Journal of Systems Engineering and Electronics
Vol. 34, No. 3, June 2023, pp.783 — 797

Event-triggered model-free adaptive control for a class of
surface vessels with time-delay and external
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Abstract: This paper provides an improved model-free adap-
tive control (IMFAC) strategy for solving the surface vessel tra-
jectory tracking issue with time delay and restricted disturbance.
Firstly, the original nonlinear time-delay system is transformed
into a structure consisting of an unknown residual term and a
parameter term with control inputs using a local compact form
dynamic linearization (local-CFDL). To take advantage of the
resulting structure, use a discrete-time extended state observer
(DESO) to estimate the unknown residual factor. Then, accord-
ing to the study, the inclusion of a time delay has no effect on
the linearization structure, and an improved control approach is
provided, in which DESO is used to adjust for uncertainties. Fur-
thermore, a DESO-based event-triggered model-free adaptive
control (ET-DESO-MFAC) is established by designing event-trig-
gered conditions to assure Lyapunov stability. Only when the
system’s indicator fulfills the provided event-triggered condition
will the control input signal be updated; otherwise, the control
input will stay the same as it is at the last trigger moment. A
coordinate compensation approach is developed to reduce the
steady-state inaccuracy of trajectory tracking. Finally, simulation
experiments are used to assess the effectiveness of the pro-
posed technique for trajectory tracking.

Keywords: surface vessels, event-triggered condition (ETC),
discrete-time extended state observer (DESO), model-free adap-
tive control (MFAC), coordinate compensation.
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1. Introduction

Surface vessel (SV) has become more and more impor-
tant in many marine applications, including monitoring
systems, reconnaissance, search and rescue work, hydro-
graphic survey, etc [1—4]. It frequently depends on pre-
cise trajectory tracking to be able to accomplish these
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functionalities. A control law is also required for SVs in
order to track intended trajectory [5—7]. As a result, it is
particularly important to design an excellent and widely
applicable controller. However, SVs must track targets
precisely and effectively in a variety of sea conditions for
diverse application situations, and harsh sea conditions
disturb the attitude of the SV. Meanwhile, control sys-
tems face many problems due to the large weight of the
SV and the sensor reaction time [8]. Therefore, it is diffi-
cult to find an applicable controller. In many circum-
stances, time delays in systems cause the system’s
progress to be highly influenced by its previous state,
resulting in an adverse effect on the quality of the control
system [9]. Therefore, in the research of the SVs, the sig-
nificance of time delay cannot be ignored. In addition,
when the control system works on the sea surface, it will
inevitably be affected by external factors such as gusts
and waves, and these external disturbances may lead to
instability [10,11]. Hence, the bounded disturbance to the
SVs is also the focus of this paper.

Many sophisticated control approaches have been
investigated to maintain the desired performance of ves-
sel autopilot systems since the inception of modern con-
trol theory [12]. In [13], an adaptive heading controller
was developed for vessels with unknown control coeffi-
cients. For vessel track-keeping, an adaptive fuzzy gain
autopilot is investigated [14]. It should be emphasized
that the control inputs in these results are updated with
periodic sampling. In this case, the control signal needs to
be continuously updated. Not only does it lead to exces-
sive resource consumption but also frequent rudder action
causes wear on the actuators. To overcome this problem,
event-triggered control (ETC) is proposed, which is an
efficient control method that can reduce the communica-
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tion burden while achieving similar system performance
with less information transmission and low action time of
actuators [15]. Reference [16] constructd a state observer
and a new adaptive law based on the system output at the
sampling moment. Then, ETCs were introduced, and a
user-adjustable ETC was designed to determine the
instant of event-triggering. For the nonlinear time-delay
system with unmodeled dynamics, [17] studied an adap-
tive fuzzy control method using the command filtering
method, and introduces a dynamic ETC mechanism to
dynamically adjust the threshold parameters. This paper
takes ETC into consideration. The coordinate compensa-
tion algorithm can eliminate the steady-state error and
achieve better tracking effect. Reference [18] proposed a
coordinate compensation algorithm for the flame cutting
problem of steel grids. The results show that the algo-
rithm improves the cutting trajectory to a certain extent
and makes up for the incomplete cutting problem in the
process of flame cutting of steel grids. In the process of
finishing the solid tool flank by using a computer numeri-
cal control (CNC) tool grinder, a coordinate compensa-
tion algorithm is introduced, which effectively reduces
the influence of grinding wheel wear, improves the stabi-
lity of grinding quality, and prolongs the service life of
the grinding wheel [19]. For the automatic parking sys-
tem, in order to improve the coordinate tracking error of
the desired trajectory, [20] proposed a model-free adap-
tive control (MFAC) scheme based on coordinate com-
pensation and achieved good results.

Generally, exact mathematical or physical expression
of the vessel is critical for the control law’s design. In
previous studies, model-based control methods have been
proposed, including networked control, optimal control,
and so on [21-23]. However, the models’ descriptions are
difficult in practice, making these model-based control
approaches inappropriate for practical applications.
Therefore, model-uncertainty problems began to catch
researchers eyes. For the trajectory tracking issue of
underactuated vessels, [24] suggested an improved non-
linear control approach based on sliding mode control
(SMC) theory. Furthermore, [25] offered a recursive slid-
ing mode dynamic surface output feedback control based
on neural network observer to estimate uncertainty. How-
ever, in practical applications, SMC is prone to chatter-
ing, and the neural network control approach requires a
huge amount of calculation, resulting in the control sys-
tem’s lack of adaptability and practicability. Recently,
data-driven control technology has been widely used in
many fields [26]. The MFAC method, which is based on
dynamic linearization, is one of the data-driven control

methods. Its controller design is based only on the con-
trolled object’s input and output data and is not depen-
dent on the controlled object’s dynamic model [27,28].
The MFAC approach is currently used effectively in the
domains of vessel control, spaceship control, robot atti-
tude control, automatic parking systems, high-speed
motor control, etc. [29—33]. Despite the widespread usage
of the MFAC approach, the system’s time delay is rarely
considered throughout the application process. Therefore,
this paper adds a time delay on the basis of the MFAC to
enhance the applicability of this method. We consider not
only the system’s time delay, but also external distur-
bances in order to ensure that the SV can travel normally
in the tough environment. In the context of a disturbed
nonlinear system with uncertainty, the discrete-time
extended state observer (DESO) has been proven to work
well [34]. DESO can be used to estimate the unknown
terms when studying the disturbed nonlinear discrete-
time system with uncertainties. In addition, we incorpo-
rate an event-triggered mechanism to make the DESO-
MFAC approach remain relevant in a network context
with restricted bandwidth. This can not only save exces-
sive resource consumption, but also solve the problem of
actuator wear caused by frequent rudder control. Finally,
the method of adding coordinate compensation algorithm
to reduce the tracking error in the control process is
widely used in trajectory tracking control.

This work presents and proves the bounded conver-
gence of an improved MFAC approach for SV systems
with time delay and bounded disturbance. Firstly, local
compact form dynamic linearization (CFDL) is used to
linearize nonlinear systems. Then, to estimate the system’s
uncertainty after linearization, the DESO is used. In addi-
tion, an ETC mechanism has been added to solve the
problem of limited bandwidth and actuator wear in ves-
sel control. Further, a coordinate compensation technique
is used to minimize the steady-state inaccuracy of trajec-
tory tracking. Finally, the efficiency of the suggested
approach on trajectory tracking is validated using simula-
tion tests. The main highlights of this paper are as fol-
lows:

(i) On the basis of DESO-MFAC method [35], an
event trigger mechanism is introduced, and an event trig-
ger condition that can make the system stable is designed.
This can effectively reduce the usage of communication
resources.

(i) Different from the systems studied by
[20,27,29,36], time-delay and disturbance are added to
the SV system, and we demonstrate that the proposed
algorithm can be adapted to this system. And a coordi-
nate compensation algorithm is introduced to eliminate
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the steady-state error of trajectory tracking.

(iii) The proposed method only utilizes the input and
output data of the system and does not rely on any model
information.

The structure of this document is as follows: The SV’s
dynamic model and discretization are presented in Sec-
tion 2. The dynamic linearization approach is presented in
Section 3. Section 4 introduces the enhanced control
approach as well as event-triggered conditions, and Sec-
tion 5 exhibits the proposed method’s bounded conver-
gence. In Section 6, coordinate compensation algorithm is
introduced. Sections 7 offers simulations, and Section 8
summarizes this paper.

2. Problem statement

The dynamic model of a SV is the key to studying its
motion state. The mathematical model of SVs is pre-
sented initially, before the design method. Then, use
Euler’s discretization method to discretize the proposed
model. Finally, introduce the idea of trajectory tracking
control in this paper.

By using Lagrangian mechanics, the dynamic model
[37] can be stated as

X =ucosy —vsiny

Y =usiny +vcosy

y=A
where the coordinate of the SV model’s center of gravity
in the earth coordinate system is represented by (x,y),
and the yaw angle of the SV is represented by ¢, while
the forward, lateral, and yaw angular velocity of the SV

are represented by (u,v,A). Fig. 1 depicts a simplified
model of the SV.

‘A

<7

Fig.1 SV model

In practical applications, the signals processed by the
microprocessor are all digital signals, so the model needs
to be discretized, but this approach will bring uncertainty
to the system.

Based on Euler’s discretization method [36], the model
can be rewritten in the following way:

x(j+ 1) —x())
T

YG+D=y()
T

Y+ —v()
T

= ucos(¥(j)) —vsin(¥(j))
= usin(y(j)) +vecos(¥())) (1)

=A()+£20:$)

where T is sampling time.

The SV’s position coordinates (x(j),y(j)) are con-
nected to the yaw angle (), the forward u, and the la-
teral v, according to the above-mentioned SV dynamic
model (1). 2(j,¢) is the nonlinear term caused by inter-
nal or external factors of the SV, such as time delay, dis-
turbance, etc. ¢ represents time delay of system.

In engineering applications, the forward u and the la-
teral v of the vessel are generally fixed when it comes to
trajectory tracking problems such as low-speed docking
and automatic driving at a constant speed. Therefore,
when studying the trajectory tracking problem in this
paper, let u, v be fixed.

The control goal of this paper is to make the actual tra-
jectory (x(j),y(j)) of the vessel follow the desired trajec-
tory (x*(j),y*(j)) by controlling the yaw angle ().

3. Problem formation and local CFDL
3.1 Problem formation

The power plant of the SV is responsible for providing
power to complete the forward and steering. Define the
controllable power as A. The controllable power A and
the yaw angle ¢ of the SV are used as input and output
(I/0) of controlled SV system, respectively. Due to sen-
sor reaction time, SV mass, and other factors, the system’s
control input cannot be instantaneously stated as the sys-
tem’s output, and a time delay problem will arise. Mean-
while, complex sea surface conditions will have a certain
impact on the output of the system. Consider a non-linear
system with time delay in the input and disturbances

Y+ D =gV (DI~ ). ())) 2

where

') =[w(iHyG-1), W (j-ny))
2'(j-9)=[AG =), A(—s— 1), LA —s—ny)] .
'(j) = [#(j),n(j- 1), ,7(j—n,)]

In (2), ¥, 2 represent the output and input of the con-
trol system. g(-) is a nonlinear function with initial condi-
tion g(0,0,0) = 0. ¢ represents the time delay of the con-
trol system. n,, n, and n, are system orders. II is the
bounded disturbance of the system that satisfies
|supH(j)| < b,.

Before employing the local CFDL approach to convert
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the previously described nonlinear system into a linear
one, we establish two assumptions.

Assumption 1  The partial derivatives of g(-) with
respect to its components exist.

Assumption 2 The considered nonlinear function g(-)
satisfies globally Lipschitz condition:

lg(my (1), ma(j1), -+ s mp(j1)—(ma(f2), mi (), -+
mp(j2))l < Ki|my(ji) —my (o)l + Kalma(j1)—
my(jo)l + -+ Kplmp(j)) —mp(j)|

where m; are the terms of the function g(-) and K; > 0 is
the Lipschitz constant, i € {1,2,--- ,P}; Pe Z".

Remark 1 Assumption 1 is a common constraint
condition for a class of nonlinear systems that can ensure
the use of the mean value theorem throughout the lin-
earization process. Assumption 2 is a quasi-linear condi-
tion, which can ensure that the change of the system out-
put is limited by the change of the control input, so that it
can be controlled within a certain range. In addition,
many industrial processes can satisfy both assumptions,
such as blast furnace ironmaking process [38] and the
control of drum water level of circulating fluidized [39].

3.2 Model linearization

Satisfying Assumptions 1-2, the system in (2) can be
written as:
Ay(j+1) =gV (N, [AG =€), AG=s=1) -+,
AG=s=n) T (N + (P (), [AG-s -1,
AG=¢=1) -, A= s =n)] T () - (P (),
[AG-¢=1D,AG=s=1) -, A(j=s=ny)],
() -g'(j—1),Z" G~ D' (j-1)).
Using the median theorem, the above equation can be
transformed into:

AY(j+1) = %Mu—@ ag( SO+

%Awu— 1>+~--+W‘;¢)Aw<j—nw>+
%Mu—g—lnmmu—g—znn-+

mA/\U—c—mH o] )Aﬂ(1)+

W‘Z)An(]’—l)+m+mmq—nﬂ),
where

AY()) = () =y (G- 1),
AA(j=¢) = A(j=¢)=A(j=¢ = 1),
Ar(j) = #(j) = n(j=1).

The first-order partial derivative of g(-) with respect to
control input A(j—¢) is denoted by dg/0A(j—¢), and
one can guarantee the boundedness of
|0g/0AG-¢)| <
proofs, according to Assumption 2.

Let

L,, ., which is helpful for the following

0g

E(j-¢)= m

and

0g
(- g)—m AY(j) + du—1)

0g : 0g
— % AU(i- P - S
00— UM GG

AM(G-¢c—-2)+-- -+

— MG -D+ -+
AA(j—s—- D+
_ %
A -s-2)

g . 0g .
G- TSI Gy

g 0g
onG-D T G o)

Then, the system equation (2) can be rewritten as
AY(j+1)=E(j=9AA( =) +&(j = <)
g 3)
AY(j+¢+1) = E(HAA() +&())

AR (j=1yr).

where £(j) signifies the nonlinear uncertainty of the
model in (3), and it will be calculated as a whole in the
next controller design procedure.

Remark 2  Although (3) contains the nonlinear
unknown term £(j), this term can be regarded as a whole.
In this paper, the discrete state vector observer is used to
estimate the value of the whole, therefore, (3) can be said
to be linear.

4. Controller design
4.1 DESO-based MFAC design
Consider the criterion function for Z(j) [40]:
JEGN =W+ —yv(j+s-1) -
EDAAG=1)=E(G =D +nlE()-EG - DP
where 17 > 0 is a weighting factor.

By finding the extreme value of the criterion function
with respect to =(j), we can obtain

N, AA(—1)
= = -+ — 7 .
E(H=&5@G-1) n+IAAG 1)|2

AY(j+¢)—E(j-DAA( -1 =E(-1)).

Then, the estimation law is obtained as
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@ AAG-1)
n+IAAG - DP
AY(j+)-E(-DAAG-D-EZG-1) (4

E()=EG-D+

where 0 <a; <2 is a step factor and Z(j) is the esti-
mated value of Z(j).

Add a resetting algorithm to ensure that £(j) can bet-
ter estimate =( )

E(j) = £(),
|2()| <& or [AAG-DI< e
or sign(Z())) # sign(£(0))

where ¢ is an arbitrarily small positive number.

Picking the appropriate value >0, 0<a, <2 can
ensure bounded convergence of the estimation error of
Z(j) to Z(j). The bounded convergence will be proven in
Theorem 1 in Section 5.

Remark 3 The resetting algorithm is to make Z(j) a
better estimate of Z(j). The use of the reset algorithm can
ensure that during the application of the estimation algo-
rithm in (4), the module of Z(j) and AA(j—1) will not
become particularly small, and it can also ensure that the
sign of Z(j) is always the same as Z(}).

Remark 4 The derivation process of (4) is as fol-
lows:

JED) =WG+)-y(+s-1) -
ENAAG=D=EG-DF +nlE() ~E( - DI

For the above formula, find the partial derivative with
respect to Z(j) to get

0J
= = 2AAG = DG+ —y(+s—1)-
0Z())
E(DAAG-1D)-E(-D)+2n(E(G) - E( - 1)).
0J
Let =0,
NEET)

nEG)-EG-D)=AAG-DWG+9)—

Y(j+s-D-EZMNAA(G-D-E(-1) =

AAG = DAY +6) = Z(NAAG = D+
E(=DAAG =D =E(=DAAG =D =EZ(j=1)).

Merge similar items to get

M+ AL (= D)E) - E(G - 1) = A - 1)-
AY(j+¢)—E(—DAAG -1 -E( - D).

Move items to get

AAG-1)
n+IAAG =D
(AU(j+6) = E(j= DAAG - 1)~ Z(j- 1),

E(N=E(-D+

A1)
n+IAAG - DF
(Au(j+6) = £~ DAAG=1) =2~ 1),

E()=EG-D+

Let the desired output be ¢*(j), and define the track-
ing error as e(j) =y*(j)—¢(j). Consider the criterion
function for A(j) [40] as follows:

JAG) =W (G+s+D—y(j+s+ DI+
AAG) = AG = DP (%)
where A > 0 is a weighting factor.

The control law can be derived by minimizing (5) in
the following way:

A= AG- 1)+ —2=)
1+|20)|
WG+ s+ 1) —g(i+$)—£() 6)

where a, > 0 is a step factor.

Remark 5 Both @, and «, are step size factors of the
control system, which can make the whole controller
more universal. In practical applications, different values
can be selected according to different application scena-
rios to make the proposed algorithm effective.

Remark 6 The derivation process of (6) is as fol-
lows:

JAG) =W (+s+ D)=y +5+ DI+
AAG) = AG =D =
I G+e+ 1) =g(i+) +Y(j+) —y(j+s+ DI+
AAG) = AG =D =
WG+ s+ D) =g +6) = ENAAQ) +EGP +
A =AG=DP.
For the above formula, find the partial derivative with
respect to A(j) to get
% =22()W(+s+ D) —y(j+9)-
E(NAAG) +ED) +24A() - A - D).
Let i =0,
0A()
AAND-AG-D)=ENW (j+s+1)-
Y(j+¢) = E(DAAG) +£)).

Merge similar items to get
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A+ Z(NAGD -AG=1) =
ENW (G +s+ D =d(j+6)+£())).
Move items to get
()
A+IEGF
W (+s+D=y(j+¢)+&£())),

AN =AG-D+

a’zg(j) .
A w2
A+ |z( ])l
W (+s+D—y(j+¢)+&£())).
Since &(j) is unknown in both estimation law in (4)
and control law in (6), to estimate £(j), the extended state
observer (ESO) technique [35] is used, as illustrated

below.
Definite a vector

2(j) = [21() 220G =" = [W().£G= 9]
which is equivalent to z(j+g)=[zﬁ(j+g),§(j)]T, and

w(j) =&(j+1)—&(j), The following equation can be rep-
resented according to (3):

{z(j+ s+1)=Az(j+¢)+ A (HAA()) + Asw())
Y(j+s+1)=Asz(j+s+1)

AN =AG-D+

(7

1 1
where A, =( 0 1 ), Ay(j) = [E(]'),O]T, A;=10,1]",
A, =[1,0].

For system (7), the discrete-time ESO is developed as

follows:
2 +s+1) = A12(j+6) + A (DAAG)+
L (j+¢)=d(j+¢) (®)
J(+s+ D) =A(j+s+1)
where L =[l;,1,]" is a gain vector; Az(j) = [E(j),O]T. In
addition, 2(j+¢) and /(j+¢) denote the estimated value

2(j+¢).
In conclusion, the entire control approach may be writ-
ten as

Olzé(j) .
A+|EG)|
W (G+s+D—y(j+¢) -2, )
@ AAG-1)
n+IAAG - 1P
(AY(j+6)—E(— DAAG - 1) =2 - 1)), (10)
E(j) = £(0), |E()| <&
or [JAA(j-1)| <&
or sign(Z())) # sign(£(0)), (11)

2(j+s+1) = A, 20+ )+ A (HAAG)+
Ly(j+¢)—d(j+s)) . (12)
JGj+s+1)=Az(j+s+1)

The control block diagram of the DESO-MFAC tech-
nique process is shown in Fig. 2.

AN =AG-D+

E(H=EG-1+

DESO
o A G|
%,(-1) EGD 40 ()
— A(j-2) ) )
Estimation A1) | Control law A()) Vessel w( jtetl)
law -
(@)
W(./+g 71) ‘//(j+g)
w(jt¢)

Fig.2 Block diagram of DESO-MFAC control system

Obviously from the Fig. 2, the control principle of
DESO-MFAC method is as follows:

Step 1
equal to Z(j—1). And initialize the estimated value of

Initialize the estimated value of Z(j—1) to be

2(j—1) to be equal to 2,(j—1).

Step 2 Using measurement input data A(j—2),
A(j—1) and output data Y (j+¢—1), ¥(j+¢) to calcu-
late Z(j) according to the estimation law (10) and reset-
ting algorithm (11).

Step 3
A(j—1) and the value of Z(j—1) to calculate 2(j)
according to DESO in (12).

Step 4 Using Z(j) from Step 2 and Z,(j) from Step 3,
and measurement output data y(j+¢), according to the
expected output ¥*(j+¢+1), control input A(j) can be
obtained via control law in (9).

Using measurement input data A(j-2),

Repeat the procedures above to get the system’s out-
put value closer and closer to the intended value.
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4.2 Event-triggered mechanism

In modern SV’ control, satellite communication or net-
work communication is usually used to transmit data,
which inevitably encounters the problem of limited com-
munication bandwidth. An event-triggered mechanism is
applied to deal with this problem.
The event-triggered time
{j}=1,2,---) for clarity of the following description.
Assume that the system’s initial state is the event-trig-
gered state. Only when the system’s indicator fulfills the
provided event trigger condition will the control input
signal be updated; otherwise, the control input will stay

series 1s denoted as

the same as it was at the last trigger moment.

wE()
A+|EG)

W (G+s+D—yv(j+9)-2()), j=J
AGi-1)s J € (ie15J0)

Define event-triggered error o(j) = e(j,) — e()).

Let H(j)=[(@E()/+|EG))|. We design the
event-triggered condition as

A(j-D) +

A(j) =

k(j+¢)

2/ .
U(]+§)>W (13)

where
k(j+¢) =€ (j+¢)—4[(1-E(HH())) -
W G+s+ D¢+~ 20DI"

If the event-triggered condition in (13) is fulfilled, then
update the control input.

As a result, the DESO-based MFAC method with an
event-triggered mechanism (ET-DESO-MFAC) is incor-
porated in the following way:

P o AAG - 1)
E()=EG-D+
n+IAAG =D
(AY(j+6)=E( = DAAG = 1) = 2(j - 1)), (14)
E(j)=£0), |£()| <&
or [AA(j—1)| <&

or sign(Z()) # sign(Z(0)), (15)

i=i. PG+ > % (16)
A+ 2=
A+[EG)|

AG) = » . e
W(+ts+D—v(j+)-22()), j=J
A(jrl)v je (jkl’jt)
(17)

2(j+s+1)=A,2(+¢) + A (HAAG)+
LWG+¢)—9(i+5)) . (18)
J(j+s+1)=Az(j+s+1)

5. Convergence analysis

Make an assumption first, before starting the conver-
gence analysis.

Assumption 3 It is assumed that Z(j) is nonzero in
model (3) and that its sign is fixed, that is, Z(j)>
6 or Z(j) <-4, in which ¢ is an algebraically small posi-
tive constant.

Remark 7 The rationality of this assumption is that
this condition is a linear-like feature of system in (2) that
limits the change of control direction. Many model-based
control approaches make the assumption that the control
direction is known, or at least that its sign is unchanged.
The practical implication of this premise is that as the
control input rises, the system’s output should not
decrease. This is not a severe assumption, and this charac-
teristic is not uncommon in many practical industrial sys-
tems, such as temperature control systems and pressure
control systems.

Give a lemma before the proofs; this lemma will be
extremely useful for our results.

Lemma 1 For the iterative format below

s(+D=ANs(N+h(), j=0,1,-

where A(j) represents a time-varying matrix and h(j)
represents a norm bounded vector satisfying ||k(j)|| < @,
Vjwith @ being the threshold: when the condition
JA(HI <1 is satisfied, the iteration of s(j+ 1) eventually
converges.

The following theorem can be used to summarize
DESO-MFAC convergence.

Theorem 1 Consider the non-linear system in (2) sat-
isfying Assumptions 1-3. If the parameters of controller

are selected so that
2—1L+AB-4L| |21, - P-4l

max[ l 1 2 1 > ! 2 ]< 1,

O<a; <2,a,>0,7>0,1>0.

2
Applying the proposed DESO-MFAC method (9)—(12)
for system to track a constant desired output y* = const,
one can guarantee that (i) DESO is iteratively convergent;
(i) for Vj, the estimate of Z(j) for Z(j) is boundedly
convergent; (iii) the tracking error e(j) is boundedly con-
vergent.

Proof The proof can be simply divided into three
parts. The first part proves the boundedness of each vari-
able of DESO in a finite time; the second part proves the
bounded convergence of errors (observer error, tracking

k)
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error, and estimation error) in a finite time; and the final
part demonstrates that the above convergence could be
assured over a sufficiently long period of time.

Part 1 Considering the DESO variable’s bounded-
ness, Y(j), (). 2(j), A(j), and £(j) for j€[0,7], where
J is a finite time

When j=0, all of the starting values [Y(¢)| < by,
|Z(0)] < bz IE@Il < by, 1AO)] < b are all presented
in a bounded manner, where b, denotes positive con-
stants. Then, according to (2) and (9)—(12), we can get

Yls+1) =g(¥(5),2(0),1(s))
a;A(0) .
n+1AO)P
W(s+1) = () — Z(0)A(0) - £,(0))
E() =20, |E0D)| <&
or [A(0)| < &; (19)
or sign(=(1)) # sign(=(0))
2(s+1) = A12(5) + A, (0)A0) + LY (s) — £:(s))
@,=2(1) '
A+|ED]
W (c+2)—y(sc+1)—2:(1))
Since all parameters on the right-hand side of (19) are
bounded, one can obtain that
(s + DI < byerny
|E(D)] < bz,
I12(s + DIl < bzgrny
lADI < baqy

E(1) = £(0) +

A(1) = A0) +

are all bounded too.
In a finite time j=J > 1, follow the above steps and
continue, we can logically obtain that

(s +D)| < byicn
[ED] < bz
2e+J )” < b
lA(j)i <bay

are all bounded.

According to the above steps, it is easy to obtain the
boundedness of each parameter at time j=J+1. As a
result, we can deduce from mathematical induction that

max |y(¢ + j)| < by
J€l0,J]

max |£(j)] < b
Jel0.J]
max|[2(s + Il < b:
Jel0.J]

max JA())] < b

jel0.)

are all bounded.

On the basis of the definition of ¢ in (3), the bounded-

ness of max |£(j)| < by can be guaranteed by the bounded-
Jel0.J) ’

ness of max |y(s+ ) <b,, max|A(j)l<b, and
Jelo. Ny Jelo. Ny
|sup 77(j)| < b,.
Part 2 The tracking error’s bounded convergence,

and the convergence of parameter estimation error, for
je [O, f]
(1) Defining the observer error as

2j+6) =2(j+9)—2(j+6) = [21(/+ ). ()] -
The dynamic equation of the observer error can be
obtained by (7) and (8):

Z(j+s+1)=(A, - LA)Z(j+o)+
As0()) + (A2(j) — A2 ()AA(). (20)

Since the boundedness of y(j), Z(}), 2(j), A(j), and
&(j) has already been shown above, in the iterative equa-
tion in (20), according to Lemma 1, we can get that
Z(j+¢) is iteratively convergent with increased time by
making the spectral radius of matrix ||A; — LA,|| < 1. We
can select the parameter of the observer gain L to be

max(2—1,+ JE=ag| |2-1, - m]<1

2 2
to meet the above requirements for the matrix spectrum
radius.
(i1) The tracking error e(j) can be expressed as

>

e(j+¢) =y —y(j+¢9)
and by the system in (3) and the control law in (6), the
error expression is shown as follows:
®LE(HEQ)

NI
A+|EG)|

e(j+rs+D=e(j+o)1-

DEDED - (.
A+|EG)|

Taking the absolute value of both sides of the equation
gives the following formula:

e+ g+ Dl <leGi+ |1 - 22L=D)
A+[EG)|
DEDED e i+ 1) @
A+|20)|

According to Assumption 2 and the resetting algo-
rithm (11) for the initial value of Z(0), one can obtain
that the signs of Z(j)and Z(j) are the same, that is
E(HE() = 6e > 0.

Selecting appropriate @, and A such that
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a0

- < %5 2(HE (J)
A+ b;

A+|E( ])|
a’anwz |~§(])l CVanwz
2V2)E()| 2V

So there exists 0 < d; < 1 such that

<. (22)

®LEHEQ)

EGf
Substitute (22) and (23) into (21), and combine the

boundedness of Z,(j) and £(j) in a finite time. Assume

max |2, (/)|
Jelo,J]

0<(1- y<d, < 1. (23)

< b;,, b:, is a positive constant. One can obtain

(0%} n+2
le(j+s+DI<dle(j+¢)|+ “~b., +b,,
' 2V ¢
further
it
le(+s+ DI <d]"le(s) + ] cli X (24)
—Up
h aZan+2b b
where y, = s+ b
T ooVa ¢

Inequation in (24) indicates a bounded convergence of
tracking error in finite time since the beginning value
e(¢) is bounded.

(iii)) When |AA(J— D <
algorithm in (11), £(j) =
the boundedness of Z(j).

When |AA(j—1)| > €, using the system in (3) and
parameter estimation law (4), we have

g, according to the resetting
£(0) may be obtained, ensuring

g g AAG - DP?
E(j) = (—1)(1—“ :

Py n+IAAG - DP

wlAG=DI .
reaag-E Y Y

a [AAG =D . o
— U D+EG-EG-D
n+IAAG - DI
where £(j) = 2(j) - £(j).
Taking both sides of the equation’s absolute value

; 2
EGI<IEG- 1)|‘(1 _ M) N

7+IAAG - 1T
WAAG-D) |,
Bt eV -1
n+|AA(j—1)|2 Rl
AN s
—_— —1 F(H-E(G-1 25
VT I+HED-ZG-DI @5)

Since 0 < a; <2 and 5> 0, there exists 0 <d, <1 so
that
_ aAAG-DP

weidag-np ST @0

and

CYIAA(]_ 1) < a,
n+IAAG-DP 2y
Since the boundedness of Z,(j) and &(j) in a finite time

have been proven, substituting (26) and (27) into (25), we
can get

27)

IZNI < dIEG - DI+ —b L+

\/_

——b:+2L, 1.

i
Represent |Z(j— 1)| in the same form as above as

. =, . a
1EG - DISIEG-2)|+ —1sz+

2+

——b:+2L, ;.

i

Substituting in we get

SIS

dEG-2)| +d2( ——b,+2L, »)+

\F Vi
a;
—b;, + ——=b.+2L,,.,
2 W 12 \/— 3 y+2e
Continue the above steps to get

IEDI<BIEG - 2)|+d2( 5—=be +2L,,0)+

R

%b \/_bf +2L, . <
BNEG- 3)|+d%—\/_b +—\/_b§+anu+2)+

dy(=——=b:;, + ——=b+2L, ,)+

R
7 \/_bf+2L,,w+2

d)E©O)] + dﬁ( “p, be+2L,..).
- 1-d, 27 ° \/‘ e
The last item is obtained according to the summation
formula of the proportional series.
Let

X2 = b$+2an+27

2 p
24" 2 «/’
and we can get

/
d

Since the initial value £(0) is bounded, (28) implies a
bounded convergence of Z(j) in a finite time. Moreover,
the boundedness of Z( ) is obvious because of the bound-

- 1-
IZ()I < d3IZ(0)) +1

(28)

edness of Z(j).
Part 3 The tracking error convergence for Vj
In Part 1 and Part 2, The DESO variables y(j), Z(}),
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2(), A()), and £(j) have all been proven to be bounded,
and the constrained convergence of tracking error has
been assured Vj e [O,f]. We can get y(J+1), £(J+1),
2(J+1), A(J+1), and &(J +1) if we continue to follow
(9)—(12). Then we may deduce that w(j), Z(j), 2(j),
A(j), and &(j) are all bounded for Vj. Therefore, the
bounded convergence of e(j) and Z(j) can been guaran-
teed for Vj. In addition, assuming sup|Z,(j)| < b:, and
suplé(j)l < b, according to (24) and (28) we can con-

clude that lime(j)< - and limZ(j) < 22—, for
Joeo 1—d1 Joeo 1—d2
0<d <1,0<d,<1. O

The following theorem is presented to assure the
asymptotic convergence of the system’s tracking error
after introducing the event-triggered mechanism.

Theorem 2 Take a nonlinear system in (2) that meets
Assumptions 1-3. The suggested ET-DESO-MFAC algo-
rithms (14)—(18) can ensure that the tracking error e(j)
converges asymptotically with increasing time with cor-
rect controller parameter selection.

Proof The tracking error is re-expressed as follows
using the system model in (3):

e(j+s+ D=y (j+s+ -
Y(j+¢)—E(DAAG) - EQ)). (29)
According to the control law in (17), at the triggered
instants, i.e., j = j,, (29) becomes
e(jrs+ D)=y (j+s+D-¥(j+¢)-
EDNAG) = A=) =€) =
A-EZMDHMW (j+s+1D-
Y(j+¢)—2()).
The Lyapunov function is chosen as follows:
V(j) = ().
Then one has
AV(j+s+D)=e(j+s+ 1)=& (j+¢) =
[(I-EMDHN)W (G+s+1) -
Y +9) =20 = +6). (30)
Because the event-triggered error is o(j) = e(j,) — e()),
it is evident that at the event-triggered moment, o (j,) = 0.

We can reach the following result by combining this con-

clusion with the event-triggered condition in (13).
 +
e 31)
2E2(HH())
Since the denominator of inequation in (31) is a square
term, the following conclusion can be drawn:

k(j+¢)=e(j+¢)—4[(1 - Z(NH()))
W(+s+D=y(j+9-2()I>0.  (32)
According to (30) and (32), it is easy to get
AV(j+s+1)<0.

O
This finding implies that the ET-DESO-MFAC
approach, as conceived, may cause the tracking error to
converge asymptotically at all event-triggered moments.
The control input inside this time frame stays precisely
the same as the input at the previous trigger instant dur-
ing the event interval, i.e., j € (j,—1,j,). When the input
remains constant, the system’s properties are obviously
stable.

6. Coordinate compensation algorithm

When tracking a SV’ trajectory, a desired trajectory will
be given in advance. Assume that the desired trajectory’s
coordinate at time jis (x*(j),y*(j)) and that the desired
yaw angle is ¥*(j). ¥*(j) can be calculated according to
the following formula:

AX(j+ D =x"(j+D-x())

Ay (j+ D=y (+D=y()

AV(G+D

v(j+1)= arctan(m)

However, at the initial movement, there is a tracking
error between the actual yaw angle () and the desired
yaw angle *(j). Even in the subsequent control process,
the actual angle can track the desired angle well, there
may be a steady-state error between the desired trajec-
tory (x*(j),¥"(j)) and the actual trajectory (x(j),y())).
Therefore, the desired yaw angle ¢*(j+ 1) needs to be
compensated according to the current position, the
desired position at the next moment, and the desired yaw
angle at the next moment.

The principle of coordinate compensation is shown in
Fig. 3. In Fig. 3, EF is the given desired trajectory, and
the vessel departs from E to F. p(j) and p*(j+ 1) respec-
tively represent the current position of the vessel and the
desired position at the next moment. ¥(j) and y*(j+1)
respectively  represent the direction angle of
p(j)) » p*(j+1) and the desired angle at the next
moment. And the arc Ep(j) represents the actual trajec-
tory of the vessel. Obviously, the actual position p(j) of

the vessel has deviated from the desired trajectory.
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Fig.3 Principle of desired angle compensation

If the above deviation occurs in the trajectory while
tracking the desired angle, the desired angle y¢*(j+1)
must be corrected so that the corrected desired angle con-
tains the position error information of the vessel, thereby
eliminating the trajectory tracking error while tracking
the desired angle.

The compensation algorithm is as follows:

PG+ =y G+ D+Be(D=¢ (j+1)

where B denotes compensation coefficient that adjust the
compensation intensity, §*(j+ 1) denotes the desired yaw
angle after compensation, and

YN -yG+1D

The algorithm with coordinate compensation is as fol-
lows:

V(+s+ D)=y (j+s+ D+

Ble(j+¢) =y (j+¢s+1)), (33)
B A i AA( - 1)
o/ = —1 —_—
(N=Z( )+77+|AA(j—l)|2

(AY(j+¢)—E(— DAAG - 1) =2, — 1)), (34)
E(j)=£0). |E()| <&
or [JAA(j-1)| <&
or sign(Z()) # sign(Z(0)), (35)

j=ie G+ > —2:’2((1; 152)(1)’ (36)
A+ 2=
o A+|E20)|
A(j) = . , PN
W (G+s+ D) —y(j+) =2, j=J
A(jl.—l)’ je (jt—l?jL)
(37)

2(j+s+1) = A2 +6) + A, (HAAC)+
LW(j+¢)-d(j+s) . (38)
JGj+s+1)=Az(j+s+1)

() = arctan(x(j) TrGt 1))- The block diagram of DESO-MFAC control system
with coordinate compensation is shown in Fig. 4.
Pass planning
X'(jte +1)
Y (jte +1) u, v x(jte)
y(jte +1) y(jte)
Angle  [PUFreFD), A(j) y(jte)
compesatlon DESO-MFAC Vessel -
(+ .
)

Fig. 4 Block diagram of DESO-MFAC control system with coordinate compensation

The real-time position of the vessel can be obtained by
the inertial navigation method using the data collected by
the gyroscope and the photoelectric encoder. The vessel’s
target angle compensation algorithm gives the corrected
target angle at the next moment according to the current
position, the target position at the next moment and the
target angle at the next moment. The ET-DESO-MFAC
controller corrects the control input according to the dif-
ference between the corrected target angle and the cur-

rent angle.

7. Simulation results

To further validate the effectiveness of the suggested
approach, it is simulated as follows.

The simulation research consists of five parts: (i) angle
tracking error; (ii) trajectory tracking; (iii) event-trig-
gered points; (iv) change of control law; (v) error of
DESO. The initial position coordinates and initial angle
of the SV are respectively set as (x(0),y(0)) = (0,0) and
U(s+1) =y(s)=n/4. Set the fixed velocities of the SV
u =13 m/s, v =0 m/s. Set initial value £(0) =0 and
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A(0)=0. And set the time delay ¢ =0.05 s, disturbance
7(j) = 0.1sin(j/10).

The parameter settings of the algorithm in (33)—(38)
are shown in Table 1.

Table 1 Time of different algorithms

Parameter Value
Z(0) 1.0
| 0.1
n 0.1
@ 0.992
Pl 0.1
& 0.1x10710
I 0.8
b 0.2
B 0.01

(1) Angle tracking error (e, )

The simulation result of angle tracking error based on
ET-DESO-MFAC method with coordinate compensation
is shown in Fig. 5.

0.8
0.7 F
0.6
0.5F
0.4Ff
03F
02F
0.1F
0
_01 L
702 1 1 1 1 1 1 1 1 1
0 S5 10 15 20 25 30 35 40 45 50
Time/s
Fig. 5 Angle tracking error of ET-DESO-MFAC method with
coordinate compensation

Error

According to Fig. 5, angle tracking error of ET-DESO-
MFAC method with coordinate compensation can con-
verge to zero. More importantly, the convergence speed
is quite fast, so the proposed method performs well in
practical applications. The control signal of the ET-
DESO-MFAC control method is not updated all the time,
but it can control the tracking error within a certain range.

(i1) Trajectory tracking

Before studying the trajectory tracking of the SV,
firstly, set a desired trajectory as y = sinx. Then, the ini-
tial algorithm and the algorithm with coordinate compen-
sation are respectively used to control the SV to track the
ideal trajectory.

The simulation result of trajectory tracking based on

ET-DESO-MFAC method with coordinate compensation
is shown in Fig. 6.

1.5

1.0},
0.5}

0

y/m

-0.5

-1.0

71‘5 1 1 1 1 1 1

0 5 10 15 20 25 30
x/m

—— : Desired trajectory; —— : Actual trajectory.

Fig. 6 Trajectory tracking of ET-DESO-MFAC method with coor-
dinate compensation

35 40 45 50

From Fig. 6, we can see that the SV under the control
of ET-DESO-MFAC method with coordinate compensa-
tion has a good tracking effect on the desired trajectory
y =sinx.

For an SV system with external disturbances, Fig. 7 is
the trajectory tracking diagram obtained by the DESO-
MFAC method in [36]. The DESO-MFAC method
updates the control law at every moment and achieves
good results. However, this method is not suitable for
some situations, such as the environment with limited
communication bandwidth, and the situation of sensor
and signal transmission delay. In addition, the DESO-
MACD method does not consider the coordinate informa-
tion of SVs when implementing trajectory tracking.

1.5

1.0 Fp

10 15 20 25 30 35 40 45 50

-1.5 L
0 5

Xx/m
—— : Desired trajectory; —— : Actual trajectory.

Fig. 7 Trajectory tracking of DESO-MFAC method

Compared with the original method, Fig. 6 is the tra-
jectory tracking diagram obtained by using our proposed
algorithm. As can be seen from the figure, there is a cer-
tain lag between the actual trajectory and the ideal trajec-



CHEN Hua et al.: Event-triggered model-free adaptive control for a class of surface vessels with ... 795

tory due to the time delay we added to the original sys-
tem. In addition, our proposed algorithm updates the con-
trol law only when the tracking error is greater than a pre-
set threshold, which is beneficial for use in a bandwidth-
limited environment. And we also incorporate the coordi-
nate information of the SV into the control algorithm. In
conclusion, our proposed improved method has a broader
application background.

(iii) Event-triggered points

In Fig. 8, the red points represent the event-triggered
points, that is, the time points when the control input sig-
nals are updated.

2.0
1.8 ¢

FXXXXXXXXXXXXXXOXOXXOXXO00XXXXx0000x% X XX XQO

Vi
o o
N o0

Event-triggered node
S N B ;

N
SRS
T

(=)

5 10 15 20 25 30 35 40
Time/s
= : Non-event-triggered point; o : Event-triggered point.

(=)

Fig. 8 Event-triggered points

(iv) Change of control law (A(}))
The change of control law based on ET-DESO-MFAC
method with coordinate compensation is shown in Fig. 9.

0.8

0.6}
04}
02}

1] SN N

—02+F

System input changes

04}

706 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50
Time/s

0 5
Fig. 9 Change of control law

The associated control law varies substantially since
the SV must be managed to follow the correct trajectory
from the beginning location in the first few seconds, as
seen in the figure. The SV reaches the preset trajectory
after a few seconds, and the control law fluctuations grow
smaller and more regular.

(v) Error of DESO (e,,)

In this paper, the DESO method is used to estimate
&(j). Next, we conduct a simulation analysis on the con-
vergence of DESO.

According to Fig. 10, the estimation error can be con-
trolled within a certain range.

1.5

1.0+
051

0 b SN NN NN NS

Error

705 L

-1.0+

-1.5

0 10 20 30 40 50 60 70 80 90 100
Time/s

Fig. 10 DESO error

8. Conclusions

Aiming at the problem of vessel trajectory tracking with
time delay, bounded disturbance and limited bandwidth,
this paper proposes ET-DESO-MFAC method with coor-
dinate compensation to provide a practical solution.
Firstly, the proposed method only uses the input and out-
put data of the vessel system and does not contain any
model information. Second, ETC is based on event-trig-
gered condition, which lowers data transmission through-
out the control process. Then, the target angle is rectified
online using the coordinate compensation technique,
reducing the steady-state inaccuracy of the proposed con-
troller even more. Followed by, the convergence of
DESO-MFAC is proved by mathematical methods, and
the convergence of ET-DESO-MFAC is guaranteed by
using the Lyapunov function. Finally, the simulation
results demonstrate that the suggested technique has a
high tracking accuracy.
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