rectangular
areas in this paper before calculating the gray level
matrix. The size of each area is represented by xxy. The
gray sum in each area is calculated separately, and then
proportionally lowered to less than 16 and rounded down
to generate a new grayscale image S after gray compres-
sion as follows:

16 > g(x.y)

X'<x,y'Sy

S, )) = 2553y

i<16,j<16

(M

where g(x’,y’) is the gray value at the point (x',y’);
S (i, j) is the gray sum rounded down for the area (i, j).

The size of a new grayscale image is 16x16, and its
gray level is also 16. The quality of the image might be
undermined to some extent, but the effect of detection is
not undermined since sea-sky line detection does not
require high resolution. The GLCM Py is obtained with
the compressed grayscale image as follows:

Ps (i, j,d,0) = #{[S (i, )),S (i+m, j+n)] |
m=dcos(f),n=dsiné,(i, j) € 16 x 16} 2)
where 0 = 0°, 45°, 90°, 135°; d is the distance from the
point i to the point j; #(x) indicates the number of ele-
ments in the set x.

The GLCMs of four directions are normalized respec-
tively as follows:

... Ps(,jd,o
p(l,])zs(T{)

where R is the normalization coefficient, and it could be

obtained for N X N size images as follows:
N(N-1), §=0° or90°
(N=1)’, =45 0r135°"

The GLCM P (i, j) is then utilized to calculate the con-
trast Con:

A3)
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The position with the largest contrast change in the
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vertical direction is taken as the position of sea-sky line.
Moreover, the range of 50 pixels above it and 25 pixels
below it is cut out as the detection zone of the algorithm.
The sea-sky line detection is highly sensitive to blue
color, so that the blue channel of the image is taken as the
input. The detection effect is as given in Fig. 5. It is evi-
dent that this algorithm could clearly reveal the texture of
the sea-sky line, while greatly detecting the sea-sky line
with the inclination of up to 45° and the sea-sky line in
the background of dense fog.

(a) Situation under sall shake o

(b) Situation under big shake

(c) Situation under multi water columns

(d) Situation under lighthouse
Fig.5 Detection effect of sea-sky line based on GLCM

3.4 Detection capability test of the improved algo-
rithm

This paper presents a test with the dataset of target object

detection to verify the effectiveness of the improved
YOLOvV4 network in the detection of projectile-induced
water columns. The test environment is conducted with
Tensorflow2.3.0-GPU deep learning framework, AMD
Ryzen 7 4800H with Radeon Graphics CPU, 32 GB
memory, NVIDIA GeForce RTX 2060 graphics card and
6 GB video memory. Considering that the COCO dataset
contains a variety of data, and the weights obtained from
its trained network are widely applicable. For this reason,
transfer learning is adopted, and the weights of COCO
network are taken as the initial weights to train the origi-
nal and improved YOLOv4 networks. This has consider-
ably shortened the time of training while ensuring the
effect of detection. The input images are sized 512x512,
and the number of anchor boxes is nine. After K-means
clustering on the dataset of target object detection, the
size of these anchor boxes is (5, 8; 10, 36; 11, 16; 14, 55;
17, 76; 19, 53; 27, 24; 28, 71; 45, 140). The enlarging
scale of anchor boxes is set to [1.2, 1.2, 1.05], and the
learning rate is set to 0.001.

Intersection-over-union (IoU) is taken as the basis for
judgment. When IoU > 0.5, it is judged that a water co-
lumn target is correctly recognized. The network perfor-
mance is assessed with four indicators including preci-
sion P, recall R, mean average precision mAP, and frame
per second (FPS). The improvement mechanism for each
model and their effect in the detection of projectile-
induced water columns are presented in Table 1. Among
them, transfer learning is adopted to train the models
YOLOv4 0, YOLOv4 1, and YOLOv4 3, and the train-
ing epochs are set to 180. The SE attention mechanism is
introduced to the models YOLOv4 2, YOLOv4 4, and
YOLOv4_5. Transfer learning could not be used since the
algorithm structure is changed, so the training must be
implemented from scratch and the training epochs are set
to 1000.

Table1 Comparison of detection effect among models

Mode K-means SE Sea-sky line Pl% R/% mAPs/% FPS
YOLOv4 0 76.2 56.2 535 42
YOLOv4 1 y 88.3 66.0 66.3 42
YOLOV4 2 v 88.7 78.7 75.6 38
YOLOv4 3 \ 90.0 67.7 67.0 26
YOLOV4 4 v v 90.3 80.0 79.4 28
YOLOV4 5 v v \ 94.5 83.0 83.8 21

As shown in the comparison, K-means clustering has
barely affected the operation speed of network, but effec-
tively enhances the precision of detection and increases
mAP;, by 12.8%. The SE attention mechanism is embed-

ded into the backbone network, so that it increases the
amount of computation, and causes a slight decrease in
FPS. However, mAPs, is increased by 22.1% compared
with the original network, as well as the increase of the
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recall R, which greatly improves the network’s capability
of recognizing and detecting small projectile-induced
water column targets. The sea-sky line detection algo-
rithm affects FPS greatly, but it significantly enhances the
network’s accuracy of detection. The reason is that the
algorithm concentrates on the detection areas nearby the
sea-sky line to effectively prevent the detection of water
columns from being disturbed by ocean waves, ship
wakes, and clouds. After K-means clustering, SE atten-
tion mechanism, and sea-sky line detection are simultane-
ously applied in the conventional YOLOv4 network,
mAP;, finally reaches 83.8%, a 30.3% increase com-
pared with the original network. Therefore, the precision
of water column detection is remarkably enhanced.
Meanwhile, the improved algorithm achieves 21 frames
per second which also satisfies the requirements for real-
time detection. The detection effect with the improved
network for the example in Fig. 2 is given in Fig. 6. It is
obvious that the improved algorithm can effectively
enhance the correct recognition of projectile-induced
water columns, reduce the false alarms in the detection,
and significantly improve the effect of water column
detection.

e |

{v .

(a) Avoid alarm of cloud

(b) Valid alarm of water column

el
R e

b

(¢) Avoid alarm of wave

Fig. 6 Detection effect of the improved YOLOvV4 network

(d) Avoid alarm of spray

4. A time backtracking algorithm for projec-
tile-induced water columns

As detailed in Section 2, the improved YOLOv4 network
uses the images of the water columns in the development
stage that has risen as its training data set. Therefore, it
processes more noticeable and larger water columns to
reduce false alarms in the detection to some extent. How-
ever, when the algorithm correctly detects a large water
column, there is a random time delay of approximately
0.5-1 s from the moment the water column just gene-
rated. If the shot target object is towed with a speed of

more than 20 knots, such time delay might result in a
large difference ( more than 5—10 m) between the posi-
tions of the shot target object at the detection time and
that at the just generated time of the projectile-induced
water column, which will cause an intolerable error in the
calculation of miss distance. For this reason, a time back-
tracking algorithm is devised to accurately detect the pro-
duced moment and the pixel positions of projectile-
induced water columns just coming out of water at the
time of its generation. The algorithm is implemented in
the following process: the time when the improved
YOLOV4 network detected water column targets is taken
as the start of backtracking N frames of images. The
recognition box of the water column detected by the
improved YOLOv4 network is taken as the reference
position to cut out the small area screenshots for all these
N backtracked frames nearby the position. Within the
detection time delay of 0.5—1 s, the position of a projec-
tile-induced water column changes continuously and
slightly in the adjacent frames. Hence, these small area
screenshots from backtracking could not only demon-
strate in reverse order the entire process from a water co-
lumn rising out of water to its just generation, but also
contain only the single water column in the current detec-
tion, which reduce the difficulty of subsequent process-
ing and the complexity of computation. Based on the
position of the water column detected for the first time by
the above improved YOLO algorithm, the water columns
in these time reversed screenshots is tracked and detected
with mean shift to eventually determine the just gene-
rated time of the projectile-induced water column as well
as its initial pixel position. The time backtracking algo-
rithm is conducted in the following procedure:

(1) The frames to be detected from a firing video are
input into the improved YOLOv4 algorithm proposed in
Section 3. When the algorithm detects a water column
target in any frame, the position of the bounding box is
recorded as By = [x,,y.,w,h],, where x,,y, are the coordi-
nates of the central point in the bounding box, and w,h
are the height and width of the bounding box.

(1) The bounding box By is slightly expand by (Aw, Ah)
and obtain the screenshot area Cj=[x.,y.,w+Aw,h+
Ah],. After backtracking N frames, the screenshot areas
of current frame and the N backtracked frames are taken
based on C,, arranged in reverse time sequence, and
numbered from the Oth to the Nth frame, so as to obtain
the reverse development diagram of the projectile-
induced water column.

(iii) The height of a reversely developing water co-
lumn decreases gradually. For the purpose of highlight-
ing the water column and reducing the disturbances in the
background, only the bottom one fifth of B, is taken as
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the position of the initial bounding box for the first back-
tracked image, that is, Bj=[x.,y./5,w,h/5],. The mean
shift [29,30] algorithm is utilized to track the water co-
lumn in the first backtracked image and the position of the
bounding box is updated to obtain B = [x.,y./5,w,h/5],,
whose statistical diagram of color probability distribution
S, 1is calculated.

(iv) Similarly, B] is taken as the position of the initial
bounding box for the second backtracked image. The
mean shift algorithm is used again to obtain the position
of the bounding box on the second backtracked image as
well as the statistical diagram of color probability distri-
bution S,. This process continues until the water column
disappears abruptly in the nth backtracked image who
only has clear background. At this time, S, suddenly
changes from dispersed distribution to concentrated dis-
tribution compared with the Oth to the (n—1)th frames in
which the water column coexists with the background.
The target tracking algorithm is halted then and the
(n—1)th frame is the image in which the water column
just appears, and B/_, = [x.,y./5,w,h/5],_, represents the
pixel position of the water column in the image when it
just appears.

(v) The next frame is further input. If the improved
YOLOV4 algorithm detects the water column target, loU
is taken to compare the bounding box in the current frame
with B, in the previous frame for position shift. If the
two bounding box positions are adjacent, it is believed
that the water column has been backtracked and the
detection is proceeded with the next frame. If the posi-
tion shift is large, it is believed that a new water column
1s detected and has not been backtracked. In this case, B, =
[xc,ye> W, h], is updated, and returned to step (ii) to back-
track the new water column until all the frames of the fir-
ing video are backtracked.

In the implementation of the time backtracking algo-
rithm, it is crucial to use the mean shift algorithm to con-
stantly adjust the position of the bounding box for a water
column, so as to track the water column in adjacent
frames. The mean shift algorithm is a kernel density esti-
mation method [3,4]. It depends only on the sample
points in the characteristic space to compute its density
function value. If samples are sufficiently taken, density
estimation can be performed for the data following any
distribution. The mean shift tracking algorithm aims to
move the centroid of bounding box using the mean shift
vector in the detection area. The moved centroid will be
taken as the new central point of the next bounding box
and the mean shift vector is computed again. Through
continuous iteration, the center of the bounding box keeps
moving to track the targets in images.

In d-dimension space, the mean shift vector for given n

sample points x;(i = 1,2,---,n) is basically in the follow-
ing form:

M, = %;(xi_x) (6)
where S, is a high-dimensional spherical area with the
radius of A; k indicates that k points fall into the area S,
among n sample points.

As a matter of fact, each sample point in the area is dif-
ferently important to the central point x. Normally, a
sample point more adjacent to the center has a higher re-
ference value and a larger weight than the sample points
at the edge. Hence, the Epanechnikov kernel function
showed in (7) is introduced into the basic form of the
mean shift vector.

c(1=IkxlP), Ixll <1
0, others

Kg(x) ={ @)

The improved mean shift vector is in the following

form:
 Cru % 2
My, = 5 ZKE( ) @®)

i=1
is the unit density. In order to obtain the

xX—X;
h

Kg.d
. nhd . .
maximum of M,g,, the derivative of M,x, can be

obtained as follows:
n 2
M, = znijj’;’ ;(x—x,-)l(g( %H )=
n 2
. Z xK, ( )
et
el
E h

i=1

where

xX—x;
X—X; h
h

2Cx,a |
" nhiv [Z KE(
i=1

)

In order to make M, =0, the second term must be 0.
Thus the coordinates of the center in the new bounding

box are
el
X= i=1” —.
> ()
i=1

The effect of the time backtracking algorithm based on
mean shift in tracking a projectile-induced water column
target is presented in Fig. 7. The backtracked images in
Fig. 7 are the time reversed screenshot areas near the
water column recognition box detected by the improved
YOLOv4 network. As revealed in the motion trajectory
of the center of the bounding box in Fig. 7, the algorithm

X —X;
h

X—X;
h
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could automatically track the reverse development of the
water column, and adaptively complete the adjustment of
the bounding box including translation and descent, so as
to achieve the stable reverse tracking of the water co-
lumn.

(a) The detection frame (b) The 1st backtrack frame

(c) The 2nd backtrack frame  (d) The 3rd backtrack frame

(e) The 4th backtrack frame

Fig. 7 Effect of target tracking with mean shift

On the basis of backtracking, the statistics of color
probability distribution S; in the bounding box for the
water column in each frame is calculated in a real-time
manner. Fig. 8 shows the §; of the frames just before and
after the water column is generated. At the time of its
generation, the water column exists with the background
in the bounding box, and the color distribution in the
bounding box is relatively scattered with color distribu-
tion in both high-value and low-value areas. Before its
generation, there is only the background in the bounding
box, and color distribution is concentrated. Therefore, the
variation of §; in the bounding box for tracking can be
used as the basis for accurately judging when a water co-
lumn is generated, and its pixel position in images.
Hence, it can effectively shorten the delay of detection, so
as to guarantee the precision in the subsequent calcula-
tion of miss distance.

Target tracking results and
movement track
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(a) After a water column appears

Target tracking results and
movement track
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(b) Before a water column appears

Fig. 8 Comparison of statistical diagrams for color probability
distribution between the frames before and after a water column
appears

The variance value of S; could reflect the differences
and volatility of colors in the bounding box. If the bound-
ing box contains all colors, S; would be zero and con-
versely if the bounding box contains only one or few co-
lors, §; would be large. The variance values of S; for
each backtracked image of Fig. 7 are shown in Fig. 9. It
shows that the variance value increases significantly in
the fifth frame of Fig. 7, which means that the fifth frame
contains relatively few kinds of colors because only back-
ground color is left. Thus the fifth frame is the image just
before the water column is generated and the previous
frame, that is the fourth image of Fig. 7, is the image the
water column just appears. Accordingly, the pixel posi-
tion of the bounding box in the fourth image is the pixel
position where the water column just appears.
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Fig. 9 Variance value of S; in the backtracked sequence images

The time backtracking algorithm proposed in this sec-
tion is also successfully verified in practical sea firing
training. A typical example to detect and backtrack three
successive projectile-induced water columns is shown in
Fig. 10. It can be seen that the proposed algorithm can
automatically realize the low-delay detection and accu-
rate positioning of projectile-induced water columns even
when they are close in time and exist in the same pic-
tures, which provides a beneficial support for the subse-
quent calculation of miss distance.
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Fig. 10 Detection based on improved YOLOvV4 network and the backtracked images for projectile-induced water columns

5. Conclusions

In order to achieve the automatic online calculation of
miss distance in sea firing, this paper presents a study on
the algorithm for the accurate detection of projectile-
induced water columns in the sea firing video. Focusing
on better accuracy, lower false alarm rate, and shorter
time delay, an improved YOLOv4 network including
K-means clustering, SE attention module, and sea-sky
line detection is proposed, which considerably improves
the capability of detecting projectile-induced water
columns. Besides, a time backtracking algorithm with
mean shift is also devised in this paper to realize accurate
recognition and positioning of small water columns that
just appears out of water, which effectively shortens the
delay of detection and improves the calculation precision
of miss distance caused thereby. The effects of the algo-
rithm are verified successfully in practical sea firing
training, which improves the detection quality of projec-
tile-induced water columns, so as to lay a foundation for
the subsequent real-time and high-precision detection of
targets for miss distance calculation.
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