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Abstract: The  reliability-based  selective  maintenance  (RSM)
decision problem of  systems with  components  that  have multi-
ple  dependent  performance  characteristics  (PCs)  reflecting
degradation  states  is  addressed  in  this  paper.  A  vine-Copula-
based  reliability  evaluation  method  is  proposed  to  estimate  the
reliability of system components with multiple PCs. Specifically,
the  marginal  degradation  reliability  of  each PC is  built  by  using
the  Wiener  stochastic  process  based  on  the  PC ’s  degradation
mechanism.  The  joint  degradation  reliability  of  the  component
with multiple PCs is established by connecting the marginal reli-
ability  of  PCs using  D-vine.  In  addition,  two RSM decision  mo-
dels are developed to ensure the system accomplishes the next
mission.  The  genetic  algorithm  (GA)  is  used  to  solve  the  con-
straint  optimization  problem  of  the  models.  A  numerical  exam-
ple illustrates the application of the proposed RSM method.

Keywords: D-vine, genetic  algorithm  (GA), reliability-based
selective  maintenance  (RSM), redundant  system, Wiener
stochastic process.
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 1. Introduction
Many  complex  systems  in  the  industry  are  required  to
execute continuous missions within a predetermined time.
After finishing the current mission, some necessary main-
tenance actions must be performed on the system compo-
nents  during  downtime  to  meet  the  reliability  require-
ment  for  executing  the  next  mission.  However,  within
limited  maintenance  resources,  not  all  system  compo-
nents can be restored to optimal conditions. Therefore, an
appropriate  maintenance  policy  should  be  developed  to
select the optimal maintenance components and the main-
tenance  actions  assigned  to  them.  The  selective  mainte-
nance  proposed  by  Rice  et  al.  [1]  is  specially  developed
for this kind of maintenance problem.

In classical reliability-based selective maintenance pro-

posed by Cassady et al. [2], a system and its components
are  assumed  to  be  in  two  possible  states:  functioning  or
failed.  On  the  basis  of  that,  a  generalized  modeling
framework  is  further  proposed  by  Cassady  et  al.  [3]  to
solve  the  selective  maintenance  decision  problem.  From
that,  the  selective  maintenance  is  later  extended  by  con-
sidering  the  varying  state  of  components  from  perfect
functioning  to  complete  failure.  For  example,  Pandey  et
al.  [4]  studied the imperfect  selective maintenance prob-
lem  and  used  the  hybrid  hazard  rate  approach  to  reflect
whether  a  component  was  relatively  young or  old.  Jiang
et al.  [5] proposed a reliability-centered predictive main-
tenance  scheme for  a  complex  structure  system with  se-
veral redundant components, where the reliability of sys-
tem  components  is  described  by  the  Markov  chain.
Khatab  et  al.  [6,7]  proposed  a  condition-based  selective
maintenance  model  in  a  continuously  monitored  multi-
component  system,  the  reliability  model  of  system com-
ponents  was  established  by  using  the  Gamma  stochastic
process.  Most  research  on  reliability-based  selective
maintenance ignored the complex dependency of the sys-
tem  and  its  components  exhibited  in  practical  applica-
tions.  More research on selective maintenance for multi-
unit systems can be seen in [8].

To make the maintenance problem more practical,  the
reliability model, considering the dependency of systems
components,  has been developed in recent studies.  Hong
et al. [9] investigated the influence of dependent degrada-
tion  components  on  the  optimal  maintenance  decisions,
and the dependency among degradation components was
modeled by the Copula. Guo et al. [10] developed a joint
reliability  model  via  Copula  for  the  non-repairable  sys-
tems,  which  had  dependent  competition  risks  caused  by
component  degradation  and  random  shocks.  Their  study
illustrated  making  maintenance  decisions  via  the  pro-
posed  reliability  models  could  obtain  a  more  precise
result than that without considering the dependency. Ruiz
et al.  [11] presented a statistical and optimization frame-
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work  for  selective  maintenance  of  a  complex  system.  In
their  study,  each  system  component  had  multiple  hard
sudden  failure  modes  and  a  single  soft  degradation  fail-
ure  mode,  and  the  reliability  model  was  built  on  this
basis.

However, most of the reliability-based models assumed
system components have only one degraded performance
characteristic  (PC).  According  to  existing  related  re-
search,  a  component  could  exhibit  multiple  dependent
PCs, especially for some mechanical components, such as
pneumatic  valves  [12],  smart  electricity  meter  [13],  and
electro-hydraulic  servo  valve  [14].  Accordingly,  the
dependency  among  multiple  degraded  PCs  of  system
components should be considered when developing a reli-
ability model or reliability-based maintenance. Moreover,
a  more  accurate  reliability  modeling method should  also
be  proposed  to  describe  the  actual  influence  of  mainte-
nance in the presence of multiple dependent PCs of com-
ponents.  The  Copula  function  is  widely  used  to  solve
such  a  reliability  modeling  problem  since  it  can  conve-
niently obtain the dependent relationship of component’s
PCs. Xu et al. [15] presented a multivariate failure beha-
vior modeling and reliability assessment method based on
vine-Copula. Fang et al. [16] investigated a coherent sys-
tem,  which  had  positively  correlated  degradation  pro-
cesses of its PCs, and the system reliability with multiple
PCs  was  modeled  by  a  Copula  function.  Pan  et  al.  [17]
proposed  a  reliability  evaluation  method  for  products
with multi-performance degradation based on the Wiener
process and Copula function. Sun et al. [18] developed a
multivariate  dependent  accelerated  degradation  test
model  based  on  the  random-effect  Wiener  process  and
drawable  (D-)  vine  Copula  to  capture  the  dependence
structure among the multiple PCs in modern products.

To  obtain  more  credible  system  reliability,  system
components  with  multiple  PCs  are  fully  considered.
Specifically, the reliability of those components is estab-
lished by using the vine-Copula, and the marginal reliabi-
lity of each PC is modeled by the general Wiener process.
Based on that, the reliability-based selective maintenance
(RSM)  policy  is  developed.  Within  the  limited  mainte-
nance resources, the proposed RSM can select and main-
tain  some  important  components  to  achieve  the  reliabi-
lity required of executing the next mission. Also, the pro-
posed  RSM  considers  the  following  problems:  (i)  dy-
namic  evaluation  of  system  reliability  for  executing  the
next  mission;  (ii)  appropriate  allocation  of  maintenance
actions (including perfect and imperfect maintenance) for
the selected components; (iii) cost-effectiveness of jointly
maintaining multiple components.

The  remainder  of  this  study  is  organized  as  follows:
Section  2  develops  the  reliability  model  for  the  system
component  with  multiple  dependent  PCs.  In  Section  3,
the  maintenance  decision-making  and  optimization  pro-
cess  of  the  RSM  policy  are  discussed.  In  Section  4,  the
implementation  of  the  proposed  RSM  policy  is  illus-
trated through a numerical example. Conclusions are pre-
sented in Section 5.

 2. Reliability modeling
In  this  section,  a  system composed  of  multiple  degrada-
tion components is considered. The system consists of M
subsystems in parallel,  and each subsystem i  (i=1, 2, ···,
M) is composed of mi components Cij (j=1, 2, ···, mi). The
components  exhibit  one  or  more  kinds  of  degenerated
PCs. To estimate the reliability of those components, the
marginal  reliability  functions  are  established  firstly  for
each of the PCs, and then the marginal functions are con-
nected to model the component reliability by using vine-
Copula.  The  system  reliability  can  be  calculated  as  a
structure-function of the complex structures and the relia-
bility  of  the  components.  The  structure-function  is
directly  created  through  the  reliability  block  diagram
method.

 2.1    Marginal reliability modeling of PCs

Suppose  that  the  degradation  process  of  PCs  can  be
observed,  and  the  observed  degradation  can  be  sampled
along with the PCs’ degradation over time. In general, the
degradations  are  assumed  to  have  common  sample  time
points.  The  degradations  are  stochastic  for  the  random-
ness  in  the  degradation  process  of  components.  There-
fore,  the  general  approach  is  to  depict  the  degradation
process  as  a  stochastic  process  [19].  In  this  study,  the
Wiener  process  is  introduced  to  model  such  a  degrada-
tion  process.  Let  {Y(t), t  ≥ 0}  denote  the  cumulative
degradation of a PC at the simple time, then {Y(t), t ≥ 0}
can be described as

Y(t) = µt+σB(t) (1)

where μ  is  a  drift  rate  reflecting  the  mean  rate  of  the
degradation process of the PC. σ  > 0 is a diffusion para-
meter quantifying the magnitude of the process. B(t) is a
standard Brownian motion presenting the randomness of
the process.

For each PC, the failure time can be regarded as when
its  cumulative  degradation  first  hits  a  pre-specified
threshold [20]. Such first-passage time is defined as

T f = inf{t|Y(t) ⩾ D f |Y(0) = 0, t ⩾ 0} (2)

where Df is the pre-specified failure threshold.
The  Wiener  process Y(t )  has  the  following  properties:
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Y(0)=0; Y(t )  has  stationary  independent  increments  that
follow a normal distribution. According to the properties,
the  first-passage  time Tf  under  knowing  degradation
Y(τ) = d can be derived as

T f = inf{ Y(t + τ)−Y(τ) ⩾ D f −Y(τ)|t ⩾ 0} =
inf{ Y(t) ⩾ D f −d|t ⩾ 0} . (3)

Correspondingly, the reliability of the PC at time τ can
be  proven  following  an  inverse  Gaussian  distribution  as
follows:

r(t|d) =Φ
(

D f −d− µ̂t
σ̂
√

t

)
− exp

(
2µ̂(D f −d)
σ̂2

)
Φ

(−(D f −d)− µ̂t
σ̂
√

t

)
(4)

where Φ is the standard normal distribution function. Θ =
(μ, σ2) are the unknown parameters.

According to the property of the Wiener process, let Δy
denote the degradation increments within the sample time
increment interval Δt, then Δy ~ N(μΔt, σ2Δt). Estimation
of the parameters Θ=(μ,  σ2)  can be determined by maxi-
mizing the log-likelihood function of Δy.

If  a  component  has  only  a  single  PC,  (4)  is  used  to
directly  depict  its  reliability,  but  if  the  component  has
multiple  PCs  simultaneously,  (4)  is  used  to  depict  the
marginal  reliability  for  each PC of  the component.  Then
the  component  reliability  can  be  modeled  by  using  the
marginal reliability of PCs. The remainder of this section
focuses  on  the  reliability  modeling  process  of  a  compo-
nent with multiple PCs.

 2.2    Component reliability modeling by vine-Copula

In  practical  applications,  if  all  PCs  of  a  component  are
independent,  the  joint  reliability  distribution of  the com-
ponent can be calculated as follows:

Ri j(t) = P{Yi j1(t) < D f ,i j1, · · · ,Yi jN(t) < D f ,i jN} =

P{Yi j1(t) < D f ,i j1} · · ·P{Yi jN(t) < D f ,i jN} =
N∏

k=1

ri jk(t) (5)

where Rij(t )  is  the  reliability  of  component Cij  with  N
kinds of  PCs and each of  the  PCs is  expressed by rijk(t);
Yijk(t) (k=1, 2, ···, N) denotes the cumulative degradation
of  the k th  PC  of  the  component;  and Df,ijk  is  the  failure
threshold of the kth PC.

However, if the dependency exists among the multiple

PCs,  the interactions between PCs may impact  the relia-
bility  evaluation  results  of  the  component.  To  describe
this dependence, the Copula is introduced because it  can
provide a valid way to describe the joint reliability distri-
bution for multiple dependence PCs. According to Sklar’s
theorem  [21],  the  joint  reliability  of  a  component  with
multiple PCs can be defined as

Ri j(t) =C
(
ri j1 (t) , · · · ,ri jN (t) ;θi j

)
(6)

where Rij(t) denotes the reliability of component Cij; rijk(t)
(k = 1, 2, ···, N) is the marginal reliability of the kth PC.
For  the  sake  of  simplification, rijk(t )  is  detonated  as rk(t)
(k = 1, 2, ···, N) in (7)−(8), and (21)−(23).

To  evaluate  the  multivariate  distribution Rij(t )  in  (6),
the  vine-Copula  is  introduced.  Vine-Copula  can  decom-
pose  a  multivariate  Copula  into  multiple  bivariate  pair-
Copulas  and  connect  the  pair-Copulas  through  a  vine
graphical  representation  model  [22−24].  Thanks  to  that,
multivariate  distribution  can  be  vividly  expressed  as  a
joint  of  bivariate  distributions.  The specific  forms of  the
bivariate  distribution  used  in  the  study  are  given  in  the
following.

The specific forms of the bivariate Copula used in the
study are as follows:

Gaussian:

C(u,v;θ) =
w ϕ−1(u)

−∞

w ϕ−1(v)

−∞

1

2π
√

1− θ2
·

exp
{
− p2−2θpq+q2

2(1− θ2)

}
dpdq

θ ∈ (−1,1)where .
Frank:

C(u,v;θ) = −1
θ

ln
(
1+

(exp(−θu)−1)(exp(−θv)−1)
exp(−θ)−1

)
θ ∈ (−∞,+∞)\{0}where .

Clayton:

C(u,v;θ) = (u−θ + v−θ −1)−1/θ

θ ∈ (0,+∞)where .
Gumbel:

C(u,v;θ) = exp(−((− lnu)θ + (− lnv)θ)1/θ)

θ ∈ [1,+∞)where .
The  corresponding  probability  density  functions  and

partial derivative functions for those Copulas are listed in
Table 1.

 

Table 1    Probability density functions and partial derivative functions

Copula c(u, v; θ) h(u, v; θ)

Gaussian 1
√

1− θ2
exp(− θ

2(ϕ−2(u)+ϕ−2(v))−2θϕ−1(u)ϕ−1(v)
2(1− θ2)

) Φ(
Φ−1(u)− θΦ−1(v)

√
1− θ2

)
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However,  there  exists  a  significant  number  of
selectable  pair-Copulas  with  the  increase  of  the  dimen-
sion of  vector x .  Thus,  a  D-vine [25] is  adopted for  it  is
free  to  arrange  dependent  pairs  among  multiple  PCs.
According  to  the  D-vine,  the  component  reliability Rij(t)
can be written as

Ri j(t) = rN(t)hN−1|N(rN−1(t),rN(t);θN−1 |N) · · ·
h1N |2···(N−1)(r1|2···(N−1)(t),rN |2···(N−1)(t);θ1N |2···(N−1)) (7)

where θ is the parameter of the conditional density func-
tion of the pair-Copulas. h(·) denotes the conditional den-
sity, which can be expressed [16] as

hk,vs |v−s
(rk|v−s

(t),rvs |v−s
(t);θk,vs |v−s

) =
∂Ck,vs |v−s

(rk|v−s
(t),rvs |v−s

(t);θk,vs |v−s
)

∂rvs |v−s
(t)

(8)

where v is the conditioning vector, vs is an arbitrarily cho-
sen variable of v, v-s is the vector v excluding vs. C(·) is a
bivariate Copula function. h(·) denotes the partial deriva-
tive concerning the second parameter of C(·).

After obtaining the marginal reliability of PCs, only the
form and parameter of the pair-Copulas should be deter-
mined  when  establishing  a  D-vine  model  of  component
reliability.  To address this problem, the Akaike informa-
tion  criterion  (AIC)  principle  [26]  is  first  used  to  select
the  optimal  form  of  the  pairwise  connection  function  in
Rij(t). Then, estimate the global parameters of the D-vine
Copula model based on the determined forms of pair-Co-
pulas  by  using  the  maximum  likelihood  estimation.
Finally, the global parameters of the pair-Copulas of R(t)
can be estimated together based on the forms. The value
of AIC can be calculated as follows:

AIC = −2ln L+2λ (9)
where L is the maximum value of the likelihood function
of the candidate-specific pair-Copulas, and λ  is the num-
ber of parameters. The parameters estimation of the opti-
mal form should be with the minimum value of AIC.

To  sum  up,  based  on  the  marginal  reliability  of  the
PCs,  the component  reliability  with multiple  PCs can be
computed  by  the  D-vine.  Then,  after  obtaining  the  com-
ponent  reliability,  system reliability  can  be  easily  evalu-
ated  according  to  the  established  reliability  block  dia-
gram.

 3. Reliability-based selective maintenance
The  RSM  mainly  focuses  on  the  reliability  estimation
method of components with multiple dependent degrada-
tion PCs. The specific decision process of RSM is shown
in Fig. 1. When the current mission is completed, system
reliability is compared with a pre-specified safety reliabi-
lity  threshold R0  to  decide  if  selective  maintenance  is
needed. If so, the RSM decision could be made based on
the  component  reliability  and  maintenance  resources  to
select  the  optimal  components.  Specifically,  if  the  com-
ponent has only a single degraded PC, the reliability can
be directly calculated by (4).  While if  a component con-
tains  multiple  PCs,  the  marginal  reliability  of  each  PC
should  be  recomputed,  and  the  reliability  of  the  compo-
nent also needs to be re-evaluated according to (7).
  

Signal PC Multiple PCs

Estimating 

system reliability

Estimating Rij(t)
by (4)

Estimating Rij(t)
by (7)

Modeling component 

reliability by D-vine

Current mission

Rsys(t)<R0?

Yes

Next mission

No

Estimating  revisited 

system reliability

Maintenance optimization 

by using GA

Estimating 

component reliability

Allocating optimal maintenance 

actions for system components

Fig. 1    Maintenance decision process of RSM

Continued

Copula c(u, v; θ) h(u, v; θ)

Frank
−θexp(−θu)exp(−θv)(exp(−θ)−1)

((exp(−θ)−1)+ (exp(−θu)−1)(exp(−θv)−1))2
exp(−θv)(exp(−θu)−1)

(exp(−θ)−1)+ (exp(−θu)−1)(exp(−θv)−1)

Clayton u−θ−1v−θ−1(1+ θ)(u−θ + v−θ −1)−1/θ−2 v−θ−1(u−θ + v−θ −1)−1−1/θ

Gumbel
C(u,v)(uv)−1((− lnu)θ + (− lnv)θ)−2+2/θ(lnu lnv)θ−1·

(1+ (θ−1)((− lnu)θ + (− lnv)θ)−1/θ)
C(u,v)v−1(− lnv)θ−1((− lnu)θ + (− lnv)θ)1/θ−1

CAO Hui et al.: Reliability-based selective maintenance for redundant systems with dependent ... 807



Throughout  this  study,  it  is  assumed  that:  (i)  compo-
nents  reliability  as  well  as  the  system  reliability  can  be
monitored  by  sensors;  (ii)  no  maintenance  action  is
allowed  during  the  mission;  (iii)  the  system  does  not
work  during  the  maintenance  break,  and  degradation  of
the components is ignored until the next mission starts.

 3.1    Reliability revisited model

The revisited  reliability  of  components  is  determined  by
the  maintenance  actions.  Multiple  maintenance  actions
that  including do-nothing (l =  0),  imperfect  maintenance
(l =  1,  2,  ···, n−1),  and  replacement  (l =  n ),  are  consid-
ered, where l is the level of maintenance action. Compo-
nents can be restored “as good as new” after replacement,
and the component reliability returns to 1. The imperfect
maintenances  are  mainly  employed  to  maintain  compo-
nents  from  different  levels.  Examples  of  this  kind  of
maintenance  action  are  disassembling  and  washing  of
machinery,  repair,  and  maintenance  of  the  moving  parts
and calibrations. These actions can restore components to
a level between “as good as new” and “as bad as old”. In
the case where do-nothing is carried out, component reli-
ability is invariant.

To evaluate the revisited reliability of components, the
following decision variable is defined firstly:

z(l) =
1, l = 1,2, · · · ,n

0, l = 0
. (10)

Assume that the system has just completed the current
mission ω and is ready for maintenance. The degradation
of the kth PC of a component Cij is dijk, then the revisited
reliability  of  the  component’s PC for  executing  the  next
mission ω+1 can be derived from (4) as

rω+1
i jk (t|d∗i jk) = Φ

−µi jkt− (D f ,i jk −d∗i jk)

σi jk

√
t

−
exp

2µi jk(D f ,i jk −d∗i jk)

σ2
i jk

Φ−(D f ,i jk −d∗i jk)−µi jkt

σi jk

√
t

 (11)

d∗i jkwhere  is the updated degradation level of the kth PC
(k=1,  2,  ···, N )  of  component Cij  at  the  beginning of  the
next mission, such that:

d∗i jk = [ηl · zi jk(l)+ (1− zi jk(l))] ·di jk (12)

where dijk is the degradation level of the kth PC of compo-
nent Cij  when the current mission is completed, and ηl  is
the  degradation  reduction  coefficient  of  maintenance
level l .  Equation  (12)  illustrates  that  if  a  maintenance
action with suitable level l is performed on the kth PC of
the  component  at  the  end  of  the  current  mission,  the
revisited  degradation  can  be  determined  by  the  degrada-
tion level dijk and the degradation reduction coefficient ηl.
Based on (7) and (11), the revisited component reliability

with multiple PCs can be computed by D-vine.

 3.2    Maintenance cost and time model

In  RSM,  the  maintenance  actions  allocated  to  system
components  are  related  to  the  degradation  states  of  the
component’s PCs.  If  a  component  is  functioning  at  the
end  of  the  current  mission,  it  can  be  allocated  to  imper-
fect maintenance and replacement. If it  fails, the compo-
nent  must  be  replaced.  In  addition,  a  component  is  also
considered  replaced  if  it  is  functioning  but  its  degrada-
tion state  cannot  meet  the reliability requirement of  exe-
cuting  the  next  mission.  Allocating  different  mainte-
nance actions to system components may consume differ-
ent maintenance costs and time.

The maintenance  cost  can  be  computed  as  the  sum of
the  maintenance  cost  of  all  selected  components  at  the
end of  the  current  mission.  Besides,  considering that  the
total  cost  of  joint  maintaining  multiple  components  can
be  saved  by  sharing  the  basic  maintenance  cost,  which
includes  some  necessary  maintenance  resources  such  as
labor, materials, and tools [27,28]. Thus, the total mainte-
nance cost of CMC should be minus the cost-saving. The
CMC can be evaluated as

CMC =
M∑

i=1

mi∑
j=1

n∑
l=1

(cp,i j(l) ·εi j+ cr,i j(l) · (1−εi j))·

zi j(l)−
 M∑

i=1

mi∑
j=1

n∑
l=1

zi j(l)−1

 · cs (13)

where cr,ij denotes the replacement cost of component j in
subsystem i,  cp,ij  denotes  the  cost  of  imperfect  mainte-
nance,  and cr,ij  >  cp,ij.  εij  is  an  indicator  variable, εij  =1
means  imperfect  maintenance  is  allocated  to  component
Cij,  while εij  = 0 means replacement. cs  denotes the basic
maintenance  cost  incurred  by  maintenance  actions
(except do-nothing).

Similarly, the same computation is adapted to the total
maintenance  time,  which  is  the  sum  of  the  maintenance
time  of  all  selected  components.  The  total  maintenance
time can be evaluated as

TMT =
M∑

i=1

mi∑
j=1

n∑
l=1

(tp,i j(l) ·εi j+ tr,i j(l) · (1−εi j)) · zi j(l) (14)

where tr,ij denotes the replacement time of component Cij,
and tp,ij denotes the imperfect maintenance time.

 3.3    Optimization model of RSM

Let Rsys(ω+1)  denote  the  system reliability  for  executing
the next mission ω+1. The RSM schedule of completing
the next mission can be attained by solving the following
two optimization models.

Model  1:  the  reliability  maximization  model.  This
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model  focuses  on  maximizing  the  system’s reliability
after  maintenance  within  limited  maintenance  cost  and
time. The optimization model can be defined as follows:

Max : Rsys(ω+1), (15)

subject to

CMC ⩽ c0, (16)

TMT ⩽ t0, (17)
n∑

li j=1

zi j(l) ⩽ 1, ∀z ∈ {0,1}, (18)

where c0  is  the  maximum  maintenance  cost,  and  (16)  is
the constraint of the total maintenance cost, t0 is the maxi-
mum time required for maintenance, the constraint in (17)
guarantees  that  the  total  maintenance  time  does  not
exceed the available time t0. Equation (18) states that if a
component Cij  is  selected  to  maintain,  only  one  mainte-
nance level l (l =1, 2, ···, n) can be allocated to the com-
ponent.

Model  2:  the  maintenance  cost  minimum model.  This
model  devotes  to  minimizing  maintenance  costs  while
meeting the reliability requirements of executing the next
mission  within  limited  maintenance  time.  The  optimiza-
tion model can be defined as follows:

Min : CMC =
M∑

i=1

mi∑
j=1

n∑
l=1

(cp,i j(l) ·εi j+ cr,i j(l)·

(1−εi j)) · zi j(l)−
 M∑

i=1

mi∑
j=1

n∑
l=1

zi j(l)−1

 · cs, (19)

subject to (17), (18) and

0 ⩽ R0 ⩽ Rsys(ω+1) ⩽ 1, (20)

where R0 is the required reliability level for executing the
next  mission,  and  (20)  is  the  constraint  of  the  revisited
reliability of the system.

In this study,  the GA [29,30] is  introduced to find the
optimal  maintenance  components  that  can  maximize  the
system’s reliability  and  minimize  the  maintenance  cost.
Firstly,  the  maintenance  vectors  that  contain  all  the  sys-
tem components coded by binary are randomly generated
to  establish  the  initial  population.  Secondly,  the  fitness
and constraints of each vector are evaluated. Thirdly, the
fitness-based vectors  are  selected  from the  population to
be  parents  for  crossover  and  mutation.  After  exiting  the
iteration  (the  iterations g  ≥ 200),  the  optimal  mainte-
nance components can be defined. The optimization pro-
cess is shown in Fig. 2.
 

Start

Initialization

(generate component vectors)

Iteration g=0

Calculate the fitness function of the 

population

Crossover

Mutation

Select the optimal

individual

g≥200？

Find the optimal  components and their 

maintenance actions

No

End

g=g+1

Yes

Fig. 2    Optimization process of GA
 

 4. Simulation example
To  illustrate  the  application  of  the  RSM,  the  presented
policy  is  applied  to  a  series-parallel  redundant  system.
The  reliability  block  diagram  of  the  system  is  shown  in
Fig.  3.  The  system is  composed  of  two  subsystems,  and
each subsystem is composed of five degradation compo-
nents.  The component C1j  and C5j  are  particular  kinds of
components, and each of them contains multiple degrada-
tion PCs. The PCs can be wear, corrosion, crack propaga-
tion, oil-contamination accumulation, and so on. The com-
ponents C2j, C3j, and C4j are assumed to have only one PC.
 
 

C11

C12

C14

C13

C15

C25

C23

C24

C22

C21

Fig.  3      Reliability  block  diagram of  the  series-parallel  redundant
system
 

 4.1    System reliability assessment

The  degradation  process  of  each  component  of  PCs  is
depicted by the Wiener process. The values of drift rate μ,
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diffusion  parameter σ ,  and  the  threshold  degradation Df

are given in Table 2, where j=1, 2; k=1, 2, ···, 3. Table 2
also  shows  the  components ’  degradation  level  when  the
current mission is completed.

 
 

Table 2    Simulation parameters of the system components

Parameter C1jk C2j C3j C4j C5jk

μ (0.317 2, 0.139 9 0.096 5) 0.240 1 0.421 3 0.116 5 (0.206 6, 0.116 4, 0.141 4)

σ (2.890 8, 2.624 4, 1.590 6) 1.001 2.923 8 2.592 2 (1.991 7, 1.639 4, 1.473 1)

Df (80, 130, 100) 80 102 68 (120, 98, 70)

d (55, 112, 80) 68 52 44 (98, 82, 48)
 

According to the maintenance decision process of RSM
in Fig.1. Firstly, the reliability distribution of C1j  and C5j

should  be  built.  By  using  the  simulation  parameters  in
Table 1, the marginal reliability of component PCs can be
computed by (4). Based on the D-vine model, the reliabi-
lity of C1j and C5j is the joint reliability distribution of the
PCs  and  can  be  decomposed  as  (8)  shows.  The  D-vine
connection model of the PCs can be constructed as Fig. 4.
  

13|2

12 23

1

12 23

2 3

T1

T2

Fig. 4    D-vine model of the PCs of C1j and C5j

The  corresponding  joint  reliability  distribution  can  be
defined as follows:

Ri j(t) = R3(t)h23(R2(t),r3(t);θ23)h13|2(h12(r1(t),

r2(t);θ12),h32(r3(t),r2(t);θ23);θ13|2). (21)

Secondly,  the  optimal  Copula  function  of  the  pair-
Copulas  in  (21)  should  be  estimated.  The  candidate
Copula  function  is  Gaussian,  Frank,  Clayton,  and
Gumbel  (See Table  1 for  specific  form).  Each  of  them
is  respectively  optimized  by  using  the  AIC  principle.
The  most  appropriate  Copula  function  for  the  pair-
Copulas  of  components C1j  and  C5j  is  shown  in
Table 3.
 

 
 

Table 3    Forms and parameters for the pair-Copulas

h-function Candidate Copulas
Parameter of the pair-Copulas (θ) AIC

C1j C5j C1j C5j

h12

Gaussian 0.064 5 −0.009 1 0.332 1 1.966 9

Clayton 0.027 0 0.014 4 1.819 9 1.940 7

Frank 0.399 2 −0.007 0 0.038 4 1.999 4

Gumbel 1.035 1 1.000 0 0.665 9 2.000 1

h23

Gaussian 0.125 1 0.116 4 −4.310 2 −3.453 0

Clayton 0.137 6 0.151 0 −2.771 0 −3.360 2

Frank 0.805 2 0.671 0 −5.743 4 −3.520 2

Gumbel 1.075 8 1.069 8 −3.086 5 −2.909 0

h13|2

Gaussian 0.029 2 0.008 0 1.658 6 1.974 3

Clayton 0.013 5 0.056 7 1.375 9 0.950 8

Frank 0.157 6 0.019 6 1.705 2 1.995 4

Gumbel 1.022 7 1.000 0 1.944 9 2.000 0

 

According  to  the  optimal  value  of  AIC  in Table  3,
Frank,  Frank,  Clayton are  proposed for h12,  h23 ,  and h13|2

of  component C1j ,  and  Clayton,  Frank,  Clayton  are  pro-

posed  for h12 ,  h23,  and h13|2  of  component C5j .  After
obtaining the optimal forms of the pair-Copulas, the relia-
bility distribution of C1j and C5j can be defined as follows:
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RC1 j
(t) = r3(t)h23(r2(t),r3(t);θFrank)·

h13|2(h12(r1(t),r2(t);θFrank)h32(r3(t),r2(t);θFrank);θClayton),
(22)

RC5 j
(t) = r3(t)h23(r2(t),r3(t);θFrank)·

h13|2(h12(r1(t),r2(t);θClayton)h32(r3(t),r2(t);θFrank);θClayton).
(23)

The parameters of pair-Copulas(θ) in (22) and (23) are
re-estimated together by the maximum likelihood estima-
tion method to determine the reliability distribution of C1j

and C5j .  Here, the fminsearch function is used to address
the optimization problem of the likelihood function.  The
estimations of the global parameters for the pair-Copulas
are shown in Table 4.

 
 

Table 4    Re-estimation results of the parameters of pair-Copulas(θ)

Component
C1j C5j

h12 h23 h13|2 h12 h23 h13|2

Copula Frank Frank Clayton Clayton Frank Clayton

Estimation 0.113 3 0.115 5 0.573 0 0.101 4 0.102 9 0.147 6

 
Finally,  with  the  marginal  reliability  of  component

PCs, the joint reliability of C1j and C5j can be easily com-
puted according to (22) and (23).

According to the current degradation level, the compo-
nent reliability of the series-parallel redundant system for
performing the next mission can be computed by (4) and
(7).  The  reliability  of  system  components  is  shown  in
Fig.  5.  Besides,  the  reliability  of  particular  components,
C1j and C5j, when their PCs are considered independent, is
also shown in Fig. 5.
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Fig. 5    Component reliability for executing the next mission
 

As  shown  in Fig.  5(a),  the  full  lines  in  the  figure
denote  the  joint  reliability  of C1j  and  C5j  based  on  the
D-vine  model,  and  dotted  lines  denote  the  reliability
irrespective  of  the  correlation  among  their  degrada-
tion PCs. From Fig. 5, it can be concluded that the com-
ponent  reliability  seems  to  be  conservative  when  the
dependency  among  multivariate  performance  para-
meters  is  ignored.  Moreover,  if  there  are  compo-
nents with multiple PCs existing in the system, the effec-
tiveness of RSM will be affected by the conservative reli-
ability  of  the  system  since  the  system  reliability  is  an
important basis when formulating a reasonable RSM po-
licy.

 4.2    Maintenance optimization

According  to  the  reliability  estimation  results  in  the
previous  section,  a  reasonable  RSM  policy  can  be
made  for  the  system  shown  in Fig.  3.  Assume  that  the
RSM  contains  four  maintenance  actions.  They  are  do-
nothing,  cleaning  and  adjusted,  and  preventative
maintenance,  and  replacement,  where  cleaning  and
adjusted,  preventive  maintenance  are  two  kinds  of
imperfect  maintenance  actions.  Do-nothing  means  no
component  is  selected  for  maintenance.  It  also  consu-
mes  no  maintenance  resources,  and  the  correspond-
ing  maintenance  efficiency  is  0.  Except  for  do-nothing,
Table  5 presents  the  maintenance  cost  and  time  allo-
cated  to  the  system  components  when  operating  diffe-
rent  maintenance  actions.  The  degradation  reduction
efficiency  of  maintenance  actions  is  also  shown  in
Table 5.
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Table 5    Maintenance cost, time, and efficiency for each kind of maintenance action

Maintenance action Efficiency (η)
Maintenance cost/time

C1j C2j C3j C4j C5j

Replacement 1 49/3 47/3.2 48/3.2 50/3 53/3.4

Preventative maintenance 0.3 35/2.7 36/2.8 39/2.5 41/2.3 43/2.1

Cleaning and adjusted 0.1 32/1.4 24/1.5 27/1.5 33/1.6 35/1.4
 

According  to  the  current  degradation  level  of  system
components presented in Table 2, all of the system com-
ponents  in  the  system  are  operational  at  the  end  of  the
current mission. Assume that the next mission is expected
to be completed in 40 days. Equations (4) and (7) can be
used to estimate the reliability of the system components
for  executing  the  next  mission.  The  estimation  results
are  shown  in Table  6.  Assumed  that  if  the  component

reliability is lower than 0.4, the component is considered
to  be  failed  for  executing  the  next  mission.  In  contrast,
if  the  component  reliability  is  higher  than  0.9,  that
means  the  component  needs  no  maintenance  actions.
Thus,  the  component C3j  should  be  allocated  do-nothing
action, C1j  should  be  replaced,  and  the  other  compo-
nents  have  a  chance  to  perform  imperfect  maintenance
actions.

 
 

Table 6    Component reliability for executing the next mission

Component C1j C2j C3j C4j C5j System reliability

Reliability (dependent) 0.396 1 0.546 3 0.942 8 0.788 5 0.645 0 0.406 0

Reliability (independent) 0.342 3 0.546 3 0.942 8 0.788 5 0.562 6 0.315 8
 

It  is  also  assumed that,  for  Model  1  (maximizing sys-
tem  reliability),  the  time  available  for  maintaining  the
system is  8  h,  and  the  constrained  total  cost  for  mainte-
nance actions is 120. For Model 2 (minimizing the cost),
the  maintenance  time  is  invariable,  and  the  constrained
system  reliability  for  executing  the  next  mission  is  0.9.
The basic maintenance cs is 5. Accordingly, GA is used to
solve  the  constraint  optimization  problems  of  Model  1
and Model 2. Optimization results are shown in Table 7.
  

Table 7    Optimization results

Policy Model Cost Time
System reliability

Dep. PCs Ind. PCs

RSM
Model 1 118 7.9 0.988 8 0.988 4

Model 2 87 5.1 0.919 3 0.913 8
 

As shown in Table 7, the system reliability of Model 1
for executing the next mission is elevated to 0.988 8, and
the  maintenance  cost  and  time  are  118  h  and  7.9  h,
respectively.  Under  the  same  constraint  of  maintenance
time, the minimum maintenance cost of Model 2 attained
by  GA  is  87,  the  system  reliability  is 0.919 3 ,  and  the
maintenance time is 5.1. It can be concluded that system
reliability  for  executing  the  next  mission  of  Model  1
is  6.95% higher  than that  of  Model  2  and it  correspond-
ingly consumes 31 more costs and 2.8 more hours.

To  illustrate  the  effects  of  the  proposed  RSM,  opti-
mization results  of  the  system when ignoring the depen-
dence of component PCs are also given in Table 7. Under

the  same  maintenance  constraints,  the  reliability  of  the
system  with  independent  PCs  of  component  for  execut-
ing the  next  mission is 0.988 4 for  Model  1,  and 0.913 8
for Model 2, both of which are lower than that of consi-
dering  dependence  PCs.  This  means  that  ignoring  the
dependency among multiple PCs also results in a conser-
vative  estimation  of  the  system  reliability.  The  optimal
maintenance  actions  of  the  selected  system  components
when operating different maintenance policies are shown
in Fig. 6.
 
 

(a) Model 1 of the RSM

(b) Model 2 of the RSM

: PM; : RM; : DN.

Fig. 6    Optimal maintenance actions
 

From Fig.6 (a),  it  can  be  seen  that  components C1j

should  be  replaced,  and  components C2j  and  C5j  are
required to perform preventive maintenance action. From
Fig.6(b),  for  minimizing  the  total  maintenance  cost,  the
preventive maintenance action of C2j is abandoned.
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 5. Conclusions
In this paper, the RSM of systems with dependent PCs of
components  is  proposed.  To  obtain  more  accurate  relia-
bility estimations, a joint reliability model of the compo-
nent  with  dependent  PCs  is  developed  by  using  D-vine.
Based on that, two RSM policy models are formulated to
ensure  the  system  completes  the  next  mission  success-
fully, with the objectives of maximizing the system relia-
bility and minimizing the maintenance cost, respectively.
The  usage  and  benefits  of  the  proposed  RSM policy  are
illustrated  by  applying  that  to  a  simulation  example,  the
series-parallel  redundant  system  with  ten  degradation
components. The numerical results illustrate that the sys-
tem reliability for executing the next mission is conserva-
tive when the dependency between PCs of components is
ignored.  This  means  that  when  a  component  contains
multiple  dependent  degradation  PCs,  taking  the  depen-
dency  of  PCs  into  account  can  obtain  a  more  accurate
system  reliability  estimation  result.  Furthermore,  sup-
ported  by  the  accurate  system  reliability,  the  proposed
RSM  can  better  assist  the  maintenance  decision-makers
in specifying a reasonable maintenance schedule.
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