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A tunable adaptive detector for distributed targets
when signal mismatch occurs
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Abstract: Aiming at the problem of detecting a distributed
target when signal mismatch occurs, this paper proposes a
tunable detector parameterized by an adjustable parameter.
By adjusting the parameter, the tunable detector can achieve
robust or selective detection of mismatched signals. Moreover,
the proposed tunable detector, with a proper tunable para-
meter, can provide higher detection probability compared with
existing detectors in the case of no signal mismatch. In addition,
the proposed tunable detector possesses the constant false
alarm rate property with the unknown noise covariance matrix.
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1. Introduction

Early radar signal detection theories are based on single-
channel data. However, with the appearance of phased
array radar, the form of the data received by radar
changed from single-channel to multi-channel. The multi-
channel model can provide correlation characteristics of
signals between different channels, which improves the
performance of signal processing. In the case of unknown
noise, the multichannel adaptive detectors usually have
the characteristics of constant false alarm rate (CFAR)
and achieve better detection performance than the filter-
ing-then-CFAR approaches. Recently, the problem of
multi-channel adaptive detection has attracted widespread
attention [1-6].

There are three commonly used detector design crite-
ria, namely, the generalized likelihood ratio test (GLRT),
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Rao test, and Wald test. The theory of multichannel adap-
tive signal detection was first investigated by Professor
Kelly of Lincoln Laboratory in 1986 [7]. Based on the
GLRT criterion, Kelly proposed the famous Kelly’s
GLRT (KGLRT) detector [7]. On this basis, adaptive
matched filter (AMF) [8], De Maio’s Rao detector
(DMRao) [9] and the adaptive coherence estimator
(ACE) [10] were proposed.

The above-mentioned detectors are all aimed at the
rank-one signal, namely, the signal having one known
steering vector. However, the signal may be a subspace
signal, which is an extension of rank-one signals. The
subspace signal refers to a signal that is in a subspace and
whose coordinates are unknown. In practice, the model of
subspace signal is often utilized for polarization target
detection [11—13]. The subspace generalized forms of the
KGLRT, AMF, DMRao, and ACE were given in
[14-17].

With the development of radar technology, the resolu-
tion of radar continues to improve. A single target may
occupy multiple range resolution units. Moreover, even
when the resolution of the radar is low, a target may
occupy multiple range units, for example, a large ship. As
a result, the model of the target changes from point target
model to distributed target model. It is assumed that the
echoes of the distributed target all come from the same
direction in [18], where the GLRT is proposed both for
homogeneous environment (HE) and partially HE (PHE).
In order to estimate the unknown covariance matrix, it is
assumed that there are enough training samples. The
training samples only contain noise components that obey
the complex Gaussian distribution and have the same
covariance matrix as the noise in the unit to be detected.
The Rao test and the Wald test in the HE were derived in
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[19], while the corresponding Rao test and the Wald test
in PHE were obtained in [20].

Most of the references mentioned above, assume that
the steering vector of the actual signal is the same as the
assumed one. In other words, the signal mismatch,
namely, the actual signal steering vector is not aligned
with the nominal one adopted by the radar system, is not
considered However,
inevitably the influence of element error, mutual cou-
pling, and sidelobe interference, which leads to signal
mismatch. According to different detection characte-
ristics for mismatched signals, the detectors can be classi-
fied into two basic categories, i.c., robust detectors and
selective detectors. When signal mismatch occurs, the
robust detector can still detect the target with a higher
probability. Selective detectors are opposite to robust
detectors. When the signals are mismatched, the probabi-
lity of detection (PD) of the selective detector decreases
rapidly as the amount of mismatch increases. Usually,
when the radar is working in the long-range surveillance
mode, it needs robust detectors. In contrast, when the
radar is working in the tracking mode, it needs selective
detectors.

For the problem of detecting point targets in the pre-
sence of signal mismatch, several selective detectors were
proposed in [21,22] by adding virtual deterministic inter-
ference under the null hypothesis. In [23,24], cascaded
detectors were proposed, which is formed by cascading
two detectors with different detection performance for
mismatched signals. The cascaded detectors can achieve
flexible detection of mismatched signals by adjusting the
threshold pair [25]. In [26,27], several tunable detectors
were proposed. Their detection performance for mis-
matched signals is parameterized by a positive scaling
factor, called tunable parameter. The tunable detector can
achieve robustness or selectivity for mismatched signals
by adjusting the tunable parameter.

The above-mentioned selective detectors, cascaded
detectors, and tunable detectors are mainly designed for
point targets. However, there are only a few studies on
distributed target detection when signal mismatch occurs.
Two selective detectors suitable for distributed targets
were proposed in [28] by adding virtual deterministic
interference under the null hypothesis. Although the
selective detector can suppress the mismatched signal
very well, it does not have robust characteristics. In [29],
a tunable detector was proposed for distributed target
detection in the PHE. This tunable detector can achieve
robust or selective properties by choosing an appropriate
tunable parameter. However, it may suffer from certain
performance loss in HE. Given this, this paper proposes a

in these references. there 1is

tunable detector suitable for distributed target in HE
when signal mismatch occurs. It is shown by Monte
Carlo simulations that by choosing an appropriate tun-
able parameter, the proposed detector can provide
improved robustness or selectivity for mismatched sig-
nals than existing detectors. Moreover, it can also achieve
better or comparable detection performance than existing
ones in the absence of signal mismatch.

2. Problem formulation

Suppose that a phased-array radar has N, antenna ele-
ments, and every element transmits N, pulses. If a dis-
tributed target exists, it occupies K range bins, the
received data can be denoted by an N X K matrix X, with
N = N, X N,. The echo signal of the kth range bin can be
expressed as a vector with dimension NX1, ie., x;
(k=1,2,---,K). Under the null hypothesis, x; contains
the noise n,, which is independent and identically dis-
tributed as the complex Gaussian distribution with a
mean value of 0, and covariance matrix R, denoted as
n, ~ CNy (Oyy, R).

Under the alternative hypothesis H;, X contains the
noise N and the signal s, having the form s = ha", where
h is the signal steering vector, a is the signal ampli-
tude, and (-)" denotes conjugate transpose. However, in
the actual environment, the noise covariance matrix R
is unknown. To estimate R, suppose there are L indepen-
dent and identically distributed training samples, denoted
as x.,(/=1,2,---,L), which only contain noise n,,,
written as n,; ~ CNy(Oyy,R). Therefore, the binary
hypothesis test of the problem to be tested can be
expressed as

{ Hy: X=N.X, =N,
r O]
H :X=ha"+N,X, =N,

where X=[x,x,, - ,xx]l, N=[n,,n,,--- ,ng], a=[a,,a,,---,

axl", X, = [Xe1,Xc2, X ], and Ny = [n,, 1,5, ,n,.].

To design a selective detector, a fictitious interference

J is injected into the test data X under the null hypothe-

sis Hy. Therefore, the original binary hypothesis test is
modified as

{ Hy: X=N+J0,X, =N, @)

H:X=ha"+N,X, =N,

where J is an N X (N —1) dimensional column full-rank
matrix, spanning the subspace of the virtual interference.
The (N-1)xK dimensional matrix Q represents the
coordinates of the interference. Both J and Q are
unknown, and the virtual interference J satisfies the con-
straint

J'S"'h= Ov-1yx1 3)

where S is the sample covariance matrix (SCM).
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3. Detector design

The GLRT criterion [29] is given as
m%X ﬁ (X ) X L)

R — 4
GLRT anEIleXﬁ)(X, XL) ( )

where fy(-) and fi(-) are the joint probability density func-
tions (PDF) of X and X; under H, and H,, respectively.
Aiming at the detection problem in (2), the genera-
lized adaptive beamformer orthogonal rejection test
(ABORT) in HE (G-ABORT-HE) was proposed in [30]
according to the GLRT criterion, whose expression is

1 +tr(X"P; X)
IG.ABORT-HE = ilHX I XHX _1}21_%
1, + x| |1 - P XL XX
hth

where tr(-) denotes the trace of the matrix, |-| is a deter-
minant of a matrix, i =S""2h, P; = h(h"h)"'h", X =
S™2X, S=X.X}' is the SCM, and Iy is the identity
matrix of dimension K.

The proposed detector has selective characteristics for
mismatched signal but does not have robust characteris-
tics. To manage the tradeoff between robustness and
selectivity for mismatched signals, we introduce a tun-
able detector based on the G-ABORT-HE in (5):

1 +tr(XHP; X)
IT.ABORT-HE = PR+ %) B,
i1+ s |1 - BT LD
h"h

which is denoted as the tunable ABORT in HE (T-
ABORT-HE). The non-negative number 7y is called the
tunable parameter. It is not difficult to infer that the T-
ABORT-HE becomes more and more robust as the tun-
able parameter y reduces, while the T-ABORT-HE
becomes more and more selective as the tunable parame-
ter y increases. In particular, when y = 1, the T-ABORT-
HE degenerates into the G-ABORT-HE. In addition, the
T-ABORT-HE has the CFAR property, since the statisti-
cal properties of the quantities X"X and X"P;X do not
depend on the noise covariance matrix R under hypothe-
sis Hy [18].

4. Numerical examples

This section evaluates the detection performance of the
T-ABORT-HE. Since the statistical characteristics of the
detector are not obtainable, only Monte Carlo simulation
is performed here. The detection probabilities are shown
both in the presence and absence of signal mismatch. For
Monte Carlo simulation, the detection threshold and PD
are obtained through 100/PFA and 10* Monte Carlo
experiments, respectively, where PFA stands for proba-

bility of false alarm. The (i, j) element of the R is &'/
(i,j=1,2,---,N). In the simulation, let N=8, £€=0.9,
PFA =107, In practice, PFA is often very low, such as
107°. The number of secondary data is L = 2N. Here, it is
set as 107 to reduce the amount of calculation. When
PFA is other values, the change trend of the detector
remains unchanged. In the case of signal mismatch, the
actual signal steering vector h, has the form

1 o . AT
h - l’ef_]2nf,‘” ’efﬂn(Nfl)f (7)
=W ]
where f €[-0.5,0.5] is the normalized spatial or tempo-
ral frequency of the signal. The amount of mismatch can

be measured by

iR h|

2 4
oS = IR R R h

®)
which is the cosine squared between the actual signal
steering vector h, and the nominal one % in the whitened
space.

The signal to noise ratio (SNR) is defined as

SNR = a"ah R h,. )

4.1 The case of signal mismatch

Fig. 1 and Fig. 2 compare the PD of the T-ABORT-HE
under different degrees of signal mismatch with existing
detectors, namely, the generalized adaptive matched fil-
ter (GAMF), the generalized adaptive subspace detector
(GASD) [18], and G-ABORT-HE [29]. The GAMF and
GASD are given by

IGAMF = —= = > (10)

R X X" R
(RHh)tr(X XH)

Igasp =

(11)
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Fig.1 PD versus cos’ ¢ (K =3, SNR =22 dB)
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Fig.2 PD versus cos’ ¢ (K=8, SNR =22 dB)

The results indicate that the T-ABORT-HE has desir-
able flexibility in controlling the detection performance
for mismatched signals. In particular, the T-ABORT-HE
with y=1.2 has the best selectivity characteristics. In
contrast, the T-ABORT-HE with y=0.1 has better
robustness than the G-ABORT-HE and GASD. More-
over, the GAMF exhibits too much robustness. Even
when cos® ¢ =0, the GAMF can provide a PD greater
than zero. This seems unacceptable.

Fig. 3 and Fig. 4 show the contours of the PD of the
T-ABORT-HE under different SNRs and cos? ¢ with the
tunable parameters y =0.3 and y = 1.5, respectively. It
can be seen that when the tunable parameter is small, the
T-ABORT-HE has robust characteristics. Specifically,
even when the amount of mismatch is large, the target
can be detected by the T-ABORT-HE when the SNR is
large enough. In contrast, when the adjustable parameter
is large, it is impossible to detect a target by the T-
ABORT-HE for a signal with a large amount of mis-
match, even if the SNR is large enough. Therefore, the
flexible detection of mismatched signals can be rea-
lized by changing the tunable parameter.
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Fig. 3 Contours of the PD of the G-ABORT-HE versus SNR and

cos’ ¢ (K=3, y=0.3)
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Fig. 4 Contours of the PD of the G-ABORT-HE versus SNR and

cos’ ¢ (K=3, y=1.5)

4.2 The case of no signal mismatch

Fig. 5 and Fig. 6 show the detection performance of the
detectors under different SNRs in the absence of signal
mismatch. It can be seen that T-ABORT-HE can ach-
ieve the best detection performance with an appropriate
tunable parameter when the SNR is large.
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Fig.5 PD versus SNR (K=3, cos’ ¢=1)
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Fig. 7 shows the detection performance of T-ABORT-
HE under different tunable parameters without signal
mismatch. It can be seen that as the adjustable parameter
increases, the PD of the T-ABORT-HE decreases.
Remarkably, the T-ABORT-HE can provide a higher PD
than the G-ABORT-HE as longas 0 <y < 1.
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—+— : T-ABORT-HE; — : G-ABORT-HE.
Fig.7 PD versus y (K=8, cos’ ¢=1, and SNR =19 dB)

5. Conclusions

Aiming at the detection problem in the presence of dis-
tributed target signal mismatch, this paper proposes a
TABORT-HE detector with an adjustable parameter,
which can achieve robust or selective detection of mis-
matched distributed target signals by adjusting the tun-
able parameter according to different system require-
ments. Moreover, even when there is no signal mismatch,
the T-ABORT-HE with a proper tunable parameter can
provide a higher PD than the existing detectors.
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