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Robust output regulation problem with prescribed
performance for nonlinear strict feedback systems
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Abstract: This paper investigates the problem of robust output
regulation control with prospected transient property for strict
feedback systems. By employing the internal model principle,
the robust output regulation problem with a prospected pro-
perty can be transformed to a robust stabilization problem with a
new output constraint. Then, by constructing the speed function
and adopting barrier Lyapunov function technique, the dynamic
feedback controller can be designed not only to drive error out-
put of the closed-loop system entering into a prescribed perfor-
mance bound within a given finite time, but also to achieve that
the error output converges to zero asymptotically. The effective-
ness of the results is illustrated by a simulation example.

Keywords: robust output regulation, nonlinear system, pre-
scribed performance bound, speed function, finite time.

DOI: 10.23919/JSEE.2023.000098

1. Introduction

Robust output regulation (ROR) control aims at design-
ing a feedback controller for a class of system with uncer-
tain parameters to achieve asymptotic tracking for desired
control inputs and/or asymptotic rejecting undesired sig-
nal. As a fundamental problem in control theory, the sol-
vability conditions of the ROR problem are extensively
studied in the overviews and monographs on this topic for
details [1-5]. The key to tackle the ROR problem is the
internal model principle. More recently, the solvability
conditions for cooperative ROR problems of some multi-
agent systems are also investigated by the internal model
method [6—10]. However, the solvability conditions for
ROR problem only address the steady state performance
of regulation. To satisfy the constraints on system states
and error outputs, the transient performance of the closed-
loop system is also an important issue in the design of
controllers for the ROR problem. Thus, the methods and
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techniques to guarantee prescribed transient performance
are much more interesting and also more challenging in a
lot of practical system.

In recent years, some control approaches have been
constructed to restrict error output keeping in a pre-
scribed performance bound [11—14]. Prescribed perfor-
mance bound is adopted to classify the transient and
steady state performance. The error output is confined to
a given zone to satisfy the required limits. The barrier
Lyapunov function (BLF) method is a powerful and
widely used method to solve these prscribed constraints.
For example, in [15,16], BLF was used to constructed
adaptive controllers for tracking control problems of strict-
feedback systems with time-unvarying and time-varying
output constraints respectively. Also, BLF based adap-
tive control techniques have been applied to strict-feed-
back systems with partial state constraints [17] and full
state constraints [ 18]. These BLF methods require that the
initial value of the system should be inside the prescribed
performance bound. However, many physical systems,
e.g., robot manipulators, may require that error output
converges to a desired bicompact zone in a prospected
time interval to perform complicated tasks [19,20]. In
[21], uncertain Euler-Lagrange systems with state con-
straints were designed to drive the error output to con-
verge to a designed bicompact zone in a prospected time
interval by constructing a speed function and adopting
error transformation technique.

In this paper, the traditional ROR problem is extended
to an ROR problem with finite-time prescribed perfor-
mance. Not only the error of the system is regulated to
zero asymptotically as for the traditional ROR problem,
but also the error output is driven into a preset constraint
bound after a given time interval to achieve the desired
transient performance. A framework to tackle the ROR
with finite-time prescribed performance is established by
combining the speed function technique and the BLF
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technique. By employing the internal model principle and
adopting a state transformation, the proposed ROR prob-
lem is transformed to a robust stabilization problem with
output constraint. Based on a speed function and a BLF, a
finite time prescribed performance control scheme is
devised to deal with the robust stabilization problem,
which also solves the ROR problem with finite-time pre-
seted constraint. Under the framework of the ROR prob-
lem, not only tracking control problem but also distur-
bance rejection problem can be handled conveniently by
finite time prescribed performance control. Compared to
the existing results, the features of this paper can be high-
lighted as follows.

(i) Prescribed performance control technique is intro-
duced into the output regulation problem which can
tackle the tracking control problem and the disturbance
rejection problem simultaneously. Comparing with most
of the results on tracking control with prescribed perfor-
mance which keep the tracking error in a prescribed per-
formance bound but not converge to zero, the tracking
error in output regulation framework tends to zero
asymptotically.

(i) The finite time prescribed performance control
problem considered in this paper is more general than that
in [22,23] by noting that some practical systems are
required to follow the prospected paths with a desired
convergence rate in a finite time.

(ii1) The existing BLF methods require that the initial
value of error output needs to be restricted in prescribed
performance bound [11-13]. By designing finite time
feedback controller based on the speed function and BLF,
the initial value of error output can be given arbitrarily,
which enlarges the degree of freedom in the design.

This paper is organized as follows. The ROR problem
with finite time prescribed performance is formulated for
a class of strict feedback nonlinear systems in Section 2.
Section 3 establishes a framework to solve the ROR prob-
lem with finite time prescribed performance. In Section 4,
a numerical example is presented to demonstrate the
validity of our results. Section 5 gives concluding
remarks.

2. Problem formulation and preliminaries
Consider a nonlinear uncertain strict feedback system
described by

z2=f(z,X%,v,w)

X1 = filz, %, v,w) + b(v,w)X,

X = filz X, X v,w) + b (v, w) X, i = 2,3, ,n—1

X, = fi(z, %, X, v,0) +b,(v,w)u

(D

where zeR", X € R(i=1,2,---,n), is the system state,

w € R” is the uncertain parameter, u € R is the control
input, v € R? is the exogenous signal representing the dis-
turbance and reference input which is given by

v=_8v. 2

Without loss of generality in the literature of nonlinear
output regulation problem, the exosystem (2) is assumed
to be neutrally stable, i.e., the eigenvalues of S are sim-
ple and have zero real parts. Also, it is assumed that, for
Yi=1,2,---,n, the functions f(z,%,v,w) and
fi(z,%,,---,X;,v,w) are smooth with f;(0,---,0,0,w)=0
and b,(v,w) > 0. Define the error output of the system as

e=y—ys =X —ysv). (3)

The control objective is to design a feedback control
law

n=Mmn+NXy, i=12,--,n-1
ﬁn = M)lr]n+Nnu (4)

u= k(nb ’Tlll’xl’... ’)_Cn’e)

such that the output of the closed-loop system y = &, will
asymptotically track a reference trajectory y,(v) with
desired transient performance, where k() is a nonlinear
function and (M,, N;) is a pair of matrices to be designed
later. The control problem can be formulated as an out-
put regulation problem with finite time prescribed perfor-
mance as follows.

Robust output regulation with finite time prescribed
performance control: consider the uncertain nonlinear
strict feedback system (1), the exosystem (2), and the
error output (3), design a feedback control law in the
form of (4) such that the closed-loop system consisting of
(1), (2), and (4) has the following three properties:

Property 1 The trajectories of the closed-loop sys-
tem are bounded for all 7 > 0.

Property 2 The system output y = x; tracks a refer-
ence trajectory y,(v) asymptotically, i.e.,

lime(?) = lim (y(¢) —y,(v)) = 0.

Property 3 Within a given finite time 7', the tran-
sient performance of the tracking error e(¢) satisfies a pre-
scribed performance bound as follows:

{— co(t) <e(t) <cp(t), VYtz=T
p(t) = (Po = o) eXp (=) + pos

where py, p, and [ are strictly positive real numbers, and
0 < ¢ <1 is a design parameter.

Remark 1 The ROR problem with finite time pre-
scribed performance is an extension of the traditional out-
put regulation problem by addressing the transient perfor-
mance of the closed-loop output error e(7). In fact, with-
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out Property 3, it is exactly a traditional prospected time
interval problem which is extensively investigated in the
literature. Property 3 defines a performance boundary
cp(t) for the transient performance of the closed-loop out-
put error e(f) and a prescribed finite time interval T. The
error output e(f) is required to be constrained in a given
compact which is predefined by the performance bound
function co(¢) in a desired time interval T at the pre-set
rate of convergence.

The following assumptions are necessary to derive the
main results in this paper.

Assumption 1 There exists a sufficiently smooth
function z(v,w) with z(0,0) = 0 such that, for all ve R?,
weR”,

0z(v,w)
ov

Under Assumption 1, let X;(v,w) = y,(v), and we can
define

Sv = fz(v,w),y,(v),v,w), YveRL (5)

1 | 0x;(v,w)
b;(v,w) ov

fizv,w), X (v,w), -+, X(v,w),v,w)}, 1<i<n.

Sv—

Xn(v,w) =

Assumption 2 For i=1,2,---,n, there exist an inte-
ger m; and a sufficiently smooth function z; : R¥”** - R™
vanishing at the origin, and matrices F; € R"*"  column
vector y; € R™!'such that for all trajectories v(r) of the
exosystem (2) and all w € R¥, there is

dz;(v, w)
dr

Furthermore, the pair (F;,x;) is observable and all the
eigenvalues of F; are simple with zero real part.

Remark 2 Assumption 1 and Assumption 2 are quite
standard in the literature of robust nonlinear output regu-
lation. Assumption 1 is to guarantee the existence of the
solution of the regulator equation which is necessary for
solvability of the nonlinear output regulation problem.
Assumption 2 is to construct an internal model to handle
the uncertainties of the robust nonlinear output regula-
tion problem.

Fori=1,2,---,n, choose a Hurwitz matrix M, € R
and a column vector N; € R™*! satisfying (M;, N;) is con-
trollable. T; is the solution of the Sylvester equation
T,F,—MT, = N,y;, which is a nonsingular matrix of
dimension m;. Let 0, = T;m;, and (6, =,\/,-T,-"0,-. Then
an internal model of system in (1) with output X, are
given as follows:

=Fm(v,w), X,(,w)=)xm®,w).

i=Mmn+NXy,, i=1,2,---,n. (6)

Next, we perform on the system (1) and (6) the follow-
ing input and coordinate transformation:

20 =z2—2(v,w)

n=n-0(,w), i=1,2,---,r,
xi=x-x(v,w)=e

X1 = X —vi(@m), i=1,2,--- ,n—1 - D
z=1,—0,(v,w)—Nb'(v,w)x;, i=1,2,--+,n

i =u—y,1,)

the following system can be obtained

Z0 :ﬁ)(z()vxl’d(t))
Zi=Hj(Z(),Z1,"',Zi,xl,"',xj,d(t)) (8)
xi = ﬁ(Z09Zl»"' 5Zis X5t 9xiad(t))+bi(vsw)xi+l

where i =1,2,---,n, d(t) = (V(t),w), X, =i, and

So(z0, x1,d(1) = f(20 +2(v, W), X, + X1 (v, W), v, w)—
f(Z(V’ a))7fl (V7 CL)),V, (U)
Hi(z0,21, 52 X1, 5 X3, d(1)) = Mz + MiNib;lxi_

ob:'(v,
» ’(Vw)S
y

N, V.x,’_N,’b;l(V,a))x,‘

f1@os 21, %1, d (D) = fi(2o +2(v, w), X + 5 (v, w), v, w)—
fi@r,w), 5 (v, w),v,0) + by (v,w)y, ()~
bi(v,w)y(6,)

Ji@o, 2157520 X1, X5, d(D) = filzo +2(v, w), X1+
5 0,w), %+ 712 + 0+ Noby '), X+ Yz +

Oyi1(02)

0, +Nb"Y)y-1—"786._
+ ) 30, 1

©

where the functions fy, H,, f; are sufficiently smooth in
their ~ arguments and we can get that
H(0,0,---,0,x,,d(®) =0,£(0,0,---,0,d(r)) = 0. Thus, the
ROR problem with finite time prescribed performance is
converted to the constraint stabilization problem in (8).

Remark 3 After the aforementioned coordinate and
input transformation, if we can make the equilibrium of
the system (8) at x =0 globally asymptotically stable for
any d(f) € VoxR® and —cp(f) < x,(t) < cp(t), t > T, the
output regulation problem with finite time prospected
property can be achieved.

Assumption 3 There exists a C' function V,(zy,1)
satisfying u(||zl) < Vo(zo.1) < t(llzol) for some class K.,
function ,u() and j(-), such that, along the trajectory of

ZO = ﬁ)(ZO’xl’d(t))s

dVi(zo.1)

P < —lzoll” + S0 (x1) (10)

for some known smooth positive definite function §,(x,).

Assumption 4 For i=1,2,---,n, there exists a C'
function Vi(z;,7) satisfying u(l|zill) < Vi(zi,t) < a(llzl) for
some class K, function ,ul_(s and f;(-), such that, along
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the trajectory of
2= Hi(20,21,* »Zic1, X150+, X3, d (1))
Vi(z 11
% < =llzilP + 620,21+ 1 Zimts X1y 4 X) an
for some known smooth positive definite function
01205215 " 5 Zis X150 07 5 Xi)-

Remark 4 According to Assumption 3 and Assump-
tion 4, it can be obtained that the system 2z, = fy(zo,
x1,d()) and z; = H(zo,21,* »Zis X1, + » X;,d(t)) are input-
to-state stable. From changing supply rate technique,
given any smooth function Ay(zy) > 0, there exists a C!
function V(z0,1), satisfying §0(||Z0”) < Vio(zo, 1) < Eo(llzoll)
for some class K, functions § . and &, such that, along
trajectory of system

{Zo = fo(zo,x1,d(2))

dVy(zo,t (12)
Vo0 1P 80 (z0) + Esor (1)

dr
for some known smooth function so(x;) > 1. Similarly,
for i=1,2,---,n, given any smooth function A,(z;) >0,
there exists a C' function Vi(z,?), satisfying

& (llzlh < Vi(zi, 1) < &(llzill) for some class K., functions &
and &, such that, along trajectory of system

Zi = Hi(zo 21,7+ 120, X1, 7, X, d(1))

dVi(z.1) "1 127 Qs
T <P 8 @)+ D PR + ) xS
j=0 j=1
(13)

for some known smooth functions %,;;(z;) > 1, s;;(x;) > 1.

3. Main results

In this part, we construct a state feedback controller to
solve the ROR with prescribed performance in a given
finite time for the system (1), (2), and (3).

To proceed, we give some notations and an assump-
tion which are used later.

A rate function is given as follows:

4

= (T—_t) X, 0<i<T

co, t=2T

(14)

where 0 < T < oo is the preset time interal, and y(¢) is a
smooth and non-decreasing function with y(0)=1 and
x = 0. It needs to be noticed that, when ¢ > T', y(¢) = co.

Assumption 5 The finite time 7 is designed to satis-
fy T >T,. T. is a small time interval which is necessary
for signal computing and transmission.

With (14) and Assumption 5, the speed function S() is
given as follows:

B(t) = (15)

(=)' +c
where ¢ is a given parameter meeting 0 < ¢ < 1. Based
on the expression of ¥(¢) in (14), we obtain

Ty (1)
(1=e)XT =)* +cTx (D)’

0<t<T
B = (16)

-, 2T
c

The properties of the speed function S(f) are listed in
[21].

To achieve the proposed control objectives, perform-
ing on the system (8) the following coordinate transfor-
mation

X = X — @y
X1 = B0, , (17)
}; =3C\,, l= 2"37'” N

we obtain

{}] = B (x1 — o) + 1)1 — cro) (18)

X=X =@, =23, ,n

where @, =0 and «;_; are the virtual control input which
will be given later. B(¢) is the speed function which is
introduced to guarantee the error output converges to a
designed set in a finite time.

Let X; =col(zg, 21, »2i» X1, X2, -+, X;) Tor 1 <i< n, the
control scheme is designed by the following steps.

Step 1 Define U,(X,,1) = Vo(zo.0) + Vi(z1,0) + Vi(X)).

Consider the following Lyapunov function candidate:

P> (1)
P =X7(1)
for x; € Vi, where V, ={x, e R | [x|| <p}. Vi(x)) is posi-

tive definite and C' continuous for all X, € V,, and
Vi(x)) » o as |g| = p. Then, the derivative of V, is

V, = log (19)

given by
= 2—3;1(} - @) —
I_Pz(t)—flz ! lp(z) -
28(0x B~ %,
m(ﬁxl + fi1(zo, 21, E’d(t))"'b](V,w)
(3‘3+“')—do—71;%). 20)

Let g(20,21:%,d(0) = fi(zos 21, o, d(®) =iy Tt is ob-
vious that g,(0,0,0,d(?)) = 0. According to Lemma 7.8 in
[2], we can obtain

8120 21, X1, A < llzollr10(20) + |zl (1) +
111 111 (1) 21)



ZHU Haichao et al.: Robust output regulation problem with prescribed performance for nonlinear strict feedback systems 1037

where 10(z0), ¥11(z1), and ¢,,(z)) are smooth positive
functions.
Thus, according to (12), (13), and (20) with i =1, we
can obtain
Ul = V0+V1+F‘71 <

= lzoll* 29 (z0) + X%SOI(XI) N (z)+

_ 28%,
ol xt5 o)+ b
lzill11(z0) + (Xl () + by (v, w) (3 + @y )~
b b
Yo T (22)
Design the stabilizing function a,(x;) as
2 1 _ 32
o) = -0 G 23)

where &, is a positive constant and £,(x;) is some smooth
nonnegative function to be given later. Substituting (23)
into (22), we have

U, < =(20(z0) = h1o(z0) — lﬁ?o(zo))”Zo”z —(a(z)-
2B
B30

W%l(zl))”Zl”z + {501 (x1) + 511 (x1) +

2B° + by + 2Bp()p1 (x1) — 2p(1) _
(1) =X} P> —X7)
klﬁzélé(fl)}’ff +722- (24)
Then, according to Remark 4, we can choose

£0(20) = hio(20) +iozo) + 1, Ay(z1) > ¥7,(z) + 1, and let

_ 1 25
ki (xy) > é_](sm(xl)"‘ S11(xy) +,B(PTB—Y]2)+
2B + D3

2Bp(t)p11(x1) —2p(2)
— _ 1 25
o ooy TPV &
where b, < b,. It yields
U, <-lIX)IP +7%;. (26)

Based on changing supply rate technique and given
any smooth function A,(X;) >0, there exists a C' func-

tion Uy(X,,1), satistying o _(IXil) < Ui(X,,0) < 2 (I1X, 1D
for some class K, functions 2, and 0y, such that

U, < =0 IX0 P+ L (E)E2, 27)

for some known smooth function /;(x;) > 1.
Step 2 Let VZ(YZ) =%2, the derivative of Vz is given
by

—~ - X —
Vs = 2%,(f2(20, 215 225 E‘,xz +ay,d(0)+

X
B

@]+ 255|335 ] + 2bra0 X, (28)

by(v,w) (%3 + @) — &) < 2[%||f2(20, 21,22, —» X2 + @1, d(1))—~

where b, <b,. Let (20,21, %1 /B, X2 + @1, d (1)) = (20,215
x1/B, %, + a1,d(t)) — &, . Similar to Step 1, we can obtain

X1 —
182(20, 215 El,xz +a,,d)| <

2 2
D@+ T (29)
j=0 j=0

where ¥,;(z;) and ¢,;(z;) are smooth positive functions.
Thus

2

Vo< ) (@)l P+

=0

2

D o TIE IR + 7+ 2by(D . (30)
j=0

Define  U>(Xo,0) = U,(X,,0) + Va(zo,0) + Vo(%,)  and
design the stabilizing function

@, () = —kala(X2)X; (31
where k, is a positive constant and £,(x,) is some smooth
nonnegative function to be given later. By inequality
(13), (27), and (30) with i = 2, the derivative of U,(X,,?)
is given by

U, = Uy (X1, )+ Vo + Vi <
- MIX P+ 11@2)722 —llzall’ 25 (z2)+

1 2 2
DRy () + Y o)+ Y ()
j=0 J=1

J=0

2
AP+ ) o FAFA = 28, (e (), + 5 <
=1
- (Zl - ljlzo(Zo) —Y20(z0) — BZI(ZI) — (1)~
521 (x1) — p D)X, I = (22(z2) — Yn(22)):
llzall” + (1L (32) + 520(3,) + P (X)—
Zéz(f)kzéuz(fz))}zz +732‘ (32)
Then, we choose A > hy(2o) = ¥ao(z0) — hai(z1)—
Y1(21) = 521 () = ¢ (X)) + 1, 25(22) > Yaa(25) + 1, and let

_ 1 _
ky(r(x2) > @(h@) +30(0) +¢n(n)+ 1)

where b, < b,. It obtains
U, < —|1XalI* + %7 (33)

Similarly, based on changing supply rate technique and
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given any smooth function 2(X,) = 0, there exists a C!
U,(X5,1), U, (X5,0) <
020(I1X5|) for some class K, functions [ and 0y, such
that

function satisfying Q20(||X2||) <

Uz < ~BlIXo | + LT (34)

for some known smooth function 5, (x3) > 1
Step i 3<i<n—1) Let Vi(x;) = %2, similarly to Step 2,
we can obtain ¥; satisfying inequality as follows:

Vi< D il +

Jj=0
D i CIFA +2by (DT + 52, (35)
=0

where ;(z;) and ¢;;(z;) are smooth positive functions.

Define U;(X,,H)=U,_ (X l,t)+V(z,,t)+V(x) and
design the stabilizing function
@,(x;) = =k &i(xX)x; (36)

where k; is a positive constant and ;(x;) is some smooth
nonnegative function to be given later. According to
inequality (13), (34), and (35), we can obtain the deriva-
tive of U;(X,‘, t)
U = 'ﬁl I(Xr l&t)+‘./i+vi <
AclX i I+ Ly GODX = Nzl P 4 (z0)+

i-1

Iz h,,<z,)+2x s,,<x,>+Zwl,<z iz iP+

Jj=0 Jj=1

Z 3y GIT I = 2b, (DK LET + 52

i1 i
- (Zi—l - Z(}_lij(zj) +ii(z;) — Z(xigij(xj)"'
=0 =1

¢ij(}})))||Xi—l II> - (ai(z) — wii(zi)))”Zi”z
(i () + 53(X) + ¢3(x) — 2b (DK (X; DX +%5. (BT

i—1
Then, we  choose Z(fz,-_,-(z DY)+
Jj=0
Z(x 5506+ 5 + 1, £:(2) > Yiu(z) + 1, and let
Jj=1
kl(l(;{t) = 2b ( )(ll l(xl) + Sll(xl) + ¢tt(xz) + 1)

where b, < b;. It obtains

<-IXP+%3, (38)

Similarly, based on changing supply rate technique and
given any smooth function A;(X;)> 0, there exists a C'

Ui(X..0), Ui(X,,1) <
Oin(IX:|) for some class K., functions 2, and g;, such

function satisfying Q-O(HX D <

that

U, < —RIIX 2+ 1) T2 (39)

l+1

for some known smooth function /;(x;,;) > 1
Let V,(X,) = %2,
satisfying inequality as follows:

Step n similarly, we can obtain X,

Vi < D U@l + Y 6T +2b2(0e %, (40)
J=0 J=0

where i,,,(z;) and ¢,;(z;) are smooth positive functions.
Define U, (X,.1) = Uy-1(X,1.0)+ V(@ 0) + V,(F,) and
design the control law

_kn {n (F{n )}:1 (4 1 )

where k, is a positive constant and Z,(x,) is some smooth

a,(x,) =

nonnegative function to be given later. According to
inequality (13), (38), and (40), we can obtain the deriva-
tive of U,(X,,,?) is

Un = Z7)171(AX}1715[) + Vn +F‘7n <
A tl1X 1P+ Ly )X = Nzl 2 () +

:

>l (2 + Z X35, () + Z NI

~.
I
<]

3 B I ~2b, O T <
j=1

n—1

~ B - Z(hnxz,)wn,(z,)) Z(x )+

¢n,~(xj)))||Xn-1 IIP = (2n(z) = ¢nn(zn)))||zn||2+
(lnfl (F)Zn) + Enn(}zn) + ¢nn(-fn)_
2b, (Dl ()%, (42)

n—1
Then, we choose 4, Z( ni(27) + Yni(2))+
j=0
D500 + @D+ 1, £4(2) > P(z,) + 1, and let
Jj=1

kn{n(};) = (ln l(xn) + snn(x )+ ¢nn(-xn) + 1)

1
2b,(n)

where b < b,. It obtains

U, < _”Xn”z' (43)

Remark 5 Though the constraints considered in this
paper are symmetric, we would like to point out that it is
not difficult to extend our method to the asymmetric state
constraints by using the modified BLFs. Actually, to con-
sider the asymmetric state constraints (—p,,p,) for the
states x;, the control rule can be designed by using the
following BLF:
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2 2
V= %poa)log'#% + %(1 —p(’ﬂ))logpi(t‘)’%%
with
_ 1, x>0
P(xl)z{o’ 351<0-

Under the above discussion, we can formulate the main
result as follows:

Theorem 1 Under Assumptions 1-5, given any ini-
tial system conditions x(0) € R" and v(0) € R?, the ROR
problem with finite time prescribed performance for the
system consisting of (1), (2), and (3) is solved by a
dynamic state feedback controller

u= _kngn(};l)};z+yn(nn)

;= Mm+NiXiy, i=1,2,-+,n
X =pt)e

i = )_Ci_)/i(ni)_ai—la i=23,---,n

(44)

where ; (i=1,2,---,n—1) are defined by (23), (31) and
(36).

Proof With input and state transformation (7), the
closed-loop system is given by (8). Thus, it is sufficient
to prove that the closed system (8) satisfies Properties
1-3.

According to (43), we can obtain that U,(X,,f) con-
verges to zero, when ¢ tends to infinity. Thus, the closed
system in (8) is globally asymptotically stable. Obvi-
ously, Propertiy 1 and Properity 2 are verified. Next, we
will show Property 3 is also satisfied.

According to (43), we can know that

U,<0=U,t)<U,0), t>0. (45)
Based on the expression of U,(X,,?) = 5n_1(Xn_1,t)+
Vn(vat)_i_ Vn@)? we Obtain Unfl(anl’t)-i_ Vn(th)+
Vn(};l) < U,,,] (anl 90) + Vn(zm 0) + Vn(};no)a thuS Unfl
X,1,) < U,_1(X,_1,0). According to (38) and (39), we
know that U,_(X,_,,t) and U,_(X,_,,t) have same func-
tion property. Thus, we can obtain U, (X,.1,?) <
U,-1(X,-1,0). By iteratively computing, we can get
U(t)<U,0), t=0. (46)
Based on the expression of U,(X|,f), we obtain
P ()
PO =%X7(1)

which implies that p?(r) < X, (0*(t) = X2(#)). Therefore,

Fl<p01-%"O<p), ¥r>0.  (48)

Note that x; = 87'X;, thus, we can obtain

Il < B~ p(0). (49)

log <Vi(0) (47)

Then, according to (16), we obtain
T-t* |
Il < =e)——=x"'p+cp, 0<t<T,  (50)

Il <cp, 1>T. (51)

Owing to e = x;, which means that the error outpart
converges to the designed constrained set after a time
interval 7. Thus, Property 3 is achieved. This completes
the proof. O

Remark 6 Under the proposed finite time prescribed
performance control scheme defined by (24), (31), (36),
and (41), the error output of the system satisfies
le(t)] < co(t) after a given finite time 7. The speed func-
tion B(?) restricts the decay rate no less than (T —¢*/T )y
in [0,7) and the smooth function p(f) defines a pre-
scribed performance bound for the error output. Com-
pared with the traditional prescribed performance control
scheme, this result can enlarge the design freedom for the
reason that the error output can converge to the preset
constrain bound after a designed time interval at a needed
decay rate. Moreover, the initial value of error output
need not to be restricted in prescribed performance
bound, which releases the conservatism.

4. Simulation results

In this section, a numerical example is given to illustrate
the effectiveness of the proposed control scheme. Con-
sider the following nonlinear system in strict feedback
form:

z=—z+2w % +v;—=2(1 +w)v,v,

):Cl =(U2_Z—V1i1+f2+\}1\}2—\/]—wz\/%—VZ (52)
X =—Xtu
e=X—V"

where w, and w, are unknown parameters, and v, is a
sinusoidal function produced by the exosystem

\')1 =V
{, . (53)

Vo = =V

By solve the regulator equations, we can obtain
v,w)=v;, HLw)=v,, H,w)=v,, and u(v,w)=
v, —v;. Assumption 3 is satisfied with m;(v,w) = (v2, )",

0 1
F,=F,= _1 ol and
x1=x,=1[1,0]. Then 7, =F\m, i, =Fom,, H(,w)=
x1t(v,w), uv,w)=yx,mv,w). Choosing M,=M, =
[_01 _02}9 Ny =N, =[2,1" makes (M;,N)(i=1,2)
controllable pairs. By solving the Sylvester equation, we
1 -1
2 1

(v, w) = (v, —vi,—vi—wn)T,

canobtain T, =T, = [ ] Correspondingly, y,(6,) =
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[1/3,1/3]6,, and y,(6,) = [1/3,1/3]6..

Using the internal model and by the coordinate trans-
formation, the augmented system in the form of (8) is
given as follows:

20 = =20 + 20 V1 Xy
21 = M,z — Nywyzo + Nyvix
2 = Noxa + Noyi () + Noyi () + MaZy + My N,x;
X| = WZp— VX + X,
Xy ==X =y () =y () +y2() +
(54)

Performing on the system (54) the following coordi-

nate transformation:
X
% =X - 55)

X2 =X — Q@

where the speed function S(f) is as in (16) with ¢ =0.1,
the rate function y = e’ and the finite time 7 =2 s.

Then, the virtual controller and actual controller can be
constructed as follows:

2 =2
al(XI):_p(t)Tlef

u= _2(}22 + )X +72(172)

. |-1 0 2|

Tll—[o ot (56)
. -1 0 2

’722[0 2| 1]

X =pe

X =% —y(m) -

The initial values can be selected as v,(0)=0,
v(0)=1, z(0)=1.5, x(0)=1.5, x%(0)=1.5, and the
other initial conditions are chosen as zero. The unknown
parameters are w; = w, = 1. The prescribed performance
bound of the tracking error can be chosen as
cp(f) = 0.2e7 +0.06.

The simulation results are shown in Fig. 1 and Fig. 2.
According to Remark 6, the finite time prescribed perfor-
mance for error output can be removed by simply letting
B() =1 and p(t) = oo, which yields a traditional control
scheme. Fig. 1 compares the trajectories of the error out-
put between the finite time prescribed performance con-
trol scheme ((56) with y =¢', T =2 s and cp(t) = 0.2¢ 2+
0.06) and the traditional control scheme (with B(¢) =1
and p(f) = 00). The dashed line is the prescribed perfor-
mance bound. It is clear that, under the finite time pre-
scribed performance control scheme, the trajectory of the
error output (the solid line) converges to the prescribed
set in the given time 7 =2s. However, under the tradi-
tional control scheme, the Property 3 is not satisfied, as

shown by the dotted line in Fig. 1. The plant states z(z),
X (1), X,(t) under the finite time prescribed performance
control scheme are pictured in Fig. 2. Apparently, output
regulation with prescribe performance in finite time is
achieved by using reasonable control efforts.

0.5
0.4 \
03}
02k
O1FNN. e

01t /T T T
-0.2 |/
,03 L
—0.4 ¢
-0.5
0

10 12 14 16 18 20
Time/s

2 4 6 8

—— : With prescribed performance ¢p(t)=0.2¢ 2+0.06;
: Traditional method.

Fig.1 Tracking error e(¢)

Q
g
=)
3
S
%)

72,

-3t

74 I

0o 1 2 3 4 5 6 7 8 9 10
Time/s
1 z; X - =X

Fig. 2 States of plant

5. Conclusions

The robust output regulation problem with prescribed
performance for nonlinear strict feedback system is inves-
tigated by speed function technique and BLF technique to
guarantee that the output error can be confined in a pre-
set constrained set after a given finite time. On the basis
of the normal framework of the general nonlinear robust
output regulation problem, a dynamic feedback con-
troller is constructed to deal with the error constrained
issue. The design procedure of the finite time prescribed
performance control scheme and the transient perfor-
mance of the resulted closed-loop system are illustrated
by a simulation example. In future work, it might be
interesting to consider the output regulation with the
prospected property problem for the uncertain strict feed-
back switched systems.
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