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Abstract: This paper presents an adaptive gain, finite- and fixed-
time  convergence  super-twisting-like  algorithm  based  on  a
revised  barrier  function,  which  is  robust  to  perturbations  with
unknown  bounds.  It  is  shown  that  this  algorithm  can  ensure  a
finite-  and fixed-time convergence  of  the  sliding  variable  to  the
equilibrium,  no  matter  what  the  initial  conditions  of  the  system
states are, and maintain it there in a predefined vicinity of the ori-
gin  without  violation.  Also,  the  proposed  method  avoids  the
problem of  overestimation  of  the  control  gain  that  exists  in  the
current  fixed-time adaptive control.  Moreover,  it  shows that  the
revised  barrier  function  can  effectively  reduce  the  computation
load by obviating the need of increasing the magnitude of sam-
pling step compared with the conventional barrier function. This
feature  will  be  beneficial  when  the  algorithm  is  implemented  in
practice. After that, the estimation of the fixed convergence time
of  the proposed method is  derived and the impractical  require-
ment of the preceding fixed-time adaptive control that the adap-
tive gains must be large enough to engender the sliding mode at
time  is  discarded.  Finally,  the  outperformance  of  the  pro-
posed method over  the  existing  counterpart  method is  demon-
strated with a numerical simulation.
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 1. Introduction
For  controlling  perturbed  systems  with  matching  distur-
bances, sliding mode control (SMC) has been one of the
best  choices  [1,2].  In  the  past  two  decades,  significant
progress  has  been  made  with  the  higher-order  SMC
(HOSM),  which  was  proven  to  be  an  effective  way  of
reducing  chattering  [3−6].  Among the  HOSMs,  the  con-
tinuous second order SMC (2-SMC), especially the super-
twisting  (STW)  SMC,  has  been  rigorously  studied.  In
many  practical  cases,  the  perturbation  bounds  cannot  be
known,  and  the  control  gains  are  overestimated  while
implementing  the  STW control  law,  which  further  leads

to  the  increase  of  the  chattering  [7].  Also,  the  control
gains should increase and decrease according to the varia-
tion  of  the  disturbances.  In  order  to  solve  this  problem,
researchers  have  developed  adaptive  HOSM  algorithms
of that dynamically adjust the control gains to be as small
as  possible  while  staying  large  enough  to  counteract  the
disturbances.  Fundamentally,  there  are  two  classes  of
approaches for creating adaptive SMC.

The  first  method  is  an  equivalent  control-based  stra-
tegy  [3,4,8−10].  It  uses  a  low-pass  filter  to  approximate
the equivalent control which acts as an estimation of the
disturbance.  The  equivalent  control  signal  was  first
applied  to  super-twisting  control  in  [4].  The  aim  was  to
avoid  the  gain  overestimation  of  the  discontinuous  term
in the integral part of STW control. As a result, the chat-
tering  of  the  system  was  reduced.  However,  the  gain  of
the square-root term in the STW control was still overes-
timated  [9].  Then  the  equivalent  control  method  based
STW  control  was  extended  to  a  so-called  adaptive  dual
layer  super-twisting  algorithm  (ADLSTA)  by  adapting
both  the  two  gains  to  further  ameliorate  the  overestima-
tion  [3,8].  Tian  et  al.  [11]  further  expanded  the  conven-
tional  single-input-and-single-output  ADLSTA  into  a
multivariable version and applied it  to the attitude track-
ing  control  of  quadrotors.  However,  the  shortcoming  of
the equivalent control signal-based methods is that its fil-
ter  constant  must  be  chosen  much  smaller  than  the
inverse of the upper bound of the derivative of the distur-
bance.  Thus,  the  order  of  magnitude  of  the  disturbance
derivative upper bound is required in the control design.

The  second  method  increases  the  adaptive  gain  until
the  sliding  mode  is  achieved,  and  then  the  gain  remains
unchanged until the sliding mode is lost due to the grow-
ing  disturbances.  Then,  the  control  gain  grows  again  to
reach the sliding mode once more [7,12]. The main disad-
vantage  of  this  approach  is  that  the  adaptive  gains  are
unable  to  decrease  once  the  magnitude  of  the  distur-
bances gets small.  In order to deal with this problem, an
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increasing and decreasing adaptive gain method was pro-
posed [13−15].  This  method guarantees  the  convergence
of the sliding variable to a vicinity of the origin while the
overestimation  of  the  adaptive  gain  is  mitigated.  Com-
pared  with  the  equivalent  control-based  strategy,  the
advantage of this method is that even the order of magni-
tude  of  the  disturbance  derivative  upper  bound  is  no
longer  needed  to  be  known.  However,  this  method  still
exhibits  the  problem  that  the  sliding  variable  cannot  be
confined strictly in a predefined vicinity of the origin, and
it is hard to estimate the final neighborhood in which the
sliding variable is confined. Hence, the control precision
with  this  method is  not  as  high as  that  of  the  equivalent
control-based method. Neither of these two methods can
both  guarantee  the  control  precision  and  waive  the
knowledge  of  the  disturbance  derivative  upper  bound
simultaneously.

Faced  with  this  dilemma,  recently,  increasing  and
decreasing  adaptive  gain  approaches  based  on  a  barrier
function  (BF)  have  been  applied  to  the  SMC  [16−20].
With  this  method,  the  sliding  variable  can  be  confined
strictly  in  the  predefined  vicinity  of  the  origin  and  the
overestimation  of  the  adaptive  gain  is  further  reduced.
However,  when  the  method  is  implemented,  the  sam-
pling  step  must  be  set  small  enough  so  that  the  variable
cannot  go  beyond  the  predefined  vicinity  of  the  origin
and the advantages of the BF can be maintained.

Although most of the HOSM methods could guarantee
finite  time  convergence,  their  convergence  time  always
depends  on  the  initial  conditions  of  the  sliding  variable.
Thus,  the  convergence  time  may  become  infinite  when
the initial values of the variables grow unboundedly [21].
For  this  reason,  the  finite-  and  fixed-time  convergence
controller  and  observer  has  been  extensively  studied
recently.  The  fixed-time  controller  can  avoid  the  depen-
dence  of  the  convergence  time  on  the  initial  conditions
and provide the controller designer with an estimation of
convergence  time.  Furthermore,  the  fixed-time  observer
enables us to safely employ the separation principle [22].
A recent overview of this field was given in [22].  In the
field  of  fixed-time  control,  scalar  systems,  multivariable
systems  and  multi-dimensional  systems  have  all  been
studied  [21,23,24].  The  case  when  the  initial  conditions
of the disturbance are unknown is also investigated [25].
However,  the  adaptive  fixed-time  convergence  control
method has not been studied in depth, except for the con-
tribution by [13].

In  this  paper,  the  study  of  adaptive  finite-  and  fixed-
time convergence control is carried further. It can be seen
as an improvement of the work in [13]. Inspired by [18],
a  revised-BF(RBF)-based  strategy  is  proposed  and
applied in adapting the control gains of the STW. More-

over, it is the first time that BF is used to handle the case
when  the  bounded  disturbances  (square-root  growth  dis-
turbances)  and  disturbances  with  bounded  rates  (Lips-
chitz disturbances) are present together.

The contributions of this paper are as follows:
(i)  The sliding variable  converges in  a  fixed time to a

predefined vicinity of the origin and then is  strictly con-
fined in it  rather  than to an unknown vicinity of  the ori-
gin like the previous method. No knowledge of the upper
bounds  of  the  disturbances  is  required  and  the  adaptive
gains are no longer overestimated.

(ii) A revised version of the BF is proposed so that the
computational  burden  caused  by  the  necessity  of  setting
sampling step quite small is mitigated effectively.

(iii)  Different  from  [13],  the  impractical  requirement
that the initial value of the adaptive gain is large enough
to  engender  the  sliding  mode  is  avoided.  The  adapting
time  of  the  control  gain  is  included  in  the  convergence
time. The estimation of the fixed convergence time is still
viable.

This  paper  is  organized as  follows.  Section 2 presents
the  statement  of  the  control  problem under  assumptions.
Section 3 is dedicated to the proposed adaptive controller
design. Section 4 offers simulation examples to verify the
efficacy  of  the  proposed  method.  The  conclusions  are
given in Section 5.

 2. Problem statement and definitions
 2.1    Control objective

Consider a first-order system

ẋ = u+ ζ (1)

x ∈ R u ∈ R
ζ ∈ R

ζ = ζ1+ ζ2

where  is  the  system  state,  is  the  control
input,  and  represents  the  disturbance  which  could
be formulated as . Assume that

|ζ1| ⩽ K|x|1/2 (2)

and

|ζ2| ⩽ Lt (3)

K L
ζ1 ζ2

where  and  are unknown upper bounds of square-root
growth  disturbance  and  Lipschitz  disturbance 
respectively.  The  design  objective  could  be  summarized
as Problem 1.
Problem  1　 Given  the  scalar  control  system  in  (1)

subject  to  assumptions  in  (2)  and (3),  the  objective  is  to
design a continuous adaptive control law so that the resul-
ting closed-loop system is fixed-time convergent and sub-
sequently  confined  in  a  given  vicinity  of  the  origin.  In
addition, the convergence (settling) time is estimated.

 2.2    Basic definitions

The  definitions  of  finite-  and  fixed-time  convergence  to
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the origin and the vicinity of the origin are given as fol-
lows [13,22].

T
x t ⩾ T

x x (0) = x0 ∈ R

Definition 1　The control system in (1) is called fixed-
time  convergent  to  the  origin,  if  there  exists  a  time 
such  that  the  system  state  is  equal  to  zero  for ,
even if  starts from any initial condition .

S ⊂ R
T x S

t ⩾ T x x0 ∈ R

Definition 2　The control system in (1) is called fixed-
time  convergent  to  the  vicinity  of  the  origin,  if
there  is  a  time  such  that  the  state  belongs  to  for

, even if  starts from any initial condition .

 3. Controller design and stability proof
 3.1    RBF

Before  the  main  result  of  the  adaptive  control  law  is
introduced, the definition of the RBF is given as follows.

δ > 0

αb x ∈ [−δ,δ ]→αb (x) ∈ [F̄,∞ ]
[0, δ ]

Definition 3　Let us suppose that some  is given
and fixed, then the RBF can be defined as an even conti-
nuous  function :  that  is
strictly increasing on . Then

αb =
F̄δ1/m

δ1/m− |x|1/m
(4)

F̄ > 0
αb

lim
|x|→δ
αb (x) =∞

where m  is  a  positive  integer  to  be  chosen  and  is
the  minimum  value  that  could  attain;  furthermore,

. The benefit of the revised version is that it
can alleviate the problem that the sampling step must be
chosen very small when the BF-based method is applied
in practice. This trait of the RBF will be illustrated later.

 3.2    Control structure

The structure of adaptive super-twisting-like controller is

u = −α|x|1/2sign(x)−α1|x|psign(x)−
β

2

w t

0
sign(x (s))ds (5)

α α1 β p > 1 α β

α1

α1

|x|psign (x)

where , ,  are positive and .  and  are RBF-
based  adaptive  parameters  and  parameter  is  fixed.  It
can  be  shown  that  this  super-twisting-like  controller
reduces to the conventional super-twisting algorithm if 
is  chosen  to  be  zero.  acts  as  a  higher-order
term  to  speed  up  the  convergence.  Accordingly,  the
dynamic  equation  of  the  closed-loop  system  could  be
derived as

ẋ = −α|x|1/2sign (x)−α1|x|psign (x)+ y+ ζ1

ẏ = −β
2

sign (x)+ ζ̇2

x (0) = x0

y (0) = 0

(6)

ζ̇2where  exists almost everywhere. The solution of (6) is

understood in the sense of Filippov [26]. The main result
of this proposed method is given as follws.

 3.3    Main results

ζ = ζ1+ ζ2
K L

t1 |x (t1)| < δ
α β

Lemma  1　 Consider  a  closed-loop  control  system  (6)
with  disturbance  subject  to  assumptions  (2)
and  (3)  for  some  unknown constants  and  .  Suppose
that,  at  time ,  and the adaptive control  para-
meters  and  are chosen asα (x, t) = αb

β (x, t) = 2εα+2
(
λ+4ε2

)
α1ε

p−1/2
1

(7)

αb λ ε ε1 > δ

t ⩾ t1 |x| |x| < δ

where  is the RBF as in (4), ,  and  are posi-
tive  constants  selected  by  the  designer.  Then,  for  all

,  is strictly confined in the domain .
z = [z1,z2]TProof　Define a new state vector  asz1 = |x|1/2sign(x)

z2 = y
.

ζ1
ζ2

Based  on  the  assumptions  on  the  disturbances  and
 in (2) and (3), define

ζ1 = ρ1z1, (8)

ζ̇2 =
ρ2z1

2 |z1|
, (9)

ρ1 ρ2where  coefficients  and   are  uncertain  and  meet  the
conditions:  |ρ1| ⩽ K

|ρ2| ⩽ 2L
. (10)

zInvoking dynamic (6), the derivative of  can be writ-
ten as

ż =
1

2 |z1|

(
Az+

[
ρ1

ρ2

]
z1

)
(11)

where

A =
[
−α−α1|z1|2p−1 1

−β 0

]
. (12)

sign (x) = sign (z1) x y
T z1 z2

T

Note that  and ,  will converge to
the origin in a finite and fixed time  if ,  converge to
the origin in a finite and fixed time .

Consider a Lyapunov function candidate

V (z) = zT Pz (13)

where

P =
[
λ+4ε2 −2ε
−2ε 1

]
, λ > 0;ε > 0. (14)

The  derivative  of  the  Lyapunov  function  candidate  in
(14) is
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V̇(z) = żT Pz+ zT Pż =
1

2 |z1|

[
zT

(
AT P+ PA

)
z+2zT P

[
ρ1

ρ2

]
z1

]
=

− 1
2 |z1|

zTQ (z) z

where

Q (z) =
(

Q11 Q12

Q12 Q22

)
(15)

with

Q11 = 2λα+4ε (2εα−β)+4
(
λ+4ε2

)
α1|z1|2p−1−

2
(
λ+4ε2

)
ρ1+4ερ2

Q12 = β−2εα−2
(
λ+4ε2

)
α1|z1|2p−1−λ−

4ε2+2ερ1−ρ2

Q22 = 4ε

.

Q(z)
In  order  to  guarantee  the  positive  definiteness  of  the

matrix , we enforce

β = 2εα+2
(
λ+4ε2

)
α1ε

p−1/2
1 . (16)

Q(z)
λmin (Q(z)) > 2ε α > α∗

Matrix  will  be positive definite  with a minimum
eigenvalue , if , where

α∗ =
K

(
λ+4ε2)−ε (4L+1)
λ (1−γ) +(

2εK −2L−λ−4ε2)2

12ελ (1−γ) (17)

γ < 1with positive constant . Therefore

V̇ (z) ⩽ − ε|z1|
∥z∥2. (18)

Since

λmin (P)∥z∥2 ⩽ V (z) ⩽ λmax (P)∥z∥2, (19)

and

|z1| ⩽
√

z2
1+ z2

2 = ∥z∥ ⩽
V1/2 (z)
√
λmin (P)

, (20)

then

V̇ (z) ⩽ −µV1/2 (z) (21)

where

µ =
ε
√
λmin (P)
λmax (P)

. (22)

|x (t1)| < δ αb (|x|)
|x|

|x| ∈ [0, δ ] x1 < δ

Considering  that  and  is  a  monotoni-
cally  increasing  function  with  respect  to  when

, there exists  as follows:

x1 =

δ
(
1− F̄
α∗

)m

, F̄ < α∗

0, F̄ ⩾ α∗
(23)

|x| > x1 αb > α
∗such  that  if ,  then ,  and  (21)  is  satisfied.

x1 ⩽ |x| < δ V̇ (z) |x|
|x| ⩽ x1 < δ t > t1

Then,  for ,  is  negative.  Therefore, 
will remain confined in  for . □

ζ = ζ1+ ζ2
K L

t0

Theorem 1　Consider a closed-loop control system in
(6) with disturbance  subject to assumptions in
(2)  and  (3)  for  some unknown constants  and  .  Sup-
pose that after time  conditions

α > α∗

α > K

β > 2L
(24)

|x (t0)| > δ/2
x (0) = x0

hold  and .  Then,  for  any  initial  condition
, there exists a finite and fixed time:

T f ⩽ t0+
1

α1 (p−1)εp−1
1

+
β (t0)/2+L
β (t0)/2−L

t0+

2
µ

(λ+4ε2
)
ε1+M2

 1
α1(p−1)εp−1

1

+ t0

2

−

4εε1/2
1 M

 1
α1(p−1)εp−1

1

+ t0

 (25)

x (t) y (t)
t ⩾ T f P

α β

in which  and  converge and are then strictly con-
fined in a vicinity of the origin for , and  is a posi-
tive  definite  matrix  defined  as  in  (14),  via  the  following
adaptive control parameters  and :

α (x, t) =
αa, 0 < t ⩽ t̄

αb, t > t̄
, (26)

α̇ = k,0 < t ⩽ t̄, (27)

β (x, t) = 2εα+2
(
λ+4ε2

)
α1ε

p−1/2
1 , (28)

α (x (0) ,0) = α0, (29)

β (x (0) ,0) = β0, (30)

λ ε κ γ < 1 α0 ε1 > δ/2
t̄ |x|

|x| ⩽ δ/2
|x| |y| δ η

where , , , , ,  are  positive  constants
selected  by  the  designer;  is  the  moment  when 
becomes  for the first time. The indicated vicini-
ties for  and  are  and  respectively.

|x| δ/2
T f

Proof　First,  prove  that  will  reach  in  a  finite
and fixed time .

x (t0) > ε1 > δ/2 y (t0)
sign(y (t0)) sign(x (t0))
α > K

Step  1　Consider  first  that  and  
is zero or  is opposite to . With the
condition , the first equation in (6) yields

d |x|
dt
⩽ −α1|x|p, (31)

sign(y)
sign(x) t > t0 x x = 0
taking  into  account  that  will  remain  opposite  to

 for  ,  while  does not  cross the axis .
Equation (31) can be solved to yield

1
1− p

(
|x|1−p− |x(t0)|1−p

)
⩽ −α1 (t− t0) ,

which leads to
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|x|p−1 ⩽
1

α1 (p−1)(t− t0)
.

|x| ε1Thus,  decreases and reaches the value  for time

T1− t0 ⩽ ∆T1 =
1

α1 (p−1)εp−1
1

,

x (t0)
x0

which corresponds  to  the  second term in  (25).  Note  that
this term is independent on  and further independent
on the unknown initial condition .

sign(y (t0))
sign(x (t0)) t0 β > 2L |y|

x
y sign(y)

sign(x (t0)) sign(x)
sign(y) sign(x)

x (t0+∆T2) > ε1

sign(y)

Step  2　 Consider  the  case  when  is  the
same as . Then from , as ,  will con-
verge  to  the  origin.  Also,  as  cannot  reach  the  origin
before  does,   changes  to  the  opposite  of

 while   remains  unchanged.  After
 becomes  the  opposite  of ,  suppose  that

condition  remains,  Step  1  can  be  exe-
cuted.  The time for  changing to  its  opposite  can
be estimated as

∆T2 ⩽
(β (t0)/2+L) t0

β (t0)/2−L
.

|x|
ε1 ∆T2

Thus, the time in which  decreases and reaches value
 is added by . Then there exists

T1− t0 ⩽
1

α1 (p−1)εp−1
1

+
β (t0)/2+L
β (t0)/2−L

t0.

|x| = ε1 x (t0) ⩽ ε1Step 1 ends with . Thus, if  in the first
place, Step 1 and 2 would not be executed; therefore the
second and third term in (25) will be absent.

t > T1 |x|
δ/2 T f

Step  3　 Prove  that,  for ,  will  continue  to
decrease  until  it  reaches  in  a  certain  time .  Con-
sider  the  same  Lyapunov  function  candidate  as  in  (13)
and its derivative is

V̇ (z) = − 1
2 |z1|

zTQ (z) z

Q (z) β

α > α∗
where  is the same as (15). With  taken as the same
expression  as  in  (16)  and  if ,  by  using  (18)−(22),
there exists

V̇ (z) ⩽ −µV1/2 (z) . (32)

T1

z
By integrating both sides of  (32),  the time from  to

state  converging to the origin is bounded by

T f −T1 ⩽ ∆T3 =
2
µ

V1/2 (z (T1)) .

V1/2 (z (T1))
z1 (T1) z2 (T1) T1 |z1 (T1)|
ε1/2

1 |z2 (T1)|
y (t0) sign(y (t0)) sign(x (t0))

To  further  calculate ,  knowledge  of  the
bounds of  and  at  is required.  is
bounded by .  With regard to the bound of ,  if

 is zero or  is opposite to , then
the bound is

|z2 (T1)| ⩽ M
 1
α1 (p−1)εp−1

1

+ t0

 (33)

where

M =
max
t∈(0,T1)

β

2
+L, (34)

max
t∈(0,T1)

βand  can be calculated as

max
t∈(0,T1)

β = 2ε (α (t0)+ κ (T1− t0))+

2
(
λ+4ε2

)
α1ε

p−1/2
1 .

sign (y (t0)) sign (x (t0)) y
t0

t0+∆T2 |z2 (T1)| ⩽ M (T1− (t0+∆T2))

If  is  the  same  as ,  then  will
first go through the process of reaching the origin from 
to ,  and there exists ,
which further leads to (33).

Therefore, according to (13) and (14), there exists

V (z (T1)) ⩽
(
λ+4ε2

)
ε1+M2

 1
α1 (p−1)εp−1

1

+ t0)2−

4εε1/2
1 M

 1
α1 (p−1)εp−1

1

+ t0

 .
∆T3 T f − t0

T1− t0 ∆T3

Thus,  can  be  computed and  can  be  calcu-
lated by adding  by .

T f z (t)
T f

|x| ⩽ δ/2 T f ⩾ t̄

Note that  is the time when  converges to the ori-
gin. Thus, before , the states have already converged to
the domain ; therefore, .

T f |x|
|x| ⩽ δ |y| ⩽ η t̄ |x| ⩽ δ/2

α αb

|x|
|x| ⩽ δ

Second, prove that, after ,  is strictly confined by
 and  .  As  there  must  exist  when  ,

the control gain  then performs as the strategy  in (4).
Thus,  according  to  Lemma  1,  is  strictly  confined  by

.
δ/2 < x1 x1

τ |x| δ/2
x1 η |y|

If , where  is denoted as in (23), then it will
take a certain period of time  for  to increase from 
to . Thus, the bound  of  can be estimated as

η =
w T f+τ

0

(
β (s)

2
+L

)
ds. (35)

□

|x| |x| < δ
|x|

Remark  1　Theoretically,  the  proposed  algorithm  is
implemented in a  continuous system. Thus,  according to
Lemma 1, as long as  enters the domain , no mat-
ter  how  the  disturbance  changes,  will  be  confined
strictly  in  it  afterwards.  However,  in  practice,  when  the
algorithm  is  implemented  in  a  discrete  manner,  the  BF
presents the following problem.

First, we present conventional BF [18] as follows :

α =
F̄δ
δ− |x| .

|x| αWrite  as a function of  renders:
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|x| = δ
(
1− F̄
α

)
.

F̄ α

|x| δ

|x|

Note that if  is chosen small, when  becomes large,
the margin between  and the barrier  will  become so
small that it is very easy for  to go beyond the barrier.
Thus, the sampling step must be chosen small enough so
that the attractive features of the BF could be maintained
[18]. However, a too small sampling step may cause great
computational burden.

F̄
F̄ α

One way to avoid using too small step is to increase .
However,  determines the minimum value that  could
reach  and  it  must  be  chosen  small  enough  to  guarantee
the feature of adaptiveness.

F̄
m |x|

δ

δ

F̄
δ = 0.02 F̄ = 0.01 m

|x|
α

|x|
α = 0 α = 10 |x|

|x|

m

The  proposed  RBF  in  (4)  can  mitigate  this  problem
effectively without increasing the value of .  By setting

 in  (4)  large  enough,  the  margin  between  and  the
barrier  is  increased greatly.  Here we present  an exam-
ple  to  illustrate  the  benefit  of  the  RBF  by  comparing  it
with  BF.  The  barrier  value  and  minimum  reachable
value  of  the  two  functions  are  selected  the  same:

, .  Parameter  in  RBF  is  selected  as
20. Fig.  1 shows the curves  of  with  the BF and RBF
when  varies  from  0  to  200.  From  the  figure,  we  can
observe  that  the  curve  of  the  BF rises  steeply  during

 to   and  the  gap  between  and  the  barrier
value  (0.02)  becomes  quite  limited  afterwards.  This
means that the sampling step must be set small enough so
that the magnitude of  will  not transcend such a small
gap  in  one  sampling  step.  In  contrast,  the  curve  of  the
RBF  renders  a  much  broader  margin  which  can  grant  a
larger sampling step and reduce the computation burden.
In  the  simulation  section  below,  when  is  set  to  5,  the
order  of  magnitude  of  the  step  can  increase  by  1  com-
pared with BF.
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Fig.  1      Comparison  of  the  change  of    between  BF  and  RBF
( ,  ,  )
 

Remark  2　 Note  that  Theorem  1  is  subject  to  the
assumption that  the condition of  (24) is  satisfied.  If  (24)

t = 0 t0 α β

T f

t0

t0 α0

β0 t = 0
K L α0 β0

y (0) = 0 y t0

y (t0)

is not valid at time , it will take time  for  and 
to grow until (24) is met. Thus, if the whole fixed time 
of  convergence  is  to  be  estimated,  must  be  included.
To avoid the requirement of knowing ,  in [13],  and

 are set to meet (24) at time , which is not practi-
cal when  and  are unknown. In this paper,  and 
can  be  set  arbitrarily  and  do  not  have  to  meet  (24).  As

,  changes  randomly  in  and  two  cases  for
 can be distinguished:
sign(y (t0)) sign (x (t0)) y (t0) = 0(i)  is opposite to  or ;
sign(y (t0)) sign (x (t0))

t0

(ii)  is the same as , for the sake
of  discussion  in  the  proof  of  Theorem 1.  can  be  esti-
mated as

t0 ⩽ (α∗−α0)/κ.
α∗ K L

t0 K L
t0

As  contains unknown parameters  and , in order
to estimate , the order of magnitude of  and  should
be  known.  Alternatively,  could  also  be  estimated  via
simulation.

 4. Simulation and discussion
In  the  simulation,  we  illustrate  the  effectiveness  of  the
proposed  finite-  and  fixed-time  convergence  law  and  its
advantages over the adaptive algorithm presented in [13].

ζ = 3 |x|+5sin(2t)
α0 = 0 α1 = 1 p = 3/2 m = 5 κ = 15 λ = 1 ε = 1
ε1 = 1 x0 = 10 x0 = 103

x0 = 106

δ = 0.02
|x| |x| < δ

α

α∗

First, simulations are conducted for system in (6) based
on  the  proposed  control  law  with  the  disturbance

.  The  parameters  are  assigned  as
, , , , , ,  and
. The initial conditions are set as , 

and ,  respectively;  the  predefined vicinity  of  the
origin is set as . The results show that the conver-
gence time of  to  corresponding to the three ini-
tial  conditions  are  0.905,  1.001  and  1.026,  respectively.
This  demonstrates  that  with  the  same  disturbance  and
control  parameters,  there  exists  a  uniformity  of  the  con-
vergence time independent of the initial conditions. Note
that although the initial value of the adaptive gain  is 0
instead  of  having  to  be  set  larger  than  the  predefined
value  as  in  reference [13],  the uniformity of  the con-
vergence time is  still  guaranteed,  which renders  the pro-
posed method more practical.

x0 = 103 x0 = 106

x y α

α

t̄
|x|

u
u

The  simulation  results  corresponding  to  the  initial  va-
lues  and  are shown in Fig. 2−Fig. 6 and
in Fig. 7−Fig. 10, respectively. It can be seen that not only
the  convergence  time  shows  uniformity,  but  the  plots  of

,  and  the  adaptive  gain  perform  uniformly  under
different  initial  conditions  as  well.  Note  that  although
there  exists  a  sudden  change  of  due  to  the  change  of
adaptive  strategy  at  time  in  the  BF-based  method  as
shown in Fig. 5, its influence is trivial, for  at this time
is  quite  small,  making  the  change  of  negligible.  As
shown in Fig. 6, the corresponding change of  is rather
smooth. 
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For  comparison,  the  same  simulations  are  also  con-
ducted  using  the  control  law provided  in  [13]  where  the
adaptive law is

α̇ =

κsign(|x| −δ) , α−αmin > 0 or |x| > δ
0, α−αmin ⩽ 0 and |x| ⩽ δ

,

α (0) = α0,

β = 2εα+2
(
λ+4ε2

)
α1ε

p−1/2
1 ,

αmin = 0.02

x0 = 106

|x| |x| < δ

ζ2 5sin(2t)

|y|

with .  The other  conditions  are  identical.  The
results  under  the  two control  laws  with  the  initial  value,

,  are  compared  in Fig.  8−Fig.  10.  In Fig.  7 and
Fig.  8,  it  is  illustrated  that  for  the  proposed  control  law,

 is  strictly  confined  in  the  predefined  domain, .
In contrast,  the control  strategy in [13] has a much infe-
rior  control  precision  and  there  is  no  guarantee  that  the
state  can  be  confined  in  a  certain  domain. Fig.  10 com-
pares  the  plots  of  the  adaptive  gains  of  the  two  control
laws  and  the  absolute  value  of  the  derivative  of  distur-
bance ,  i.e., .  We  can  observe  that  the  pro-
posed  control  law  outperforms  the  other  one  by  solving
the problem of  overestimation of  adaptive gain as  it  fol-
lows the change of disturbance much more closely. That
is  due to the fact  that  the adaptive gains in the proposed
method  respond  to  the  change  of  disturbance  instantly
while there is a lag of time in the change of the adaptive
gains  of  the  method  in  [13].  With  the  proposed  method,
the  vicinity  of  the  origin  that  converges  to  is  also
smaller than the one using the other control law as shown
in Fig. 9.

 5. Conclusions
This  paper  presents  a  RBF  based  adaptive  finite-  and
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fixed-time  STW  control  law  for  the  case  of  first-order
disturbed  systems  under  perturbations  with  unknown
bounds.  The  finite-  and  fixed-time  convergence  of  the
states is established while the state of the system is gua-
ranteed to be confined in a predefined vicinity of the ori-
gin.  An  estimate  for  the  convergence  time  is  derived
based on the proposed control law. The proposed RBF is
shown to  be  capable  of  reducing  the  computational  bur-
den compared with the traditional BF. Several simulation
examples  are  carried  out  to  verify  the  efficiency  of  the
proposed  method.  The  results  show  that  the  proposed
method  combines  both  the  advantages  of  the  uniform
control  law  and  the  BF  adaptive  strategy  and  it  outper-
forms the non-BF-based finite- and fixed-time control in
several aspects, which is shown in the simulation tests.
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