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Abstract: This paper proposes an optimal maneuver strategy to
improve  the  observability  of  angles-only  rendezvous  from  the
perspective  of  relative  navigation.  A  set  of  dimensionless  rela-
tive orbital elements (ROEs) is used to parameterize the relative
motion, and the objective function of the observability of angles-
only navigation is established. An analytical solution of the opti-
mal  maneuver  strategy  to  improve  the  observability  of  angles-
only navigation is obtained by means of numerical analysis. A set
of dedicated semi-physical simulation system is built to test the
performances  of  the  proposed  optimal  maneuver  strategy.
Finally, the effectiveness of the method proposed in this paper is
verified  through the  comparative  analysis  of  the  objective  func-
tion of the observability of angles-only navigation and the perfor-
mances  of  the  angles-only  navigation  filter  under  different
maneuver  schemes.  Compared  with  the  cases  without  orbital
maneuver,  it  is  concluded  that  the  tangential  filtering  accuracy
with  the  optimal  orbital  maneuver  at  the  terminal  time  is
increased by 35% on average, and the radial and normal filtering
accuracy is increased by 30% on average.

Keywords: angles-only navigation, observability, optimal mane-
uver, orbital rendezvous.
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 1. Introduction
With  the  continuous  development  of  aerospace  techno-
logy,  the  scope  of  aerospace  missions  is  no  longer  limi-
ted to traditional applications (e.g., communication, navi-
gation,  and  remote  sensing).  Other  aerospace  missions
including  on-orbit  servicing  [1,2],  space  debris  removal
[3,4],  formation flying [5,6],  and deep space exploration
[7,8] are under rapid development. These aerospace mis-
sions all involve rendezvous and proximity operations of
spacecraft, and the related technologies have also become
international research hotspots.

In  order  to  ensure  the  successful  execution  of
aerospace  missions  such  as  on-orbit  servicing  and  space
debris  removal,  it  is  urgent  to  improve  the  automated
capabilities  of  spacecraft  (e.g.,  automated  detection  and
tracking,  automated  relative  navigation,  and  automated
relative  trajectory  planning  and  control).  This  paper
focuses  on the  research of  automated relative  navigation
methods  which  the  chaser  spacecraft  can  autonomously
acquire the relative motion state through the relative navi-
gation  sensors.  The  active  sensors  (e.g.,  LiDAR  and
microwave radar) are commonly used to measure the rela-
tive  motion  state  between  two  spacecraft.  However,  due
to  their  high  power  consumption  and  mass,  they  cannot
be used on the micro-satellite platforms. The passive sen-
sors  (e.g.,  optical  and  infrared  cameras)  have  many
advantages  [9−11]  because  they  are  employable  at  vari-
ous  inter-satellite  separation  ranges  with  little  impact  on
the design of the mass/power of the chaser spacecraft. In
addition, most spacecraft are equipped with onboard came-
ras.  If  the  direction  is  appropriate,  these  onboard  came-
ras can be used to capture the space targets within field of
view and perform angles-only navigation operations. This
so-called  angles-only  navigation  provides  a  passive,
robust,  and  high-dynamic-range  capability.  Accordingly,
angles-only navigation represents a critical enabling tech-
nology  for  a  variety  of  advanced  distributed  space  sys-
tem  missions,  including  autonomous  rendezvous  and
docking,  space  situational  awareness,  advanced  dis-
tributed  aperture  science,  and  on-orbit  servicing  of  non-
cooperative spacecraft [12].

A particular application case of angles-only navigation
consists in employing a monocular camera to rendezvous
in  space  with  a  non-cooperative  target.  However,  the
angles-only  navigation  system  suffers  from  a  relative
range  observability  problem  during  near-range  rendez-
vous  [13].  Many  scholars  have  studied  the  methods  to
improve  the  observability  of  the  angles-only  navigation
system.  The  first  method  consists  in  performing  maneu-
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ver  operations  [14,15].  The  second  method  consists  in
introducing a  camera offset  with  respect  to  the center  of
mass of the chaser spacecraft [16]. The third method is to
improve the modeling of the relative dynamics and mea-
surement equations to improve the maneuver-free observa-
bility  of  angles-only  navigation  [17,18].  However,  the
second  method  is  only  suitable  for  a  close  range.  The
third method is sensitive to the measurement noise of the
relative navigation sensors, as well as requiring high-pre-
cision  modeling  of  the  relative  dynamics  and  measure-
ment equations.

To  address  the  problems  of  the  above  methods,  this
paper proposes an optimal maneuver strategy to improve
the  observability  of  angles-only  rendezvous.  First  of  all,
this  paper  describes  the  reason  why  angles-only  naviga-
tion is not observable. Then, a set of dimensionless rela-
tive  orbital  elements  (ROEs)  is  used  to  parameterize  the
relative motion, and then a set of relative dynamics model
based  on  ROEs  is  established.  Compared  with  the  Clo-
hessy-Wiltshire  (CW)  equation,  the  relative  dynamics
model  based  on  ROEs can  incorporate  various  perturba-
tions  and  can  intuitively  display  the  geometric  shape  of
relative  motion.  Then,  a  model  of  observability  analysis
of angles-only navigation is introduced, and an objective
function for observability analysis of angles-only naviga-
tion is established. The conditions for achieving the opti-
mal observability of angles-only navigation are analyzed,
and the analytical solution of the optimal maneuver stra-
tegy is obtained by means of numerical analysis. In addi-
tion, a set of dedicated semi-physical simulation system is
built to verify the optimal maneuver strategy proposed in
this  paper.  Finally,  the  optimal  maneuver  strategy  pro-
posed  in  this  paper  is  verified  through  the  comparative
analysis  of  the  objective  function  of  the  observability  of
angles-only  navigation  and  the  performances  of  the
angles-only  navigation  filter  under  different  maneuver
schemes.

 2. Problem description
The purpose of angles-only navigation is to derive the rela-
tive motion state between the space target and the chaser
spacecraft, and the relative motion state corresponds to a
set  of  line-of-sight  (LoS)  measurements  {ui, i =  1,  2,···,
k}.  In  general,  the  problem  of  angles-only  navigation  is
closely  related  to  the  observability  of  the  system.
Woffinden et al. [19] prove that the relative motion state
is  not  observable  under  the  assumption  of  an  homoge-
neous  linear  relative  motion  with  a  linear  measurement
model.

First,  let x(t)  denote  the  relative  motion  state  between
the space target  and the  chaser  spacecraft  at  time t,  then
the propagation equation of the relative motion state can

be expressed as

x(t) =Φ(t, t0)x(t0) (1)

where Φ(t, t0) is the state transfer matrix (STM) between
the initial epoch t0 and time t.

Assume  that  there  is  a  linear  correlation  between  the
relative position vector r(t) and relative motion state x(t),
which can be expressed as

r(t) = C(t)x(t). (2)

A set of LoS measurements {ui, i = 1, 2,···, k} and the
relative position vector r(t) satisfy

ui · · · r(ti) = 0, i ∈ [1,k]. (3)

Substituting (1) and (2) into (3) yields:

ui · · · (C(ti)Φ(ti, t0)x(t0)) = 0, i ∈ [1,k]. (4)

It can be seen from (4) that if x(t0) = x0 is the solution
of (4), the scaled solution ϕx0 (ϕ is the scale factor) is also
the  solution  of  (4),  resulting  in  infinite  solutions  match-
ing the set of LoS measurements {ui, i = 1, 2,···, k}, and
this is known as Woffinden’s dilemma [20].

 3. Mathematical basis
 3.1    Relative dynamics model

The  CW  equation  is  commonly  used  to  establish  the
spacecraft  relative  dynamics  model.  However,  the  CW
equation  is  only  suitable  for  the  orbital  scenarios  where
the  inter-satellite  separation  range  is  small  and  various
perturbations  are  ignored.  The  spacecraft  relative  dyna-
mics model  established based on ROEs can consider the
effects  of  various  perturbations,  as  well  as  the  geometry
of the relative trajectory can be displayed intuitively.

Ignoring the second-order terms of the spacecraft rela-
tive dynamics model established based on ROEs, a linear
dynamics model is obtained, which is still effective in the
presence of various perturbations.  The closed-form solu-
tion of the mean ROEs over the time interval [t0, tf] [21]
has the following form:

δα(t f ) =Φ(t f , t0)δα(t0)+
p∑

k=1

Φ(t f , tk)Γkδvk (5)

where  {Гk , k =  1,  2,···, p}  denotes  the  control-input
matrix, δv = (δvR,δvT,δvN)T denotes the impulse maneuver
depicted in the local Cartesian orbital frame of the chaser
spacecraft.

The  adoption  of  impulsive δv implies  the  maneuvers
with  short  duration,  which  will  cause  an  instantaneous
change  in  the  velocity  of  the  chaser  spacecraft  without
changing  the  position.  The  parameterized  form  of  the
mean ROEs used in this paper [22] is expressed as
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δα =



δa
δλ
δex

δey

δix

δiy


=



(ad −ac)/ac

ud −uc+ (Ωd −Ωc)cos ic

ed cosωd − ec cosωc

ed sinωd − ec sinωc

id − ic

(Ωd −Ωc) sin ic


(6)

where a, e, i, Ω, ω, and M are the Kepler orbit elements,
δa denotes  the  relative  semimajor  axis, δλ denotes  the
relative  mean longitude, δe =  (δex,δey)

T denotes  the  rela-
tive eccentricity vector, δi = (δix,δiy)

T denotes the relative
inclination vector, and u = M + ω denotes the mean argu-
ment of latitude.

Compared with the relative motion state depicted in the
local Cartesian orbital frame (i.e., radial, tangential (along-
track),  and  normal  (cross-track)),  the  relative  dynamics
model  using  ROEs  has  the  advantages  of  providing  a
quick insight into the geometry of the relative trajectory.
Fig.  1 describes the relative motion depicted in the local
Cartesian orbital  frame,  whose the unit  vector  is  defined
as follows: eR and eN are  aligned with the absolute  posi-
tion  and  the  orbital  angular  momentum  of  the  chaser
spacecraft, and eT, eR and eN satisfy the right-hand rule. In
addition,  it  can be seen from Fig.  1,  the size of the rela-
tive  motion can be  depicted by the  means  of  the  dimen-
sioned (i.e., scaled with the semi-major axis a) ROEs [20]. 

Target

Chaser

eN

eR eR

eT

eN

eT

eR

aδa

aδλ

aδi

aδe

2aδe

Fig. 1    Relative motion parameterization
 

The  set  of  ROEs  is  particularly  suitable  for  the  prob-
lem of angles-only navigation because the weakly observ-
able  inter-satellite  range  is  almost  equal  to  the  compo-
nent aδλ. The relative dynamics model established based
on ROEs is  effective for  circular  orbits  (ec = 0),  but  it  is
still  singular for equatorial orbits (ic = 0) [23].  For orbits
with arbitrary eccentricity, the STM defined by the mean
ROEs including J2 perturbations, atmospheric drag, solar
radiation pressure,  and third body gravity is  obtained.  In
the case of only J2 perturbations, the STM over the time
interval [t0,tf] [24] is expressed as

Φ(t f , t0) =



1 0 0 0 0 0

−7
2
κEPτ− 3

2
nτ 1 κex0FGPτ κey0FGPτ −κFS τ 0

7
2
κey f Qτ 0 cos(ω̇τ)−4κex0ey f GQτ −sin(ω̇τ)−4κey0ey f GQτ 5κey f S τ 0

−7
2
κex f Qτ 0 sin(ω̇τ)+4κex0ex f GQτ cos(ω̇τ)+4κey0ex f GQτ −5κex f S τ 0

0 0 0 0 1 0

7
2
κS τ 0 −4κex0GS τ −4κey0GS τ 2κTτ 1


(7)

where 

γ =
3
4

J2R2
e

√
µ

η =

√
1−∥e∥2

κ =
γ

a7/2η4

G =
1
η2

E = 1+η
F = 4+3η

T = sin2i

τ = t f − t0

P = 3cos2i−1
Q = 5cos2i−1
S = sin(2i)
ω̇ = κQ

, (8)

where the  subscripts  0  and f represent  the  initial
and  final  values  of  the  orbital  elements  of  the  cha-
ser  spacecraft,  respectively, ex and ey are  the x and y
components of the absolute eccentricity vector e, μ is the
Earth’s gravitational  constant, Re is  the  Earth’s equator
radius,  and n is  the  mean  motion  of  the  chaser
spacecraft.

The change in the ROEs caused by the impulse maneu-
ver of the chaser spacecraft is expressed as

∆δαk = Γkδvk (9)

where Δ represents the arithmetic difference of the ROEs
before and after the impulse maneuver.

For the orbital scenarios where the chaser spacecraft is
in a near-circular orbit (i.e., ec = 0), the STM given by (7)
[25] can be simplified as
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Φ(t f , t0) =



1 0 0 0 0 0

−7κEP+3n
2

τ 1 0 0 −κFS τ 0

0 0 cos(ω̇τ) −sin(ω̇τ) 0 0
0 0 sin(ω̇τ) cos(ω̇τ) 0 0
0 0 0 0 1 0

7
2
κS τ 0 0 0 2κTτ 1


. (10)

The  argument  of  latitude u of  the  chaser  spacecraft  is
used as the independent variable instead of time, and τ in
(10) can be expressed [23] as

τ =
∆u

n+ κ(ηP+Q)
(11)

where Δu is the change in the argument of latitude of the
chaser spacecraft over the time interval [t0,tf].

The  effects  of  an  impulse  maneuver  executed  at  the
mean  argument  of  latitude uk are  given  by  (7)  for  near-
circular orbits can be expressed [26] as

∆δαk = Γkδvk =

1
na



0 2 0
−2 0 0

sinuk 2cosuk 0
−cosuk 2sinuk 0

0 0 cosuk

0 0 sinuk


 δvR

δvT

δvN

. (12)

Equation  (12)  shows  that  the  effects  of  the  impulse
maneuvers  which  are  in  and  out  of  the  orbital  plane  are
decoupled.

 3.2    Measurement model

The general form of the nonlinear measurement model is
obtained as

z = h(x, t). (13)

The camera frame needs to be defined before defining
the  LoS  measurements.  Without  loss  of  generality,  it  is
assumed  that  the  optical  axis  of  the  camera  is  aligned
with the opposite  direction of  flight.  Under this  assump-
tion,  the  relationship  between  the  relative  position  vec-
tors depicted in the camera frame and the local Cartesian
orbital frame is given as

rrel = Rc
RTNrRTN =

 1 0 0
0 0 1
0 −1 0

 rRTN. (14)

rrel = (rc
x,r

c
y,r

c
z )

T

The  azimuth α and  elevation ϵ can  be  expressed  as  a
function  of  the  relative  position  vector 
depicted in the camera frame, as shown in Fig.  2,  which
can be expressed as

z =
(
α
ε

)
=


arcsin

( rc
y

∥rrel∥

)
arctan

(
rc

x

rc
z

)
 . (15)

  

Chaser

Target

R

T

N

α
ε

rrel

r cz

rcx

rcy

ψ

δv

δvR

 

Fig. 2    LoS measurement geometry
 

 4. Analytical  solution  of  optimal  maneuver
strategy

According to the theory proposed by Jonathan Grzymisch
and  Walter  Fichter,  in  order  to  maximize  the  observabi-
lity  of  angles-only  navigation,  the  following  objective
function should be minimized [27]:

J = x̄T
rel xrel (16)

x̄rel

xrel

where  is  the  relative  trajectory  between  the  chaser
spacecraft  and  the  space  target  without  the  impulse
maneuver,  and  is  the  relative  trajectory  between  the
chaser  spacecraft  and  the  space  target  after  the  impulse
maneuver, namely

x̄rel(t f ) = aC(t f )Φ(t f , t0)δα(t0), (17)

xrel(t f ) = aC(t f )

Φ(t f , t0)δα(t0)+
p∑

k=1

Φ(t f , tk)Γkδvk

 , (18)

δα(t0) = δα0where  is the initial ROEs, and C is the trans-
formation matrix between the ROEs and the relative posi-
tion vectors depicted in the local Cartesian orbital frame.

The  concept  of  the  observability  angle  proposed  by
Woffinden et al. [19] can also be used to define the objec-
tive  function  of  the  observability  of  angles-only  naviga-
tion after the impulse maneuver:

θ = arccos
(

x̄rel · xrel

∥x̄rel∥∥xrel∥

)
. (19)
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The  geometrical  schematic  diagram  of  the  observabi-
lity angle θ is shown in Fig. 3.

 
 

xrel_2

δr1

δr2

xrel_1

θ2

θ1

xrel_1

xrel_2

Fig. 3    Definition of observability angle θ
 

π/2
When  the  absolute  value  the  observability  angle θ is

equal to ,  the observability of angles-only navigation
is  optimal  [19]. δr is  the  change  in  the  relative  position
vectors  between  the  chaser  spacecraft  and  the  space  tar-
get  after  the  impulse  maneuver,  which  can  be  expressed
as

δr = aC(t f )

 p∑
k=1

Φ(t f , tk)Γkδvk

 . (20)

xrel

x̄rel

For  the  unobservable  impulse  maneuver,  the  relative
trajectory  after the impulse maneuver and the relative
trajectory  without  the  impulse  maneuver  satisfy  a
positive  linear  relationship  [28],  that  is,  the  observation
angle θ = 0°, or

χ
(
C(t f )Φ(t f , t0)δα(t0)

)
=

C(t f )

Φ(t f , t0)δα(t0)+
p∑

k=1

Φ(t f , tk)Γkδvk

 , χ > 0. (21)

xrel

x̄rel

Equation  (21)  means  that  when  the  relative  trajectory
 after the impulse maneuver and the relative trajectory
 without  the  impulse  maneuver  point  in  the  same

direction,  the  angles-only  navigation  system  after  the
impulse  maneuver  is  not  observable.  The  sufficient  con-
dition  that  the  angles-only  navigation  system  is  observ-
able after the impulse maneuver can be expressed as

χ
(
C(t f )Φ(t f , t0)δα(t0)

)
,

C(t f )

Φ(t f , t0)δα(t0)+
p∑

k=1

Φ(t f , tk)Γkδvk

 , χ > 0. (22)

C(t f )Φ(t f , t0)· δα(t0)Combine the same part   of (21) to
get

(χ−1)
(
C(t f )Φ(t f , t0)δα(t0)

)
=

C(t f ) ·
p∑

k=1

Φ(t f , tk)Γkδvk, χ > 0. (23)

And then get

χ′
(
C(t f )Φ(t f , t0)δα(t0)

)
=

C(t f ) ·
p∑

k=1

Φ(t f , tk)Γkδvk, χ
′ > −1 (24)

χ′ = χ−1where .
χ′ > −1

C(t f )Φ(t f , t0)δα(t0)
For ,  multiply  both  sides  of  the  inequality  by

 to get

χ′C(t f )Φ(t f , t0)δα(t0) > −C(t f )Φ(t f , t0)δα(t0),
C(t f )Φ(t f , t0)δα(t0) > 0, (25)

χ′C(t f )Φ(t f , t0)δα(t0) < −C(t f )Φ(t f , t0)δα(t0),
C(t f )Φ(t f , t0)δα(t0) < 0. (26)

According to the relationship depicted in (24), inequal-
ities (25) and (26) can be re-expressed as

C(t f )

 p∑
k=1

Φ(t f , tk)Γkδvk

 > −C(t f )Φ(t f , t0)δα(t0),

C(t f )Φ(t f , t0)δα(t0) > 0, (27)

C(t f )

 p∑
k=1

Φ(t f , tk)Γkδvk

 < −C(t f )Φ(t f , t0)δα(t0),

C(t f )Φ(t f , t0)δα(t0) < 0. (28)

And then get

C(t f )

 p∑
k=1

Φ(t f , tk)Γkδvk +Φ(t f , t0)δα(t0)

 > 0,

C(t f )Φ(t f , t0)δα(t0) > 0, (29)

C(t f )

 p∑
k=1

Φ(t f , tk)Γkδvk +Φ(t f , t0)δα(t0)

 < 0,

C(t f )Φ(t f , t0)δα(t0) < 0. (30)

These constraints indicate that in order to maintain the
positive  nature  of  the  required  linear  relationship,  the
chaser  spacecraft  should  be  located  on  the  same  side  of
the space target before and after the impulse maneuver. In
order  to maximize the observability of  angles-only navi-
gation after the impulse maneuver, the value of the objec-
tive function J should be minimized, that is, the value of J
should be zero, and we can get

a2(C(t f )Φ(t f , t0)δα(t0)
)T·(

C(t f )
(
Φ(t f , t0) ·δα(t0)+

p∑
k=1

Φ(t f , tk)Γkδvk

))
= 0. (31)

Since  it  is  necessary  to  determine  the  optimal  maneu-
ver  strategy  for  the  observability  of  angles-only  naviga-
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xrel

x̄rel

tion under certain constraints, it can be depicted by maxi-
mizing  the  linear  independence  between  the  relative  tra-
jectory  after  the  impulse  maneuver  and  the  relative
trajectory  without the impulse maneuver.  In order to
maximize  the  observability  of  angles-only  navigation
after the impulse maneuver, the objective function can be
re-expressed as

J
(
δv, δα0, t f ,k

)
= a2(C(t f )Φ(t f , t0)δα(t0)

)T·C(t f )

Φ(t f , t0)δα(t0)+
p∑

k=1

Φ(t f , tk)Γkδvk

 (32)

J
(
δv, δα0, t f ,k

)
> 0where ,  and the smaller the J,  the bet-

ter the observability of the angles-only navigation system.

t f

According  to  (32),  the  observability  of  angles-only
navigation  after  a  single-impulse  maneuver  (i.e., k =  1)
depends on the impulse velocity increment δv,  the initial
ROEs δα0 at  the  point  where  the  impulse  maneuver  is
performed,  and  the  terminal  time tf.  In  order  to  find  the
impulse  maneuver  that  provides  the  optimal  observabi-
lity  of  the  angles-only  navigation  system,  that  is,  the
impulse  velocity  increment δv in  (32).  Fixing  the  initial
ROEs δα0 at  the  point  where  the  impulse  maneuver  is
performed and the terminal time , and then the impulse
velocity increment δv for the optimal observability of the
angles-only navigation system can be determined.

Expanding  (32),  where  only  one  term is  a  function  of
the  impulse  velocity  increment δv.  For  a  single-impulse
maneuver δv = δv1, if δv1 represents the impulse velocity
increment  of  the  impulse  maneuver  at  the  initial  ROEs
δα0,  the  minimum  objective  function J' relative  to  the
impulse velocity increment δv can be expressed as

J′(δv) = a2ΞTℵ (33)

Ξ = C(t f )Φ(t f , t0)δα(t0) ℵ = C(t f )Φ(t f , t0)Γ1where  and  .
In the actual rendezvous trajectory design process, it is

of great significance to find the impulse maneuver within
the range of available resources that provides the optimal
observability  of  the  angles-only  navigation  system.  In
order  to  find the direction of  the optimal  maneuver  stra-
tegy,  it  is  logical  to  limit  the  maximum  magnitude υ of
the impulse velocity increment δv.  The constraint can be
depicted by the following equation:

κ(δv) = υ2− (δv)Tδv = 0. (34)

The constrained optimization problem becomes a prob-
lem  of  minimizing  the  objective  function  in  (33)  under
the  impulse  velocity  increment δv.  When  the  latter  con-
straint  does  not  work,  the  problem  can  be  transformed
into  an  equivalent  unconstrained  problem  by  using  the
Lagrangian  multiplier  technique  [29].  Accordingly,  the
problem  is  reduced  to  the  problem  of  minimizing  the

Lagrangian function

ξ(δv,γ) = J′(δv)− γκδv (35)

where γ is the Lagrangian multiplier corresponding to the
constraint in (34).

The  first-order  optimal  Karush-Kuhn-Tucker  (KKT)
condition is derived from the derivative of the Lagrangian
function ξ with  respect  to  the  optimization  variable δv
and  the  Lagrangian  multiplier γ equal  to  zero  [29],
namely

∂ξ

∂γ
= (δv)Tδv− υ2 = 0, (36)

∂ξ

∂(δv)
= a2ΞTℵ −2γ(δv)T = 0. (37)

These equations can be solved for δv and λ to get

γ = ±a2
√
ΞTℵ ℵ TΞ

2υ
, (38)

δv =
a2ℵ T

Ξ

2γ
. (39)

The  second-order  optimal  KKT  conditions  provide  a
constraint on λ to identify which fixed point corresponds
to  the  minimum  value  of  the  Lagrangian  function ξ,
namely

∂2ξ

∂(δv)2 = −2γ. (40)

Since the value of (40) needs to be greater than zero, so
γ < 0 is obtained. Finally the algebraic expression of the
optimal maneuver (δv)obj is obtained as

(δv)obj = −
υℵ T
Ξ√

ΞTℵ ℵ T
Ξ
. (41)

This  expression  is  a  function  of  the  initial  ROEs δα0

and  the  maximum  magnitude υ of  the  impulse  velocity
increment δv, and it provides the optimal observability of
the  angles-only  navigation  system  at  a  specific  point  in
time after the impulse maneuver.

Since the impulse maneuvers which are in or out of the
orbital  plane  can  be  decoupled  for  analysis  [30],  this
paper  separately  considers  the  effects  of  the  impulse
maneuvers which are in or out of the orbital plane on the
observability  of  angles-only  navigation.  For  the  impulse
maneuver  which  is  out  of  the  orbital  plane, δv can  be
expressed as

δv =

 δvR

δvT

δvN

 =
 0

0
δvN

 . (42)

For the impulse maneuver which is in the orbital plane,
δv can be expressed as
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δv =

 δvR

δvT

δvN

 =
 δvcosψ
δvsinψ

0

 (43)

where δv is the magnitude of the impulse velocity incre-
ment δv, ψ is  the  direction  angle  of  the  impulse  maneu-
ver which is in the orbital plane, and the definition of ψ is
shown in Fig. 2.

 5. Filter design
The inter-satellite separation range between the space tar-
get  and  the  chaser  spacecraft  is  assumed  to  be  much
smaller than the relative range between the chaser space-
craft  and  the  center  of  the  earth.  Simplifying  the  nonli-
near  differential  equation  of  the  relative  dynamics  to  li-
near differential equation as

ẋ(t) = A(t)x(t)+Γ(t)δv(t) (44)
where A denotes  the  vectors  of  the  relative  dynamics  of
the system.

The  solution  of  the  linear  differential  equation  can  be
represented by the state transition matrix Φ. The state and
measurement  equations  in  the  presence  of  external  con-
trol-input and measurement uncertainty are obtained as x(t) =Φ(t, t0)x(t0)+

w t

t0

Φ(t,µ)Γ(µ)δv(µ)dµ

z(t) = H(t)x(t)+ ζ(t)
(45)

ζ

R = E[ζζT] = diag(σ2
α,σ

2
ε)

where  denotes the measurement errors is characterized
by  a  normal  distribution  with  zero  mean  and  covariance

 ,  and H is  the  partial  deriva-
tive  of  the  LoS measurements z with  respect  to  the  esti-
mation state x.

The  partial  derivative H is  calculated  by  applying  the
following chain rule [31]:

H(t) =
∂z
∂δα

∣∣∣∣δᾱ =
∂z
∂rrel
· ∂rrel

∂rJ2000
· ∂rJ2000

∂rRTN
· ∂rRTN

∂δα

∣∣∣∣δᾱ =(
∂α

∂rrel
· ∂ε

∂rrel

)T

·Rc
J2000 ·RJ2000

RTN ·
∂rRTN

∂δα

∣∣∣∣δᾱ (46)

Rc
J2000

RJ2000
RTN

where  is the rotation matrix from the J2000 inertial
frame  to  the  camera  frame,  is  the  rotation  matrix
from the local  Cartesian orbital  frame to  the J2000 iner-
tial frame.

The  following  linear  model  is  used  to  give  the  map-
ping  between  the  ROEs  and  the  relative  position  vector
rRTNdepicted in the local Cartesian orbital frame

∂rRTN

∂δα
|δᾱ = 1 0 −cosu −sinu 0 0

0 1 2sinu −2cosu 0 0
0 0 0 0 sinu −cosu

 . (47)

The measurements  partials  with respect  to  the relative
position  vector rrel depicted  in  the  camera  frame  can  be
computed using the following equivalence [32]:

∂rrel

∂rrel
= I3×3 = ρ

c ∂r
∂rrel
+ r

∂ρc

∂α

∂α

∂rrel
+ r

∂ρc

∂ε

∂ε

∂rrel
(48)

r = ∥rrel∥ ρc =
rrel

∥rrel∥
∂ρc

∂α

∂ρc

∂ε
where  and ,  and  are
expressed as 

∂ρc

∂α
=

 cosαcosε
0

−cosεsinα


∂ρc

∂ε
=

 −sinεsinα
cosε

−sinεcosα


. (49)

(
∂ρc

∂α

)T (
∂ρc

∂ε

)T

The partial derivatives of the azimuth α and elevation ε
with respect to the relative position vector rrel depicted in
the camera frame can be calculated by alternately multi-

plying and  by (48):
∂α

∂rrel

∣∣∣∣∣δᾱ = 1
rcos2(ε)

(
∂ρc

∂α

)T

∂ε

∂rrel

∣∣∣∣∣δᾱ = 1
r

(
∂ρc

∂ε

)T . (50)

The  dynamic  filter  is  designed  based  on  extended
Kalman filter  (EKF),  which includes  one-step prediction
equations x̂k|k−1 = f (x̂k−1, δvk−1)

Pk|k−1 = F(x̂k−1)Pk−1FT(x̂k−1)+Gk−1Qk−1GT
k−1

(51)

where F denotes the Jacobian matrix of f with respect to
the  estimation  state x, G denotes  the  distribution  matrix
of process noise, Q denotes the process noise covariance
matrix,  and Pk|k−1 denotes the prediction error covariance
matrix.

Update equations:
Kk = Pk|k−1HT

k (Hk Pk|k−1HT
k +Rk)−1

x̂k = x̂k|k−1+Kk(zk −Hk x̂k|k−1)
Pk = (I−Kk Hk)Pk|k−1

(52)

where K is  the  filter  gain, Pk is  the  estimation  error
covariance matrix.

 6. Simulation validation
 6.1    Semi-physical simulation system

A  semi-physical  simulation  system  is  built  to  verify  the
proposed  optimal  maneuver  strategy,  which  is  shown  in
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Fig. 4 and Fig. 5. The semi-physical simulation system is
equipped  with  a  three-axis  linear  guide  and  a  three-axis

turntable,  which  can  adjust  the  star  map  display  and  the
camera to be coaxial.
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simulation computer

Star map display
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target identification 

computer
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 computer
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Fig. 4    Block diagram of semi-physical simulation system
 
 
 

Three-axis 

linear guide

Camera

Star map display

Three-axis 

turntable

Fig. 5    Semi-physical simulation system
 

The  key  components  of  the  semi-physical  simulation
system include:

(i)  Orbit/attitude  generator:  the  module  is  equipped
with Matlab/simulink and Satellite Tool Kitl (STK) soft-
ware,  which are used to generate the relative trajectories
between the chaser spacecraft and the space target.

(ii)  Starlight  and  star  map  simulation  computer:  as  a
starlight and star map simulator,  the computer is  used to
simulate the distribution and magnitude of the stars in the
star map.

(iii) Star map recognition and target identification com-
puter: the computer is used to find the space target in the
star  map and output  the  LoS measurements  of  the  space
target relative to the camera frame.

(iv) Angles-only navigation computer: the computer is
used to accomplish the real-time calculation of the angles-
only  navigation  algorithms  and  output  the  filtering
results.

(v)  Real-time  monitoring  computer:  the  computer  is

used to display and monitor the attitude/orbit  parameters
of  the  chaser  spacecraft  and  the  space  target,  as  well  as
the  filtering  results  of  the  angles-only  navigation  algo-
rithms.

 6.2    Numerical analysis and experimental
verification

20×20

For the need of the experimental verification, the theoreti-
cal relative motion state of the space target relative to the
chaser  spacecraft  is  numerically  propagated  using  a

 gravity field and including J2 perturbations, solar
radiation  pressure,  third-body  and  atmospheric  drag  per-
turbations.  A  set  of  LoS  observations  is  finally  created
from the theoretical relative motion state. The experimen-
tal verification is mainly carried out in three typical rela-
tive  orbital  scenarios,  and  the  relative  trajectories  are
shown in Fig. 6, including ROE1 which represents a pos-
sible configuration for the beginning of an approach to an
space target; ROE2 which presents a drift of almost 1 km
per orbit toward an space target; ROE3 which represents
the  starting  point  of  a  docking  phase.  The  main  simula-
tion parameters are shown in Table 1.
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Fig. 6    Relative trajectories in three typical orbital scenarios 
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Table 1    Main simulation parameters

Parameter Value

Absolute orbital elements of the space target (a/km, e, i/(°), Ω/(°), ω/(°), M/(°)) (6 878.137, 0, 40, 120, 0, 50)

ROE1 (aδa, aδλ, aδex, aδey, aδix, aδiy)/km (0, −30, 0.5, 0, −0.5, 0)

ROE2 (aδa, aδλ, aδex, aδey, aδix, aδiy)/km (−0.15, −20, 0.3, 0, −0.3, 0)

ROE3 (aδa, aδλ, aδex, aδey, aδix, aδiy)/km (0, −5, 0, 0, 0, 0)

Sample period T/s 10

t fSimulation time /s 1 000

Sensor measurement noise (σα = σε)/arcsec 30
 

When the maximum magnitude υ=1 m/s of the impulse
velocity  increment δv,  according  to  (41),  the  optimal
maneuver  schemes  in  three  typical  orbital  scena-
rios are given as

ROE1:

(δv)obj = [−0.976 1,0.217 1,0.009 5]Tm/s;

ROE2:

(δv)obj = [−0.974 0,0.226 2,0.008 4]Tm/s;

ROE3:

(δv)obj = [−0.974 5,0.224 4,−0.003 0]Tm/s.

The  values  of  the  objective  function J under  different
maneuver  schemes  in  three  typical  orbital  scenarios  are
shown  in Fig.  7,  including  no  maneuver,  the  maneuver
which is out of the orbital plane, the maneuvers which are

in the orbital plane (i.e., the direction angle ψ are 0°, 45°
and  90°,  respectively),  and  the  optimal  maneuver.  The
relative  trajectories  are  shown  in Fig.  8.  It  can  be  seen
from Fig.  7 that  the  values  of  the  objective  function J
under  the  optimal  maneuver  strategy  proposed  in  this
paper  are  smaller  than  that  in  other  cases,  which  proves
the  validity  of  the  analytical  solution  of  the  optimal
maneuver  strategy proposed  in  this  paper.  In  addition,  it
is not that the impulse maneuver performed by the chaser
spacecraft  will  definitely  improve  the  observability  of
angles-only navigation. When the direction angle ψ of the
impulse maneuver in the orbital plane are 0° and 45°, the
values  of  the  objective  function J are  larger  than
that when there is no maneuver. Hence the chaser space-
craft  must  perform  the  impulse  maneuver  in  a  certain
direction to improve the observability of angles-only navi-
gation.
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|αm−α|
|εm−ε|

The  azimuth α and  the  elevation ε of  the  space  target
relative to the chaser spacecraft before and after the opti-
mal  impulse  maneuver  in  three  typical  orbital  scenarios
are shown in Fig. 9. The absolute values of the difference
of  the  azimuth α and  the  elevation ε (i.e.,  and

) before and after the optimal impulse maneuver in
three typical orbital scenarios are shown in Fig. 10. It can
be seen from Fig. 9 and Fig. 10 that the change in the ele-

vation ε is greater than the change in the azimuth α before
and  after  the  optimal  impulse  maneuver.  Hence  the
observability  of  angles-only  navigation  can  be  effec-
tively improved by increasing the change in the elevation
ε before and after the impulse maneuver. In addition, the
absolute  values  of  the  difference  of  the  elevation ε in
ROE3  are  greater  than  that  in  ROE1  and  ROE2  before
and after the optimal impulse maneuver.
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Fig. 9    Azimuth and elevation of the space target relative to the chaser spacecraft before and after the optimal impulse maneuver
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Fig. 10    Absolute values of the difference of the azimuth and the elevation before and after the optimal impulse maneuver
 

Finally,  the  performances  of  the  angles-only  naviga-
tion filter under different maneuver schemes in three typi-
cal  orbital  scenarios  are  compared,  and  the  results  are
shown in Fig.  11−Fig.  13.  It  can  be  seen  from Fig.  11−
Fig.  13 that  the  optimal  maneuver  strategy  proposed  in
this  paper can significantly reduce the errors of  the rela-
tive  position  of  the  angles-only  navigation  filter  in  the

radial,  tangential,  and normal  directions.  Compared with
the  cases  without  orbital  maneuver,  it  is  concluded  that
the  tangential  filtering  accuracy  with  the  optimal  orbital
maneuver  at  the  terminal  time  is  increased  by  35% on
average,  and  the  radial  and  normal  filtering  accuracy  is
increased by 30% on average. In addition, not all maneu-
ver  schemes  in  any  directions  can  improve  the  perfor-
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mances  of  the  angles-only  navigation  filter,  and  the
chaser spacecraft  must perform the impulse maneuver in
a  certain  direction  to  improve  the  performances  of  the
angles-only  navigation  filter.  The  results  obtained  here

further prove the validity of the analytical solution of the
optimal maneuver strategy proposed in this paper, which
is consistent with the above analysis of the values of the
objective function J under different maneuver schemes.
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Fig. 11    Errors of the relative position of the angles-only navigation filter under different maneuver schemes in ROE1
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 7. Conclusions
This  paper  proposes  an  optimal  maneuver  strategy  to
improve  the  observability  of  angles-only  rendezvous
from the  perspective  of  relative  navigation.  The  analyti-
cal solution of the optimal maneuver strategy to improve
the  observability  of  angles-only  navigation  by  means  of
numerical  analysis  is  obtained.  A  set  of  semi-physical
simulation system is built to verify the optimal maneuver
strategy  proposed  in  this  paper.  The  effectiveness  of  the
optimal maneuver strategy proposed in this paper is veri-
fied by comparing the objective function of the observa-
bility  of  angles-only  navigation and the  performances  of
the  angles-only  navigation  filter  in  three  typical  orbital

scenarios.  This  optimal  maneuver  strategy  can  not  only
improve  the  observability  of  angles-only  navigation,  but
also reduce the errors of the relative position of the angles-
only navigation filter in the radial, tangential and normal
directions,  and  its  performances  are  better  than  other
maneuver  schemes.  Compared  with  the  cases  without
orbital maneuver, it is concluded that the tangential filter-
ing accuracy with the optimal orbital maneuver at the ter-
minal time is increased by 35% on average, and the radial
and  normal  filtering  accuracy  is  increased  by  30% on
average.

The optimal  maneuver strategy proposed in this  paper
to  improve  the  observability  of  angles-only  rendezvous
does not consider various constraints such as the field of
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view of the optical  camera and the safety trajectory,  and
only  the  cases  of  the  single-impulse  maneuver  are  ana-
lyzed.  In  the  future,  it  is  necessary  to  study  the  optimal
maneuver strategy to improve the observability of angles-
only  rendezvous  in  orbital  scenarios  with  various  con-
straints  and considering multi-impulse maneuver  or  con-
tinuous  low-thrust  maneuver,  so  as  to  further  expand  its
practicability.
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