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Abstract: In order to rapidly and accurately detect infrared small
and dim targets in the infrared image of complex scene col-
lected by virtual prototyping of space-based downward-looking
multiband detection, an improved detection algorithm of infrared
small and dim target is proposed in this paper. Firstly, the origi-
nal infrared images are changed into a new infrared patch ten-
sor mode through data reconstruction. Then, the infrared small
and dim target detection problems are converted to low-rank
tensor recovery problems based on tensor nuclear norm in
accordance with patch tensor characteristics, and inverse vari-
ance weighted entropy is defined for self-adaptive adjustment of
sparseness. Finally, the low-rank tensor recovery problem with
noise is solved by alternating the direction method to obtain the
sparse target image, and the final small target is worked out by a
simple partitioning algorithm. The test results in various space-
based downward-looking complex scenes show that such
method can restrain complex background well by virtue of rapid
arithmetic speed with high detection probability and low false
alarm rate. It is a kind of infrared small and dim target detection
method with good performance.

Keywords: complex scene, infrared block tensor, tensor kernel
norm, low-rank tensor restoration, weighted inverse entropy,
alternating direction method.
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1. Introduction

Space-based downward-looking multiband detection sys-
tem can effectively detect and track targets and can
promptly monitor and recognize the target with threat for
the purpose of reliable warning [1-3]. Infrared small tar-
get detection technology in complex scenes is deemed as
the core technology of space-based downward-looking
detection system and a research hotspot. Infrared small
target detection is difficult due to the following reasons.
Firstly, small targets are often submerged in background
clutter and noise, with very low signal to noise ratio

Manuscript received December 23, 2020.
*Corresponding author.

(SNR) due to long viewing distance in the transmission
and scattering process in the atmosphere. Secondly, small
targets occupy little pixels and lack obvious texture and
structure characteristics [4]. Thirdly, it is very difficult
for the algorithm to balance the arithmetic speed and the
detection effect [5,6]. Hence, infrared small and dim tar-
get detection is very difficult.

Currently, many infrared small target detection methods
are proposed focusing on single-frame detection [7,8].
The filtering algorithm is commonly used, including the
spatial high-pass filtering [9], top-hat detection based on
morphology (Top-hat) [10], the largest average filtering
[11], and the transform domain (frequency domain) filter-
ing method. Those methods can reserve the edge of struc-
tured background and find targets by subtracting the pre-
dicted background after filtering from the original image,
and they are applicable to the image with high signal to
noise ratio and graded structure background. Such me-
thod has high false alarm rate in general. Correspon-
dingly improved algorithms include the adaptive Top-hat
filter [12], the improved bilateral filter [13], the improved
Robinson Guard filter [14], and the nonnegativity-con-
strained variational mode decomposition [15], have
improved detection performance to a certain extent. Then,
another method is to start from the point of view of the
target. In a single frame of infrared image, according to
the target and surrounding background with the diffe-
rence in features such as grayscale and structure, we can
design detection operators and directly extract targets
[16]. The typical method is the local contrast measure-
ment (LCM) [17] based on the visual contrast mecha-
nism. Since the LCM method has not been proposed for a
long time, many scholars still research and improve this
type of method, including multiscale patch-based con-
trast measure (MPCM) [18], multiscale local contrast
measure (MLCM) [19], relative local contrast measure
(RLCM) [20] and local difference measure (LDM) [21].
These algorithms can achieve good detection results, but
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the real-time performance is poor due to pixel-by-pixel
processing. Currently, the method based on data struc-
tureiswidelyused forsmalland dimtargetdetection[22,23],
in which the infrared patch-image (IPI) model [24] is the
most typical one. Small targets are obtained by seeking
the low-rank subspace structure and the sparsity structure
of prospect data. However, such a method adopts the
monad space as the background, which does not conform
to the actual demands. It is not applicable for more com-
plex background. The improved robust principal compo-
nent analysis (RPCA) was proposed in [25], which
divides the threshold value based on the ratio between the
neighborhood sparsity mean value and the whole sparse
image mean value to further eliminate the isolated noise
point and the clutter of background cloud edge. The algo-
rithm is time-consuming in the face of complex back-
ground, with high false alarm rate. A non-negative
infrared patch-image model based on partial sum mini-
mization of singular values (NIPPS) was proposed based
on singular value partial sum minimization in [26]. Such
method depends on the measurement of background rank
in terms of accuracy, and obviously reduces performance
and is time-consuming in the face of more complex back-
ground. In order to excavate more useful information
from patch space, infrared patch tensor (IPT) model was
proposed after expansion to tensor in [27]. Such method
can greatly reduce the algorithm complexity, with high
detection probability. However, the target may be lost
due to larger algorithm fluctuations and low robustness.
Based on the tensor nuclear norm part and non-convex
approximation of rank in [28], the local feature is intro-
duced and the infrared small and dim target detection
algorithm based on tensor nuclear norm partial sum is
proposed. Such a method depends on the local feature
effect very well. Thus the detection effect is not very
good in the face of dim target with complex background.

Hence, in order to balance the detection effect and the
instantaneity better, a kind of infrared small and dim tar-
get detection method based on low-rank tensor recovery
is proposed in this paper, in which the influence from
noise and clutter is added to the model and the inverse
variance weighted entropy as adaptive parameters is pro-
posed to adjust sparsity. Finally, the small targets are
worked out through division and positioning of threshold
value. The infrared small and dim target is detected and
the effectiveness of the algorithm is verified based on the
test results.

2. Infrared patch tensor model
2.1 Data reconstruction of infrared image

The original gray image of infrared small target belongs
to two-dimensional data, and the two-dimensional gray

image shall be converted to tensor data structure. Assu-
ming the infrared gray image is D and the tensor struc-
ture obtained after data reconstruction is . The data
construction method shall refer to the IPI model, namely
the whole image shall be browsed by sliding window.
The small patch obtained each time as the obverse side
slice of D is shown in Fig. 1.

Fig. 1 Three-dimensional representation method of original
infrared image

Specific reconstruction steps are as follows:

(1) The sliding window’s size and step length are m xm
and k, respectively. The image D € R is browsed from
left to right and from top to bottom. The image block ¢
with size of m X m is an obverse side slice in tensor data.

(ii) After ergodicity, assume the total sliding times of
window is n. The obverse side slice obtained by image
small patch constitutes the infrared patch tensor D e
RVHXW!X".

In practical applications, a small target usually keeps
changing all the time. It is the single pixel point target
and the SNR is very low in this paper. Therefore, it is
small with respect to the whole image, thus the target
image can be considered as a sparse matrix, which makes
the corresponding target patch image still be a sparse
matrix. On the other hand, due to atmospheric refraction,
dispersion, optical defocusing, lens aberration, diffrac-
tion, deformation of mirror, and detector tilt, the original
infrared background image tends to be slightly blurred
and many local patches are approximately linearly corre-
lated with each other even though the pixel distance
between two patches may be large in an image. This
property of non-local self-correlation exists commonly in
infrared background images. Therefore, we can consider
the background patch-image as a low-rank matrix. When
the model is converted to IPT, the data changes from two-
dimensional to three-dimensional, but the low rank of the
background and the sparsity of the target do not change.
Therefore, the background image and the target image
can be obtained through tensor decomposition. Small tar-
gets can be obtained after being segmented by the thre-
shold.
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However, in IPI model, small patches in each sliding
shall are converted into vectors, which breaks through the
internal structure of image data so that many gray fea-
tures are destroyed. Besides, such conversion mode
causes large computation burden. Each small block in the
window is directly used as the obverse side slice to con-
struct data, which can guarantee the local features of
image can be reserved and is conductive to withdrawing
the prior information. In the meantime, the calculation
efficiency of the algorithm is not influenced by the origi-
nal image resolution, and is related to the size of sliding
window and the sliding times. Hence, the window size
and the sliding times are set reasonably in order to
improve the algorithm efficiency.

The inverse process of two-dimensional image based
on infrared patch tensor is opposite to the above restruc-
turing procedures, and every obverse side slice is
replaced in the original position. When the image is
browsed by sliding window, the sliding step is less than
the window size, and then the small block will overlap in
replacement. The mean filtering method is adopted to
handle with the overlapping area.

2.2 Construction of infrared patch tensor mode

In remote imaging, the point targets in infrared imagery
will often be submerged in the background clutter, with
low SNR to form dim targets. The target image carries
very little information, causing difficulty of target detec-
tion. Such infrared image data are mainly composed of
targets, the background, and noise. According to IPI mo-
del the image can be expressed as

fr=fr+fet+fy (D

where fr, fr, fs, and fy represent the input of original
infrared image, target image, background image, and
noise, respectively. A new IPT model can be obtained by
sliding image in window

F=T+B+N 2)

where ¥, 7, B, and N represent the IPT, target patch
tensor, background patch tensor, and random noise,
respectively.

In [28], three modal expansion matrices can be
obtained for three-order tensor. The singular value of
three expansion matrices of IPT is rapidly reduced near 0,
which indicates the expansion matrix of tensor patch in
each modality conforms to the low-rank nature. Hence,
the background patch tensor is assumed as follows:

I‘ank(B(”) <n
rank(B)) <1,
rank(B) <13

where B, B, and B, represent the background patch
tensor’s model 1 expansion matrix, model 2 expansion
matrix, and model 3 expansion matrix, respectively. The
ri, 12, and r; are positive numbers.

They only account for a small part of pixels in infrared
image in the face of dim targets. Obviously, the target
patch tensor can be used as sparse tensor 7 . If the noise
is not considered, the background low-rank tensor and the
target sparse tensor can be solved based on the following
models:

min rank (8)+ U7 ||,
BT
st. F =8B+7 (3)

where A represents the regularization parameter that indi-
cates the sparse error term weight and is used to adjust
the low-rank characteristics and sparse characteristics.
rank(-) represents the matrix rank and || -||, represents the
0 norm that indicates the number of non-zero elements in
matrix. The above formula (3) is equivalent to the low-
rank tensor recovery problem. Hence, infrared small and
dim target detection is converted to the problems of sol-
ving the low-rank tensor recovery.

The model as mentioned above does not consider the
influence from noise and clutter. As a result, the dim tar-
get detection effect will be reduced greatly in the face of
infrared image in more complex scenes. In the meantime,
the weighted parameters are manually set as per different
scene demands, and they cannot achieve self-adaptive
adjustment to avoid influencing the detection effect.
Hence, a kind of more robust tensor recovery method is
proposed in this paper, and a reweighted strategy is added
to recover the low-rank and sparse tensor of existing noi-
se and clutter. The improved model can be expressed as

min rank (B) + 47T 0 W, +yIINIl &
BT N
st. F=8+T +N @)
where 4,, v, and W, indicate the self-adaptive weighted
parameters, the weight of random noise, the reweighted

patch tensor respectively. The ||-|[2 indicates F normal
which is used to depict the random noise.

3. Infrared small and dim target detection
based on recovery of low-rank tensor

3.1 Priori model

Traditional infrared dim and small target detection me-
thods focus on the design of filters and most of them only
focus on the extraction of local features, such as local
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contrast [29], local entropy and local difference [30],
which cannot distinguish the background from the target.
The structure tensor is used to construct the priori informa-
tion W, and W, of local structure in [27] and [28]. How-
ever, such detection effect will be limited to the local

riginal infrared image

(a) O

(b) Effect of W,

prior results. Hence, for the dim targets with lower SNR,
the result based on local prior information will leak detec-
tion targets, causing the poor final detection effect. Two
kinds of local prior information conditions based on
image SNR of 3 are shown in Fig. 2.

(c) Effect of W,

Fig.2 Local priori effect

Fig. 2 shows that faced with the infrared dim and small
target image with an SNR of 3, the targets are all missed
after the prior effect of local features. In the meantime,
many background edges exist in the prior role of W,
which will cause the increase of algorithm operating time.
Hence, the prior restrictions of this part are taken out in
this paper. However, in order to accelerate the rate of
convergence of model and reduce the target detection
time, the reweighted strategy is selected and a sparse
weight W, is added

k+1 1
C T+

)

where v is a small positive number used to prevent
denominator as 0, and k indicates the iterations times.

3.2 Inverse variance weighted entropy

Infrared small and dim target image background in differ-
ent scenes is complex. Different gray values change in
different background areas, in which the gray in dim tar-
get field scope changes acutely in general, while the gray
in background field scope changes gently. Hence, the
selection of fixed weighted parameters will inevitably
influence the detection effect based on the gray change in
different scenes. The inverse variance weighted entropy
H is introduced as the self-adaptive weighted parameter,
namely the weighted parameter A, is set adaptively based
on the image complexity change of different scenes to
adjust the sparsity and achieve the dim target detection
better. The expression formula of H is
L-1

{g(zi-2)-p@)-log,(1-p)+v)}  (6)

i=0

H=-

where ¢, z;, Z, and p(z;) represent the weighted factor,
the ith gray value, the overall gray mean value and the

occurrence probability of gray value z; in image. v is a
very positive number to ensure that log,(1—p(z)+v)
still exists in the case of p(z;) = 1.

Literature [31] points out that the inverse entropy func-
tion meets the non-negativity, symmetry and extremum
property. When z; meets the even distribution, the inverse
entropy function can obtain the minimal value. In other
words, when the image gray value changes fiercely and
the gray scope is wide, the inverse entropy is small and
the image complexity is large; while when the ima-
ge changes flatly and the gray value is very collective, the
inverse entropy is large and the image complexity is
small. Inverse entropy is inversely proportional to the ima-
ge complexity and is directly proportional to the cost
function sparse weight 1. Hence, based on the 1, = H as
self-adaptive weighted parameters and their relationship,
the contact between image complexity and target detec-
tion algorithm is preliminarily discussed.

3.3 Algorithm solution

The low-rank property of background patch tensor is
described based on the sum of nuclear norms (SNN) by re-
ference of the single case model in reweighted infrared
patch-tensor (RIPT). In order to solve the model, norm 1
replaces norm 0 for relaxation processing. Hence, the
convex optimization model is finally solved as follows:

3
min > [1Bo|. + T 0 Wil +INI ?
T =l

st. F=8+T +N. N

The alternating direction method of multipliers
(ADMM) is selected to solve the separable convex opti-
mization problem. It can improve the rate of conver-
gence and accuracy due to the dim condition conver-
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gence of multiplier method and the separable decompos-
ability of dual ascent. In order to solve the model, the
Lagrange function in (7) can be constructed

3
L= UBI.+AIT oW, +yINI 2+
3 i=1
1
Z||B,.+fr+/\/—ff||§—<y,-,8,.+fr+N—ff> (8)
i=1

i

where Y, u, and () represent the Lagrange multiplier,
penalty factor and inner product among tensors.

Based on ADMM, £ can be broken into several sub-
problems for iterative update.

(1) Fixation of the rest of the variables and update of 5;.

B! = argmin||B],+
K |8, (7 - TE N ;f"yk)”2 )
2 F
(i1) Fixation of the rest of the variables and update of 7.
T = arg{;nin/laIIT(D‘Wslll +

2
F

3.k
H + + -
> £ I -(7 -8 =Nty 0)
i=1
(iii) Fixation of the rest of the variables and update of N.
N = argminy ||N|[; +
3 I,[k N )
ZE”T_BfH _(]~k+l +H—kyk||F (11)
i=1

(iv) Fixation of the rest of the variables and update of

k+1
/)

Y =Mf+l%(7-'—8f“—7"‘“—N"”), i=1,2,3 (12)

(v) Update of parameters: u“*! = y*/p.
(vi) Inspection of termination condition.

||7:_Bk+1 — Gkl _Nk+1||
V™

= <e or [T, =17, -
(13)

4. Experimental results and analysis

The data adopted in this paper are from the simulation of
space-based downward-looking detection system, namely
the high sky-to-ground complex background and the bor-
der background. The simulation is based on a real detec-
tion scene to establish a working environment, via the
mathematical model to simulate the photoelectric imag-
ing process (effect) for algorithm evaluation. All target
and scene data are modeled and simulated mainly through
the energy conversion of detection system virtual proto-
type, not actual satellite images. However, the simulated
data has been compared and evaluated with the actual
satellite data by Beijing Institute of Remote Sensing
Equipment. The complexity, spatial noise and other indi-
cators are not less than 90% authenticity. It has a high
degree of realism. It can be used as real data. Fig. 3
shows the infrared image of four kinds of different
scenes, including three kinds of ground scenes and one
kind of border scene, in which the border scene gives
three frames of images, including the target in three dif-
ferent situations. The detailed information is shown in

Table 1. All images are 14 bits.

(a) Scene 1

1as
3
s

(d) Scene 4-1

(b) Scene 2

(e) Scene 4-2

(c) Scene 3

(f) Scene 4-3

Fig.3 Examples of the experimental sequence images
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Table 1 Details of each scene

Image Sensor Resolution SNR Detail
Single pixel point t: tis i
Sequence 1 Infrared 640x640 3 fnele prxe Pom argetis in
the hilly area
Single pixel point target is i
Sequence 2 Infrared 640%640 3 {Ngle pixel point target 1S 1
the water lake area
Single pixel point target is i
Sequence 3 Infrared 640%x640 3 Tgic pixel potnt target 15 n
the cloud area
Single pixel point t: ti
Sequence 4 Infrared 640%x640 {Ngle pixel point farget1s

around the border

All four scenes are infrared images and the target is tail
flame information, single pixel. The ground scene 1 aims
at the hilly area around which the gray value fluctuates
greatly and changes fiercely; the ground scene 2 aims at
the lake area whose adjacent scope has certain contrast
ratio, but around which there is edge background, rela-
tively complex; the ground scene 3 aims at the cloud area
which belongs to the highlighted area; the border scene
involves the highlighted stable background, border
change background and high contrast background of
object in three different kinds of circumstances from left
to right, so that the algorithm can guarantee the target can
be effectively detected in three kinds of scenes around
limb when detection system tests the tracking target, and
the target can keep stable without disappearing in the
detection and tracking process.

In the test, the Matlab R2019a, Inter Core i7-8550U

and 8 GB memory are adopted as text platform. The sig-
nal to clutter ratio gain (SCRG), background suppression
factor (By), time consuming (f), true positive rate (TPR)
and false alarm rate (FAR) are selected as the evaluation
index of the algorithm. SCRG, B;, TPR and FAR are
defined as follows:
SCR,
SCR;,
_ (O-ﬁ)in

(a-ﬁ)out

__ true positive samples

SCRG =

(14)
(15)

f

TPR

positive sample set
__ false positive samples

(16)
FAR

sample set

where SCR,,, SCR;,, (0%),,, and (0%),, represent the
signal to clutter ratio of output part, the signal to clutter
ratio of input data, the background gray value standard
deviation of original image and the background response
value standard deviation of response diagram, respec-
tively.

Firstly, by reference of infrared image of small and
dim target in the hilly area, different regularization parame-
ters are valued and detection results are researched, as
shown in Fig. 4. The research results show that the back-
ground clutter cannot be restrained well, with many false

out

alarms if the parameters are small. The target cannot be
detected if the parameters are large. Hence, it is very
important to adaptively adjust parameters in different
scenes, which avoids the manual setting, and avoids poor
detection results due to setting deviation.

Gray information
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Fig. 4 Three-dimensional gray-scale response map of detection
results for different regularization parameters

Later, in order to verify the superiority of the method
in infrared small target detection, the proposed algorithm
in this paper is compared with the Top-hat algorithm [10],
LCM algorithm [17], NIPPS algorithm [24], RIPT algo-
rithm [25], and PSTNN algorithm [26], with the algo-
rithm background suppression results shown in Fig. 5—
Fig. 10 (the image sequence corresponds to Fig. 3).
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4-1 (e) Scene 4-2 (f) Scene 4-3
Fig. 5 Results of the proposed algorithm

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4-1 (e) Scene 4-2 (f) Scene 4-3
Fig. 6 Results of the Top-hat algorithm
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200

(b) Scene 2

d
00
200 550700

05 100200

(d) Scene 4-1 (e) Scene 4-2 (f) Scene 4-3

Fig. 7 Results of the LCM algorithm

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4-1 (e) Scene 4-2 (f) Scene 4-3
Fig. 8 Results of the NIPPS algorithm
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4-1 (e) Scene 4-2 (f) Scene 4-3
Fig. 9 Results of the RIPT algorithm

(a) Scene 1 (b) Scene 2 (c) Scene 3

0
500
200300400
0°0 100

(d) Scene 4-1 (e) Scene 4-2 (f) Scene 4-3
Fig. 10 Results of the PSTNN algorithm
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Fig. 5-Fig. 10 show that for the small and dim target in
ground and border complex scene, the algorithm in this
paper can restrain background and noise very well and
highlights the target; the background suppression effect
of the Top-hat algorithm includes two kinds of condi-
tions, in which the ground scene has poor effect with
many background clutter and the object is not enhanced
obviously, while the limb scene has good background
suppression and the object is enhanced very well. There
is only a small part of background residue; the LCM
algorithm utilizes the local contrast mechanism to rela-
tively obviously enhance target, but the general back-
ground suppression effect will cause many false alarms;
the NIPPS algorithm plays a certain role in background
suppression in the ground scene, with target enhanced,
but many clutters in scene easily bring many false alarms.
While the limb scene effect is good; both RIPT and
PSTNN algorithms utilize the local transcendental char-
acteristics for low-rank tensor recovery. Restricted by
local feature, small and dim targets in ground scene are
all missed. Although the limb scene has the certain back-
ground suppression effect, the target size increases in the
limb scene background suppression of PSTNN. The
effect needs to be improved.

On the other hand, in order to evaluate the algorithm
performance more objectively, Table 2, Table 3, and
Table 4 list the index comparison of the SCRG, back-
ground suppression factor (B;) and time consuming (f)
for different algorithms, in which NaN indicates the
numerical result makes mistakes and the Inf indicates the
data value is great. It is observed that there is the maxi-
mum SNR gain and the minimum background suppres-
sion factor in this method. Hence, the corresponding sup-
pression effect is the best and the subsequent detection
results will be more accurate. In the meantime, with
regard to the operating time, although the scene con-
sumes a little longer time than Top-hat, the background
suppression effect is better and the false alarm is less,
which can balance the detection effect and operation time
better.

Table2 SCRG comparison of different algorithms

Table3 By comparison of different algorithms

Scene
Method
Scene 1 Scene 2 Scene 3 Scene 4-1 Scene 4-2 Scene 4-3
Top-hat  0.92 0.83 0.99 0.07 0.06 0.05
LCM 0.76 0.80 0.73 0.78 0.83 0.76
NIPPS  0.10 0.09 0.16 0 0.01 0.01
RIPT NaN NaN NaN 0 0 0
PSTNN  0.13 0.12 0.19 0.04 0.03 0.03
Proposed 0 0 0 0 0 0
Table 4 ¢ comparison of different algorithms S
Scene
Method
Scene 1 Scene 2 Scene 3 Scene 4-1 Scene 4-2 Scene 4-3
Top-hat  0.89 0.88 0.87 0.98 0.98 0.91
LCM 1272 9.14 8.86 8.86 8.62 8.77
NIPPS 618.71 619.26 613.05 612.90 61434  611.72
RIPT 5.61 7.01 5.89 443 4.09 4.18
PSTNN 59.79 5995 60.29 71.36 71.36 69.98
Proposed  3.90 3.83 3.71 3.78 3.81 4.09

The regularization parameter value of the algorithm in
different scenes, as shown in Table 5, also reflects the
weighted inverse entropy in different scenes and shows
that the value of ground scene is less than that of limb
scene and the ground scene is obviously complex than the
limb scene, with greater detection difficulty. The com-
plexity of different background changes in ground scene
is slightly different and the small and dim targets have the
most complex image in small lake. However, the border
scene shows the existing problems, namely the same
image target has different detection results at different
positions, but their complexity is the same. Hence, with
regard to the design of complexity, more aspects can be
improved and researched in the future.

Table 5 Regularization parameter values in different scenarios

Scene
Method
Scene 1 Scene 2 Scene 3 Scene 4-1 Scene 4-2 Scene 4-3

Top-hat  1.09 1.02 2.07 3.79 19.03 40.66
LCM 4.82 5.67  10.87 24.58 10.44 23.78
NIPPS  70.44 259.67 12334  29.50 25.19 117.56
RIPT NaN  NaN  NaN 53431 418.24  746.13
PSTNN  3.10 1.05 2.65 2.66 8.27 14.83
Proposed 438.93 639.53 497.69 Inf Inf Inf

Parameter Value
A 0.15

A2 0.11

A3 0.12
A4-1 0.36
a2 0.36
A3 0.36

Finally, for the sequence image in six kinds of scenes,
each kind of sequence contains 30 frames. The total num-
ber of image frames reaches 180 and the number of ac-
tual targets reaches 180. The self-adaptive threshold
value is adopted in each kind of method to divide
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response diagram and to count the quantity of detection
targets and false alarm targets as well as to calculate the
detection rate TPR and false alarm rate FAR, as shown in
Table 6. The result shows that RIPT and PSTNN cause
lower target detection probability due to local prior
restriction. The NIPPS’ detection effect is relatively good.
The algorithm proposed has the optimal detection perfor-
mance, with higher detection rate and lower false alarm
rate.

Table 6 TPR and FAR of different algorithms
Method
Rate
Top-hat LCM NIPPS RIPT PSTNN Proposed
TPR 0.512 0.685  0.691  0.524 0.429 0.947
FAR 0.401 0.418  0.432  0.509 0.614 0.053

5. Conclusions

A kind of infrared small target detection algorithm based
on the low-rank tensor recovery is proposed in this paper
for the actual application background of space-based
downward-looking detection system in the ground and
border complex scene. Reconstruct the original infrared
image data, complete the construction of a low-rank ten-
sor model, add a reweighted strategy, define adaptive reg-
ularization parameters, and solve the model to complete
target detection. The test results show that the me-
thod can be applicable to the single-pixel small and dim
target infrared image of complex scenes for the simu-
lated data. It can be a potential detection algorithm.
According to the actual data in the future, the method can
be further optimized.
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