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Abstract: Convolutional neural networks (CNNs) are well suited
to bearing fault classification due to their ability to learn discrimi-
native spectro-temporal patterns. However, gathering sufficient
cases of faulty conditions in real-world engineering scenarios to
train an intelligent diagnosis system is challenging. This paper
proposes a fault diagnosis method combining several augmenta-
tion schemes to alleviate the problem of limited fault data. We
begin by identifying relevant parameters that influence the con-
struction of a spectrogram. We leverage the uncertainty princi-
ple in processing time-frequency domain signals, making it
impossible to simultaneously achieve good time and frequency
resolutions. A key determinant of this phenomenon is the win-
dow function’s choice and length used in implementing the short-
time Fourier transform. The Gaussian, Kaiser, and rectangular
windows are selected in the experimentation due to their diverse
characteristics. The overlap parameter's size also influences
the outcome and resolution of the spectrogram. A 50% overlap
is used in the original data transformation, and +25% is
used in implementing an effective augmentation policy to which
two-stage regular CNN can be applied to achieve improved per-
formance. The best model reaches an accuracy of 99.98%
and a cross-domain accuracy of 92.54%. When combined with
data augmentation, the proposed model yields cutting-edge
results.

Keywords: bearing failure, short-time Fourier transform, prog-
nostics and health management, data augmentation, fault diag-
nosis.
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1. Introduction

Increased sensor integration in systems to provide a more
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comprehensive, reliable, and up-to-date acquisition of
information on their operation status results from a
need for improved reliability. Vibration analysis has
been widely used for condition monitoring and defect
diagnostics in rotating machinery over the past few
years. An effective and efficient signal processing tech-
nique is essential in extracting characteristic features
from the raw monitored signal to determine the
severity of the damage to enable accurate modeling of a
prognostics and health management (PHM) framework.
Over the years, researchers have used various techniques
to analyze the time, frequency, and time-frequency
domain characteristics [1-3] of a vibration signal to
determine the condition of bearings. Such traditional
approaches require ample prior knowledge of fault detec-
tion and signal processing, which is inconvenient for
industrial applications. As a result, intelligent fault diag-
nostics techniques have become increasingly common,
which can produce accurate fault diagnostics outcomes
with no previous experience. These data-driven tech-
niques are formulated using machine learning (ML) mo-
dels to classify fault types by extracting significant fea-
tures.

In recent years, the advancement and implementation
of deep learning (DL) in component diagnostics, prog-
nostics [4,5] and image classifications [6—8] has moti-
vated research in the application of such models in bear-
ing fault diagnostics [9,10]. This research aims to leve-
rage the capabilities of a convolutional neural network
(CNN), which comprises sequentially composed layers of
convolution and pooling operations, in establishing an
effective fault classification model.

Researchers adopt different methods of preprocessing
the vibration data used in classification models. A direct
translation approach entails a conversion of segments of
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the raw signal into matrices [11]. Similarly, wavelets [12]
and spectrogram [10] are other representations of the raw
vibration input signals. Some successes have been made
in end-to-end diagnostic models that can explicitly
bridge the connection between raw monitoring data and
system health states. However, they are primarily
based on the premise that labeled data are adequate and
provide full knowledge about machine health states.
However, in engineering scenarios, such an inference is
infeasible since these data cannot provide enough detail
to represent all of the different types of health condi-
tions [13].

Machines operate in a stable environment, with defects
occurring only infrequently. As a result, the accumula-
tion of healthy data is more prominent than unhealthy
data leading to an imbalance in a vast majority of the data
gathered. Since it is challenging to accrue sufficient opera-
ting data needed to implement a DL model, data aug-
mentation (DA) techniques can address this situation by
artificially creating new samples based on existing train-
ing data. This reduces the effect of overfitting and
improves the model’s efficiency. However, despite the
successful implementation of DA in other applica-
tions, not much research has been done in machine
health diagnostics tasks. The addition of noise [14] and
using generative models [15—17] to generate synthetic
datasets are some existing methods, with the latter being
prominent.

This paper proposes new DA techniques for fault diag-
nostics of bearings based on a simple but efficient CNN
model. The main contributions of this research are sum-
marized as follows:

(1) Propose DA that utilizes the various window func-
tions to enhance either time or frequency resolution of
spectrogram representations of bearing operating condi-
tions, and adopts different lengths of overlaps between
segments in spectrogram generation.

(i1) Propose the implementation of non-negative matrix
factorization (NMF) to generate more training data sam-
ples to circumvent data insufficiency.

(iii) Perform several DA on the training set to enhance
the generalizability of the classification model.

(iv) An efficient bearing fault diagnosis is presented by
combining the proposed augmentation techniques and a
lightweight CNN structure balancing low computation
time and accurate fault classification.

(v) Perform extensive experimental evaluation using a
publicly accessible dataset and compare the proposed
techniques with different state-of-the-art methods.

1075

The remainder of this paper begins with a theoretical
overview of the research in Section 2. In Section 3, a
detailed description of our proposed methods is outlined,
followed by experimental procedure and validation of the
proposed methods in Section 4. The experiment results
are presented and discussed in Section 5. The conclusion
of this paper is drawn in Section 6.

2. Theoretical basis

Defects in bearings produce asynchronous vibration com-
ponents in the inner and outer races, cage, and rolling ele-
ments. Depending on the geometry and speed of the bear-
ing, each of these defects will produce a distinct fre-
quency. These are the ball spin frequency (BSF), ball
pass frequency inner (BPFI), and ball pass frequency
outer (BPFO) [18]. These oscillations repeatedly occur
with a period ‘T’. If this coincides with one of the fre-
quencies calculated from the bearing’s geometry, then the
location of a defect can be determined. A typical geome-
try and defects that can occur in a rolling bearing are
shown in Fig. 1. The frequency indicates the source of the
fault, while the amplitude signifies the severity of the
fault. Vibration readings above the standard threshold
indicate the emergence of a fault and deterioration of a
bearing which can escalate and lead to severe equipment

damage.
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Geometry and fault characteristics of a rolling element

2.1 Short-time Fourier transform (STFT) for
signal preprocessing

Vibration signals acquired from rotating machinery are
non-stationary [18], making it difficult to describe and
predict the relevant information within such signals based
on their temporal or spectral representations.

A pragmatic approach is the time-frequency analysis
by transforming the one-dimensional (1D) signal into a
two-dimensional (2D) representation. A 2D data presents
more vital information and subsumes complex structure
distributions, enabling the prominence of intricate pat-
terns that characterize a machine’s operating condition.

The STFT is a linear transformation of a 1D signal to a
2D plane using a fixed-length sliding window. The STFT
of a time-domain signal x(f) can be expressed as

STFT.(1, f) = fm x(Ow(r — e > dr (1)

where w(f—7) is the sliding window.

A spectrogram is the energy density spectrum of the
STFT and can be obtained by taking the squared magni-
tude of the STFT expressed as

ISTFT.(t, ) = Um Kowr—ne™dd . @)

Therefore, in this paper, the spectrograms are gene-

rated by carefully selecting optimum parameters result-
ing in fault classes with distinctive discriminative fea-
tures.

22 DA

DL models require extensive labeled data during training
to improve generalization capabilities. In case of insuffi-
cient training samples, DA is applied in the data prepro-
cessing stage to make the model more robust. Also, it is
often challenging to cover the entire sample space during
data collection. Hence it is essential to incorporate an
appropriate form of DA when training a model. Random
geometric transformations are the most common types of
DA that make assumptions about the underlying dataset’s
patterns [19]. However, time-series data have different
properties from regular images, so these methods do not
work for all of them.

2.3 CNN

CNN or ConvNet is a multi-stage neural network that
comprises a feature learning and classification stage. The
former consists of convolution, batch normalization, acti-
vation, and pooling layers. Multiple filters are convolved
with the input data to generate feature maps in the convo-
lutional layers. Subsequently, pooling layers extract the
most significant local features. CNNs can learn abstract
spatial features by alternating and stacking convolutional
kernels and performing pooling operations. However,
increasing the network’s depth increases the computation
time, which is undesirable. The classification stage is a
multi-layer perceptron, which is composed of fully con-
nected layers. For an input of size M x M, having F
number of filters of size Kx K placed in L layers, the
evaluation cost of the CNN architecture becomes
O(M?K*R’L) [20]. The network storage is conditioned on
the filters’ size and biases, which results in O(K*R*L).
The computation complexity of training increases propor-
tionally to the number of network variables and the size
of the training dataset. When all the feature maps are
included in the process, the memory complexity increases
to O(M?RL) [20].

Devising faster ways of performing convolution with-
out compromising the model’s accuracy is highly desir-
able. In this research, we choose to get the most perfor-
mance with few layers as possible by carefully selecting
the model’s hyperparameters.

3. Proposed method

The overall framework of the proposed techniques is
shown in Fig. 2, which illustrates the stages involved in
implementing the bearing operating condition diagnos-
tics model.
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The raw vibration signals are first segmented and
transformed into spectrograms. These are then divided
into training and test sets. The generated training sam-
ples using the proposed augmentation methods are com-
bined with the original training set to train the proposed
CNN model. Finally, the performance of the trained
model is evaluated by using test sample sets.

3.1 Proposed signal preprocessing

The raw vibration data samples are divided into equal
samples with the same number of points by calculating
the number of sample points /N, in one revolution. There-
fore, given a sampling frequency F, of 12 kHz, and an
operating speed s of 1797 rpm, the sample points per rev-
olution can be estimated as

12 000
1797

The total length of a vibration signal under all the
faulty conditions is 120 000 for all operating loads. The
length of the raw signal for a normal operating condition
under 0 hp loads L, is 240 000, while that of 3 hp (L;,3)
is 480 000. Hence, demarcating the raw signal into sam-
ples of 400 data points as shown in Fig. 3 results in a total
of 300 samples for all fault conditions under 0 hp,
1 hp, 2 hp, and 3 hp.

F,
N, = 60— =60 ~ 400. 3)
R
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Fig. 3 An example illustrating the segmentation of an inner race
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For normal condition, 600 samples are obtained
for L, and 1200 for L,,;. Each of the samples is trans-
formed into a spectrogram for efficient feature learning
by the proposed CNN. The parameters used to compute
a signal’s spectrogram can significantly impact a classi-
fier’s performance [21]. Since there are virtually
infinite combinations of such parameters, a section length
of 88, overlap of 50%, 256 discrete Fourier transform
(DFT) points, and a Hamming window are some of the
optimum parameters selected in generating the spectro-

gram.
3.2 Proposed DA
3.2.1 Nonnegative matrix factorization

NMF
aims to approximate X into a basis matrix W € R™" and

Given a nonnegative data matrix X € R},

an encoding matrix H € R?", where W and H are two
low-rank nonnegative matrices. The factorization rank
parameter r sets the number of factors to be used to
describe the data and has a significant role in the process
of factorization. Different values of r contribute to vary-
ing effects of factorization. W and H are obtained by
applying an NMF to each sample of the bearing operat-
ing condition. The optimization problem is then formu-
lated as

min _fOWH)=ZIX-WHE ()

WeR™" HeRy™ 2 F

where ||| is the Frobenius norm of a matrix.

Since the optimization problem in (4) is nonconvex for
both W and H, the convex subproblem is realized by
dividing the problem into two. A closed-form solution is
obtained by using multiplicative update (MU) rule [22],
alternating least squares (ALS) [23], or other gradient
descent methods over a given number of iterations until
convergence is reached. A local minimum may have
functional characteristics in practice. Therefore, in this
research, an excellent global minimum is not imperative.
The steps used in implementing the NMF-DA is given in
Algorithm 1.

Algorithm 1 Proposed pseudo-code of NMF-DA
Input: N is the number of classes in dataset; p is the
percentage of overlap; w is the Hamming win-
dow; WO HO ¢ R, are random initial values;
r is the rank of approximation; L is the length
of a section; f; is the sampling frequency
Output: D, is the NMF spectrogram

D, s < empty;
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m «— max(256,2%);
forc—1toN do
sample D, € D from dataset;
foreach class data instance x; € D, do
[S, f,t] « computeSpectrogram(x;, w, p,m, f;);
X « Imagesc(t, f,95);
while a stopping criterion is not met do
foreach w, of W do

w, —w,/Iw,ll;
end

E=X-WH,
for r — 1 toR do
X" — E+w,h,;
h, —[X"w,].;
w, — [X"h,],;
w, —w,/[wll,;
E— X" —w,h,;
end
end
X=WH
Dy,  log(X)
end
end
return D,

3.2.2 Adjusting relevant spectrogram parameters

(1) Localization trade-off

The resolution of the vibration signal’s time-frequency
domain (TFD) representation tends to be deficient in a
particular domain depending on the chosen parameters.
This is due to the uncertainty principle in processing the
spectrogram where a perfect time and frequency localiza-
tion cannot be achieved simultaneously [24]. This implies
that a higher time resolution can be achieved for a given
window at the expense of frequency resolution and vice
versa.

We compose a DA strategy that generates variants of
the input signal by utilizing the rectangular, Gaussian and
Kaiser window functions [25]. For a given sample of raw
vibration signal, the spectrogram is generated by adjust-
ing parameters (¢ = 3, and S = 15) for Gaussian and
Kaiser window functions. All other parameters remain
constant, as detailed in Subsection 3.1.

(i1) Overlap

Each segment shown in Fig. 3 is further divided into
sections of equal lengths in computing the spectrogram.
The overlap parameter is essential in this process as it
determines the interval at which the window hops over
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successive sections. This process results in the stretching
of the time scale, which causes the changes in frequency
with respect to time to be more visible. However, the
overlap length between sections must be less than that of
the window function. Therefore, 25% and 75% overlaps
are selected to implement the proposed augmentation
technique.

Examples of generated training samples using the pro-
posed augmentation techniques are shown in Fig. 4.

- T R

T

(a) Gaussian (b) Kaiser

= -

(c) Rectangular (d) 25% overlap
e
(e) 75% overlap (f) NMF

Fig. 4 Samples of the proposed DA techniques

3.2.3 Proposed CNN architecture

The 2D spectrogram data are reshaped to equal sizes
of 32x32 and fed to the input layer of the model in
mini-batches. Feature maps are generated through convo-
lution operations using a 3x3 filter size at a stride
of 1. The rectified activation function (ReLU) is imple-
mented at this stage, followed by a batch normaliza-
tion (BN) layer to reduce internal covariance shift,
increase the learning process, and improve the network’s
overall performance. Subsequently, a pooling layer sub-
sample the feature maps with a window of size 2x2 to
reduce the spatial size. A max-pooling operation pro-
duces the maximum value in the 2 X2 input region. The
convolution, BN, and max-pooling operations are
repeated to further extract intricate features. The outputs
from the previous layer connect to a fully connected layer
comprising two hidden layers with 64 units each and an
output layer of size 10. The proposed architecture for
diagnosing a bearing’s operating condition is depicted in
Fig. 5.
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The proposed architecture produces fewer trainable
parameters and achieves high performance by adaptively
capturing discriminative features from input data via mul-
tiple non-linear transformations. The parameters in the
network are updated by using the back-propagation (BP)
algorithm, and the Adam optimization approach is uti-
lized to minimize the objective with batch size of 32. The
suggested network’s loss generally converges after ten
epochs of training with a learning rate of 0.001. The
trained model is finally used to test the remaining unseen
samples to obtain the model’s performance accuracy.

4. Experimental setup

The experimental setup of the proposed method on
rolling bearing datasets is discussed in this section. The
model’s performance is thoroughly investigated with va-
rious DA techniques and combinations. The effect of ran-
domness is minimized by averaging over five experimen-
tal trials, and the mean values are reported. The experi-
ments are conducted on a Windows computer equipped
with an i7 CPU and 8GB NVIDIA GeForce RTX
2070 GPU. The programming is done by using Keras, a
python application program interface (API).

4.1 Dataset description

In this analysis, the Case Western Reserve University
(CWRU) rolling bearing dataset is used to test the pro-

posed DA techniques. Acceleration transducers collect
data from a single-row deep groove bearing (SKF6205-
2RS) at sampling rates of 12 kHz under four load condi-
tions (0 hp, 1 hp, 2 hp, and 3 hp). Depending on the load,
this bearing’s defect frequencies are multiples of the
speed of operation, ranging from 1797 rpm to 1730 rpm.
The vibration signals used in this analysis are obtained
from the motor’s drive end under normal (N), inner race
fault (OF), outer race fault (IF), and ball fault (BF) health
conditions. Single point faults with diameters of 0.18
mm, 0.36 mm and 0.54 mm, respectively, are inserted
into the test bearing. As a result, this dataset includes ten
bearing health conditions for each of the four loads.

Eighty percent of each set of the original data labeled
A is used in training, and 20% is split equally into valida-
tion and test sets. The six different artificially created
training samples are labeled as follows: 25% overlap
(dataset B), 75% overlap (dataset C), Gaussian (dataset D),
Kaiser (dataset E), Rectangular (dataset F), and NMF
(dataset G). The best-trained model is saved during train-
ing, and an early stopping condition truncates the train-
ing process when there is no significant improvement in
validation loss after ten subsequent epochs.

Table 1 shows the distribution of the original and ge-
nerated data, and subsequent experimentation substanti-
ates the individual and combinatorial effect on the model’s
performance.

Table 1 Bearing operating condition training data distribution

Size of data

Bearing operating condition ~ Diameter of faults/mm Original Overlap Window NMF Class label
Lo Li23 Lo Lips Lo Lips Lo Lips
Normal 0 480 960 960 1920 1440 2880 480 960 1
Ball 0.18 240 240 480 480 720 720 240 240 2
Ball 0.36 240 240 480 480 720 720 240 240 3
Ball 0.54 240 240 480 480 720 720 240 240 4
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Continued
Size of data
Bearing operating condition Diameter of faults/mm Original Overlap Window NMF Class label
Lo Lips Ly Lips Ly Lips Lo Lips
Inner race 0.18 240 240 480 480 720 720 240 240 5
Inner race 0.36 240 240 480 480 720 720 240 240 6
Inner race 0.54 240 240 480 480 720 720 240 240 7
Outer race 0.18 240 240 480 480 720 720 240 240 8
Outer race 0.36 240 240 480 480 720 720 240 240 9
Outer race 0.54 240 240 480 480 720 720 240 240 10

4.2 Performance evaluation of classification model

The proposed approach is evaluated using a combination
of the real and six synthetically generated dataset result-
ing in 22 experiments for each load condition as shown in
Fig. 6.
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Fig. 6 A depiction of the various dataset combination and annota-
tion

Four performance measures are used to evaluate the
different fault classification results. These are accuracy,
precision, recall, and fl-score. These can be formulated
and computed for a multi-class performance evaluation
[25] as

where N. is the number of classes, TP and TN are the
number of true positive and negative classifications
respectively. FP and FN are the number of false positive
and negative classifications, respectively.

These metrics directly characterize the requirements of
a classification model. False alarms triggered inadver-
tently are undesirable because they increase operating
costs by causing unnecessary downtime. A good classi-
fier will maximize performance by only activating an
alert in the presence of an actual fault, ensuring no faults
are missed, and no false alarms are generated. The f1-
score explicitly expresses this combination.

5. Results and discussion

As mentioned earlier, the time-frequency domain repre-
sentation of the fault is used as an input sample for train-
ing the diagnostic model. The original time-domain rep-
resentation of the vibration signal is merged with various
combinations of augmented samples and utilized as input

N. TP. + TN for the model. The experiment is carried out for diffe-
Accuracy = ﬁz TP +FP. +TN. +EN. 100 rent operating speeds and the findings reveal that, the
,;]:1 fault classification model performs creditably well in dis-
Precision = — TP, %100 criminating the various operating states with excellent
N, o TP, +FP, (5) accuracies as shown in Table 2, where Acc, Pre, Rec, and
1 TP fl are the average percentage values of accuracy, preci-
Recall = N Z TP +EN. 100 sion, recall, and fl-score, respectively. As expected, the
< = n n . . . . . .
p "71 Recall computation time increases with an increase in the num-
recision X Reca . . L .
Fl1=2 — x 100 ber of augmentation strategies which is proportional to
Precision + Recall . -
the size of the training dataset.
Table 2 Experimental results of different combinations of real and augmented datasets %
0 hp 1 hp 2 hp 3 hp
Dataset
Acc Pre Rec f1 Acc Pre Rec Acc Pre Rec fl Acc Pre Rec fl
0 99.85 99.86 99.85 99.85 99.87 99.88 99.87 99.87 99.74 99.75 99.75 99.75 99.62 99.66 99.62 99.62

1 99.98 99.98 99.98 99.98

2 99.92 9993 99.93 99.93

99.94 9994 99.94 99.94
99.87 99.87 99.87 99.87

99.87 99.88 99.88 99.88 99.81 99.81 99.81 99.81

99.94 9994 9994 9994 99.94 9994 99.94 99.94
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Continued
0 hp 1 hp 2hp 3 hp
Dataset
Acc Pre Rec fl Acc Pre Rec fl Acc Pre Rec f1 Acc Pre Rec fl
3 99.79  99.79 99.79 99.79 9994 9994 99.94 9994 9994 9994 9994 9994 9998 9998 99.98 99.98
4 99.77 9978 99.78 99.78  99.94 9994 9994 9994 9998 9998 9998 99.98 9998 99.98 99.98 99.98
5 99.77 99.78 99.78 99.78  99.62 99.65 99.62 99.62 99.87 99.88 99.88 99.88 99.98 9998 99.98 99.98
6 99.98 9998 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98 99.98
7 99.92 9993 9993 9993 99.94 9994 9994 9994 9998 9998 9998 99.98 9998 99.98 99.98 99.98
8 99.92 9993 9993 9993 99.81 99.81 99.81 99.81 9998 99.98 99.98 99.98 99.98 99.98 99.98 99.98
9 99.85 99.86 99.85 99.85 99.87 99.88 99.87 99.87 9994 9994 9994 9994 99.87 99.88 99.87 99.87
10 99.70  99.71 99.70 1 99.70  99.81 99.81 99.81 99.81 99.68 99.70 99.69 99.69 99.94 99.94 99.94 99.94
11 99.92 9993 9993 9993 99.87 99.88 99.87 99.87 9998 99.98 99.98 99.98 99.87 99.88 99.88 99.88
12 99.85 99.86 99.85 99.85 99.81 99.81 99.81 99.81 99.68 99.70 99.70 99.70 99.98 99.98 99.98 99.98
13 99.85 99.86 99.85 99.85 99.98 9998 9998 9998 99.87 99.88 99.87 99.87 99.87 99.88 99.88 99.88
14 99.93 9993 9993 9993 9998 99.98 99.98 99.98 9994 99.94 9994 99.94 99.98 9998 99.98 99.98
15 99.92 9993 9993 9993 9994 9994 99.94 9994 99.74 99.78 99.78 99.78 99.98 99.98 99.98 99.98
16 99.85 99.86 99.85 99.85 99.94 9994 9994 99.94 9998 9998 9998 99.98 99.94 99.94 99.94 99.94
17 99.92 9993 9993 9993 99.87 99.88 99.87 99.87 99.81 99.81 99.81 99.81 99.98 9998 99.98 99.98
18 99.85 99.86 99.85 99.85 9994 9994 99.94 9994 9994 9994 9994 9994 9998 9998 99.98 99.98
19 99.85 99.86 99.85 99.85 99.81 99.82 99.81 99.81 99.87 99.88 99.88 99.88 9998 99.98 99.98 99.98
20 99.92 9993 9993 9993 9994 9994 99.94 9994 9994 9994 9994 99.94 9994 9994 99.94 99.94
21 99.92 9993 9993 9993 9994 9994 99.94 9994 9998 99.98 9998 99.98 99.98 9998 99.98 99.98

The computation times for dataset 0 are 141 s, 182 s,
153 s, and 181 s for O hp, 1 hp, 2 hp, and 3 hp respec-
tively. It took twice as much time to train and achieve
the best-performing model. The computation times for
dataset 6 are 345.5 s, 364.5 s, 421.3 s, 389 s for 0 hp,
1 hp, 2 hp, and 3 hp operating speeds, respectively. It
took an average of 1310.25 s to train the largest dataset
21, which is the longest time recorded in training. The
average values of the computation times are shown in
Fig. 7.
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In subsequent analysis, the model’s performance is
evaluated by using metrics defined in (5). Fig. 8 shows
the test accuracies of the model across all datasets under
the four operating speeds.
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Fig. 8 Test accuracies of all datasets

These accuracies range from 99.78% (dataset 0) to
99.98% (dataset 6). It is worth noting that increasing the
dataset size, which necessitates integrating different aug-
mentation strategies, does not always imply better perfor-
mance. As shown in Fig. 9, dataset 21 has the largest
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sample size. However, it has a high computation training
time and low accuracy compared to dataset 6, which has a
shorter training time and a higher performance outcome.
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Fig. 9 Computation time against accuracy
Fig. 10 shows the boxplot for all experimental studies

with the dataset (0) represented as a baseline and the rest
of the datasets split according to the operating conditions.
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Fig. 10 Test loss for all dataset

In all studies, test loss for all the datasets is compared
to that of dataset (0). The average test loss for the base-
line is higher than that of the other datasets. Nonetheless,
the performance of the proposed methods is excellent
across all datasets, and it outperforms most existing fault
classification algorithms in many cases.

The findings are compared to recent related works that
use the same dataset to demonstrate the proposed method’s
efficacy and superiority as presented in Table 3.

Table 3 Comparative analysis of the average testing accuracy for different existing models

Method Description Number of classes _ Training samples Average test accuracy/%
Method 1 [26] Ensemble deep auto-encoders 12 2400 97.18
Method 2 [27] DCNN with frequency domain (FD) features 3 4500 99.38
Method 3 [28] ELM with spectral Kurtosis 5 - 98.84
Method 4 [29] Multiscale local feature learning with support vector machine 10 150 99.31
Method 5 [30] Hierarchical diagnosis network with deep belief network 10 500 99.03
Our method CNN with augmentation 10 5280 (A + Q) 99.98

Method 1 is used to detect and classify 12 rolling bear-
ing health conditions by mixing diverse activation func-
tions. The classification accuracy of this approach is
97.18% which is 2.88% lower than that of the proposed
method. Methods 2 and 3 consider the diagnosis of fewer
health conditions and achieve an accuracy of 99.38% and
98.84%, respectively, which is 0.61% and 1.15% lower
than the proposed method. Methods 4 and 5 use fewer
labeled samples to diagnose 10 bearing conditions with
relatively high accuracy. Even so, the accuracy of the
proposed method is 0.67% and 0.96% higher than me-
thods 4 and 5, respectively.

In addition, the cross-domain problem is investigated,
in which labeled data at a given operating speed are used
for training, and subsequently tested with data on other
loads. According to careful analysis of the results
obtained, the test accuracy decreases as the value of oper-
ating load moves further away from its trained counter-
part. The average accuracy obtained by training the
model with 0 hp and testing it with 1 hp is 95.85%,

decreasing by 7.94% and 15.17% when tested with 2 hp
and 3 hp, respectively. As shown in Table 4, this reduc-
tion in accuracy value can be observed across all train
and test cross-domains.

Table 4 Cross-domain comparative analysis of the average

testing accuracy %
Train

Test 0 hp 1 hp 2 hp 3 hp
0 hp - 96.06 90.61 82.27
1 hp 95.83 - 96.54 87.18
2hp 88.78 99.30 - 98.53
3hp 83.21 92.69 99.49 -

Average accuracy 89.27 96.02 95.54 89.34

However, training the model with 1 hp and 2 hp
yielded very high cross-domain accuracies of 96.02% and
95.54%, respectively. The overall average cross-domain
accuracy is 92.54%, as compared to existing methods,
with 87.7% [31] and 91.54% [32]. In other existing anal-



KULEVOME Delanyo Kwame Bensah et al.: Rolling bearing fault diagnostics based on improved data augmentation ...

yses on cross-domain fault diagnostics, unlabeled testing
data is typically assumed to be accessible during the
training, making it easier to extract domain-invariable
characteristics useful for off-line fault diagnostics. How-
ever, in real-world industries applications, testing sam-
ples are rarely available ahead of time. The proposed
method can learn the significant features of the bearing
health conditions from one working domain and genera-
lize the learned pattern to different domains.

6. Conclusions

The acquisition of adequate data in practical applications
to enhance existing data on machinery operating condi-
tions is challenging. The quality and volume of available
training data play a significant role in the classification
accuracy and generalizability of practical DL models on
unseen data.

Augmentation of data is an alternate technique to cir-
cumvent the unavailability of labeled training data by
deliberately synthesizing new labeled samples from cur-
rently accessible ones. Conventional DA strategies
depend on a minimal collection of established invari-
ances that are simple to invoke and implement offhand
with slight disturbances that will not alter the data. In non-
image domains, however, such empirical label-preserv-
ing transformations are often ineffective.

This paper presents a different approach that utilizes
augmented time-frequency signal representations to
enhance the training dataset, thereby improving the over-
all performance of a CNN model. Using the CWRU bear-
ing dataset, the proposed approach is compared to cur-
rent methods. In order to assess the significance of their
technique, the authors conducted many experimental
investigations. The findings show that the proposed tech-
nique surpasses existing rolling bearing failure classifica-
tion methods in terms of classification accuracy. In future
works, the authors will explore the effect of noise on pre-
diction accuracies. The proposed technique will also be
implemented on other forms of time series data used in
fault classification problems to substantiate the proposed
method further.

References

[1] GOUGAM F, RAHMOUNE C, BENAZZOUZ D, et al.
Bearing faults classification under various operation modes
using time domain features, singular value decomposition,
and fuzzy logic system. Advances in Mechanical Engineer-
ing, 2020, 12(10): 1687814020967874.

[2] ROHANI BASTAMI A, BASHARI A. Rolling element bear-
ing diagnosis using spectral kurtosis based on optimized
impulse response wavelet. Journal of Vibration and Control,
2020, 26(3/4): 175-185.

[3] ZHANG Y, XING K S, BAI R X, et al. An enhanced convo-
lutional neural network for bearing fault diagnosis based on

(4]

(5]

(6]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[13]

[16]

(17]

(18]

(19]

1083

time-frequency image. Measurement, 2020, 157: 107667.
WANG Z Z, CHEN Y, CAI Z, et al. Methods for predicting
the remaining useful life of equipment in consideration of the
random failure threshold. Journal of Systems Engineering
and Electronics, 2020, 31(2): 415-431.

KULEVOME D K B, WANG H, WANG X G. A bidirec-
tional LSTM-based prognostication of electrolytic capacitor.
Progress in Electromagnetics Research C, 2021, 109:
139-152.

KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Ima-
genet classification with deep convolutional neural networks.
Advances in Neural Information Processing Systems, 2012:
1097-1105.

AGBLEY B LY, LIJ, HAQ A, et al. Wavelet-based cough
signal decomposition for multimodal classification. Proc. of
the 17th International Computer Conference Wavelet Active
Media Technology and Information Processing, 2020: 5-9.
AGBLEY B L Y, LI J, HAQ A U, et al. Multimodal
melanoma detection with federated learning. Proc of the 18th
International Computer Conference Wavelet Active Media
Technology and Information Processing, 2021: 238-244.
ZHANG S, ZHANG S B, WANG B N, et al. Deep learning
algorithms for bearing fault diagnostics —a comprehensive
review. IEEE Access, 2020, 8: 29857-29881.

KULEVOME D K B, WANG H, WANG X G. Deep neural
network based classification of rolling element bearings and
health degradation through comprehensive vibration signal
analysis. Journal of Systems Engineering and Electronics,
2022, 33(1): 233-246.

CHEN X H, ZHANG B K, GAO D. Bearing fault diagnosis
base on multi-scale CNN and LSTM model. Journal of Intel-
ligent Manufacturing, 2021, 32(4): 971-987.

KUMAR A, ZHOU Y, GANDHI C P, et al. Bearing defect
size assessment using wavelet transform based deep convolu-
tional neural network (DCNN). Alexandria Engineering Jour-
nal, 2020, 59(2): 999-1012.

YANG B, LET Y G, JIA F, et al. An intelligent fault diagno-
sis approach based on transfer learning from laboratory bear-
ings to locomotive bearings. Mechanical Systems and Signal
Processing, 2019, 122: 692-706.

LI X, ZHANG W, DING Q, et al. Intelligent rotating
machinery fault diagnosis based on deep learning using data
augmentation. Journal of Intelligent Manufacturing, 2020,
31(2): 433-452.

LIU S W, JIANG H K, WU Z H, et al. Data synthesis using
deep feature enhanced generative adversarial networks for
rolling bearing imbalanced fault diagnosis. Mechanical Sys-
tems and Signal Processing, 2022, 163: 108139.

HU T H, TANG T, LIN R L, et al. A simple data augmenta-
tion algorithm and a self-adaptive convolutional architecture
for few-shot fault diagnosis under different working condi-
tions. Measurement, 2020, 156: 107539.

GAO X, DENG F, YUE X H. Data augmentation in fault
diagnosis based on the Wasserstein generative adversarial
network with gradient penalty. Neurocomputing, 2020, 396:
487-494.

AHMED H, NANDI A K. Condition monitoring with vibra-
tion signals: compressive sampling and learning algorithms
for rotating machines. New Jersey: John Wiley & Sons,
2020.

IWANA B K, UCHIDA S. An empirical survey of data aug-
mentation for time series classification with neural networks.
PLoS One, 2021, 16(7): €0254841.



1084

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Journal of Systems Engineering and Electronics Vol. 34, No. 4, August 2023

JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convo-
lutional neural network for inverse problems in imaging.
IEEE Trans. on Image Processing, 2017, 26(9): 4509-4522.
NYKAZA E, BUNKLEY S, BLEVINS M G. Objectively
choosing spectrogram parameters to classify environmental
noises. INTER-NOISE and NOISE-CON Congress and Con-
ference Proceedings, 2006, 253 (1): 7336-7343.

GAN J Z, LIU T, LI L, et al. Non-negative matrix factoriza-
tion: a survey. The Computer Journal, 2021, 64(7):
1080-1092.

BERRY M W, BROWNE M, LANGVILLE A N, et al.
Algorithms and applications for approximate nonnegative
matrix factorization. Computational Statistics & Data Analy-
sis, 2007, 52(1): 155-173.

COHEN L. Time-frequency analysis. New Jersey: Prentice
Hall, 1995.

ALLEN R L, MILLS D. Signal analysis: time, frequency,
scale, and structure. New Jersey: John Wiley & Sons, 2004.
SHAO H D, JIANG H K, LIN Y, et al. A novel method for
intelligent fault diagnosis of rolling bearings using ensemble
deep auto-encoders. Mechanical Systems and Signal Process-
ing, 2018, 102: 278-297.

TIAN Y L, LIU X Y. A deep adaptive learning method for
rolling bearing fault diagnosis using immunity. Tsinghua Sci-
ence and Technology, 2019, 24(6): 750-762.

UDMALE S S, SINGH S K. Application of spectral kurtosis
and improved extreme learning machine for bearing fault
classification. IEEE Trans. on Instrumentation and Measure-
ment, 2019, 68(11): 4222-4233.

LIJM, YAO X F, WANG X D, et al. Multiscale local fea-
tures learning based on BP neural network for rolling bear-
ing intelligent fault diagnosis. Measurement, 2020, 153:
107419.

GAN M, WANG C, ZHU C A. Construction of hierarchical
diagnosis network based on deep learning and its application
in the fault pattern recognition of rolling element bearings.
Mechanical Systems and Signal Processing, 2016, 72:
92-104.

XU ZF, LI C, YANG Y. Fault diagnosis of rolling bearing of
wind turbines based on the variational mode decomposition
and deep convolutional neural networks. Applied Soft Com-

puting, 2020, 95: 106515.

[32] LI X, ZHANG W, DING Q. Understanding and improving
deep learning-based rolling bearing fault diagnosis with
attention mechanism. Signal Processing, 2019, 161: 136-154.

Biographies

KULEVOME Delanyo Kwame Bensah was
born in 1983. He received his M.E. degree in
electronic science and engineering in 2019 from
the University of Electronic Science and Techno-
logy of China, Chengdu, China, where he is cur-
rently pursuing his Ph.D. degree in information
and communication engineering. His research
interests include prognostics and health manage-
ment of systems, fault diagnostics, signal processing, and deep learning.
E-mail: kdelanyo@jieee.org

WANG Hong was born in 1974. He received his
B.S., M.S. and Ph.D. degrees from Northwestern
Polytechnical University, Chongqing University,
and University of Electronic Science and Tech-
nology of China (UESTC), respectively. He is a
faculty member with UESTC since 2003. From
2007 to 2009 he was engaged in doctoral research
with the Second Research Institute of Civil Avia-
tion Administration. From 2009 to 2010, he was a research scholar with
Polytechnic Institute of New York University and research assistant
with New Jersey Institute of Technology, USA. His research interests
include radar signal processing, avionics, aeronautical telecommunica-
tion, and surveillance technologies in air traffic control.

E-mail: hongw@uestc.edu.cn

WANG Xuegang was born in 1962. He received
his Ph.D. degree from Xidian University in 1992.
He is now a professor and Ph.D. supervisor with
University of Electronic Science and Technology
of China. His research interests include radar sig-
nal processing, and millimeter wave radar.

E-mail: xgwang@uestc.edu.cn



