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Abstract: Autonomous cooperation of unmanned swarms is the
research focus on “new combat forces” and “disruptive tech-
nologies” in military fields. The mechanism design is the funda-
mental way to realize autonomous cooperation. Facing the rea-
listic requirements of a swarm network dynamic adjustment
under the background of high dynamics and strong confronta-
tion and aiming at the optimization of the coordination level, an
adaptive dynamic reconfiguration mechanism of unmanned
swarm topology based on an evolutionary game is designed.
This paper analyzes military requirements and proposes the
basic framework of autonomous cooperation of unmanned
swarms, including the emergence of swarm intelligence, infor-
mation network construction and collaborative mechanism
design. Then, based on the framework, the adaptive dynamic
reconfiguration mechanism is discussed in detail from two
aspects: topology dynamics and strategy dynamics. Next, the
unmanned swarms’ community network is designed, and the
network characteristics are analyzed. Moreover, the mechanism
characteristics are analyzed by numerical simulation, focusing
on the impact of key parameters, such as cost, benefit coeffi-
cient and adjustment rate on the level of swarm cooperation.
Finally, the conclusion is made, which is expected to provide a
theoretical reference and decision support for cooperative mode
design and combat effectiveness generation of unmanned
swarm operations.
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1. Introduction

The intelligent collaboration of unmanned swarm opera-
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tions is an important operational style for future wars
[1,2]. The battlefield situation is changing rapidly, and
the operational tasks and operational environment of the
unmanned system are changing all the time, which also
determines that the unmanned swarms must have a high
degree of autonomy and adaptability and can realize self-
organization and self-coordination according to the bat-
tlefield situation, while continuously carrying out the
established operational tasks.

A swarm information network is not only the “neural
system” of information communication but also the basic
guarantee of achieving swarm cooperability. However, in
high dynamic, high uncertainty and strong confrontation
scenarios, electromagnetic interference and environmen-
tal barriers may affect the network topology, and some
nodes may even be damaged or captured, which directly
leads to node failure. Traditional fixed network planning
and passive network adjustment cannot adapt to a strong
confrontation environment. Realizing adaptive and intel-
ligent network reconfiguration to ensure that the whole
swarm has a high level of autonomous collaboration is
not only a scientific and technical problem but also an
engineering application problem.

In recent years, many scholars have performed con-
structive research on swarm autonomous collaboration
and network adaptive reconstruction. Among them, the
evolutionary game [3—5] is a new method to solve the
above problems in the intelligent background. The evolu-
tionary game combines the “equilibrium view” of eco-
nomics with the “adaptability” concept of biology. It
depicts the process of the group adapting to the external
environment through learning, imitation and trial and
error under the condition of incomplete rationality and
asymmetric information. It provides a basic theoretical
framework for analyzing the unity of opposites among
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multiple individuals and revealing the group cooperation
mechanism. Among them, when solving the problem of
network adaptive reconstruction, the optimization goal is
usually to maximize the level of swarm cooperation, and
the network nodes adaptively adjust the topology based
on the game pay-off. However, in evolutionary games,
cooperation often benefits defectors, while cooperators
bear costs. This undoubtedly leads to the extinction of
altruism in evolutionary competition with selfishness [6].
As a result, explaining cooperative evolution has become
a very challenging core issue in evolutionary game the-
ory.

Currently, Harvard University has performed many
pioneering works in the field of cooperative evolution
and introduced the concept of the spatial dimension into
evolutionary games for the first time, which opened a
precedent in the research of spatial evolutionary games
[7,8]. A spatial evolutionary game uses a network to
describe the interaction between individuals and empha-
sizes the network structure’s influence on the dynamic
swarm evolution and the level of cooperation. As long as
the structure is appropriate, relying on simple strategies
can also maintain the collaborators’ survival. Since then,
Nowak’s team studied regular lattices, circular graphs,
Erdos-Renyi (ER) random graphs, and small world net-
works and has creatively proposed the relationship
between the cost-effectiveness ratio of the game and the
average degree of the network and pointed out that the
smaller the network connectivity is, the better the coope-
ration in natural selection [9,10]. After that, they theoreti-
cally deduced the cooperation phenomenon on the regu-
lar lattice and obtained the boundary conditions for the
generation and expansion of cooperation [11]. On the
basis of the above work, the differences between homo-
geneous and heterogeneous networks in promoting col-
laborative behavior are further compared and analyzed.
Simulation results show that weak connections can pro-
mote the generation of collaborative behavior in hetero-
geneous networks [12]. During the same period, other
researchers studied the dynamic process of multiplayer
games on graphs and found that spatially structured
swarms could promote cooperation more than unstruc-
tured swarms [13]. In the past two years, the team has
applied the dynamic evolution of cooperation in spatial
structure to social networks and analyzed the critical
conditions for human society to produce collaborative
behavior [14]. As a result of the contradiction between
the evolutionary convergence probability and the evolu-
tionary convergence time, the tradeoff of the spatial struc-
ture between the two is preliminarily explored [15], and

the cooperative evolution on the structural swarm
is further extended to the weighted graph [16]. Santos
takes the lead in the field of evolutionary game
research on scale-free networks. Due to the complexity of
the scale-free network, previous research on collabora-
tive behavior mainly adopts the method of statistical
simulation, knowing its input and output but not
its process mechanism. Santos creatively abstracted,
simplified and approximated the scale-free network and
theoretically deduced the internal mechanism of
cooperative evolution [17]. This also revealed that the
scale-free characteristics (heterogeneity) of the network
and the direct connection between large degree nodes are
the core factors for the emergence of cooperative
phenomena. In addition, the scale-free network based on
the growth and preferential attachment mechanism
provides a wunified framework for the emergence
of cooperation [18—21]. In the domestic research field
of cooperative evolution mechanisms on complex net-
works, representative teams include the Wang Long
team of Peking University [22—27], Zheng Dafang
team of Zhejiang University [28—30], and Lv Jinhu team
of Beijing University of Aeronautics and Astronautics
[31]. They conducted long-term and systematic research
on various evolutionary game models, such as the
prisoner’s dilemma, public goods, snowdrift and stag
hunt, as well as evolution dynamics and cooperative
emergence mechanisms on various complex networks,
such as random graph, small-world and scale-free net-
works.

In recent years, research on the impact of linking
dynamics on cooperation has become a trending topic in
the spatial evolutionary game [32—35]. If the popular
connection (i.e., the edge connecting the collaborators)
can be retained in the game, and the unpopular connec-
tion (i.e., the edge connecting the collaborators and the
defectors) can be quickly disconnected, then the dynamic
network will be better than the static network in promot-
ing the emergence of swarm cooperation. In previous
studies on edge dynamics, researchers often distin-
guished the edges according to the strategic attributes of
the individuals connected by the edges, specifically
divided into the c-c edge, that is, the edge connecting two
collaborators. Similarly, there are the c¢-d edge (the edge
connecting collaborator and defector) and the d-d
edge (the edge connecting two defectors). During the
topological adjustment of the evolution process, different
edge dynamics occur for different types of edges to
promote cooperation. For example, the c-c edge is given
certain preferential treatment, or the collaborators are
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given the privilege to escape the betrayers so that the c-c
edge is permanently retained in the evolution or lasts
longer than other edges in the evolution. In contrast, the c-
d edge, which is considered to be unwelcome in evolu-
tion, is easily disconnected. Through this mechanism,
cooperation can be promoted, and betrayal can be sup-
pressed.

However, the preconditions of the above mechanism
are too harsh. In reality, the relationship between indivi-
duals is maintained by various social and nonsocial fac-
tors, such as spatial location, reputation selection, and
network reciprocity (refer to the famous ‘Five Rules’ pro-
posed by Nowak [5]), and it is often adjusted in a
softer way. Moreover, the topology adjustment in
unmanned swarm operation has its special military
laws and business logic. Therefore, it is necessary to
build a flexible and adaptive topology reconstruction
mechanism under the premise of clarifying military
requirements to meet the realistic challenges of
unmanned battlefields.

In the early stage, we made a preliminary exploration
of the cooperative evolution and autonomous collabora-
tive mechanism of unmanned swarms. Based on evolu-
tionary game theory, we derive the strategy abundance
function and strategy dominance condition of unmanned
swarms [36] and simulate and analyze the cooperative
evolution characteristics of mixed uniform structures
[37], scale-free networks [38], and community networks
[39—42]. However, the above achievements are based on
the assumption of a static network, without considering
the dynamic adjustment and adaptive reconfiguration
requirements. Based on the existing achievements, this
research proposes an unmanned swarm adaptive dynamic
reconfiguration mechanism. Specifically, if a network
node, whether a collaborator or a defector, encounters a
collaborator (defector), the individual will be satisfied
(dissatisfied) with this type of interaction and will unila-
terally expect to extend (shorten) the duration of the con-
nection. In this way, the duration of each connection will
be adjusted reasonably and adaptively instead of being
manually specified. Each individual will behave more
rationally in this process and finally achieve the adaptive
reconfiguration of network topology.

Subsequent chapters are as follows: In Section 2, the
military requirements are analyzed, and the behavior
analysis framework of unmanned swarm autonomous col-
laboration is given, which is the basis for establishing the
topology adaptive dynamic reconfiguration mechanism.
Section 3 builds the topology adaptive dynamic reconfi-

guration mechanism from topology dynamics and stra-
tegy dynamics. On this basis, the construction method of
the swarm community network is given, and the charac-
teristics of the network are analyzed. Next, the mecha-
nism characteristics are analyzed using a numerical simu-
lation, focusing on the impact of key parameters, such as
benefit coefficient, cost and adjustment rate on the coop-
eration level. Finally, a conclusion is given based on the
simulation results. In this paper, evolutionary game the-
ory and complex network theory are creatively intro-
duced into the design of unmanned swarm coordination
mechanisms. The framework, mechanism and method
provide a new perspective and technical approach for
solving the network topology reconstruction problem in
unmanned swarm operations.

2. Framework for autonomous collaborative
behavior in unmanned swarms

The behavior analysis of unmanned swarm autonomous
collaboration involves three key issues: the emergence of
swarm intelligence, the construction of an information
network, and the design of a collaborative mechanism.
Together, the three build a basic framework for the
behavioral analysis of unmanned swarm autonomous col-
laboration. Among them, the emergence of intelligence
from the individual to the swarm is the internal driving
force for swarm autonomous collaborative behavior. The
information network is the topological space where infor-
mation interaction occurs and the spatial carrier of
autonomous collaboration. The collaborative mechanism
is the fundamental way to realize swarm autonomous col-
laboration.

According to the classical system engineering theory
“relationship structure determines function”, the informa-
tion network with a certain topological structure is the
basis for the emergence of intelligence at the swarm
level. The result of intelligent emergence in turn drives
the dynamic reconfiguration of network topology. At the
same time, intelligent emergence is a time-space game
based on pay-off, and intelligence is the basic premise of
rational individual interactive games in coordination.
Emergent intelligence is the outward appearance of col-
laborative mechanism. Collaborative behavior adjust-
ment and strategy updating are closely related to the spa-
tial network structure. Therefore, network topology is an
important basis for individual behavior (strategy)
updates in the collaborative mechanism. In turn, coordi-
nation mechanism changes network topology and infor-
mation flow. The relationship among the three is shown
in Fig. 1.
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2.1 Emergent intelligence

The swarm emergent intelligence, as against individual
intelligence, is achieved through collaborative mecha-
nism, and emergent intelligence is the outward appea-
rance of collaborative mechanism. In an unmanned
swarm, units with ‘intelligence’ not only passively accept
preset instructions, but most importantly, in their interac-
tion with other individuals, they emerge higher-level
intelligence beyond individual intelligence at the swarm
level through optimal coordination and organization of
their own resources, costs and other factors. Finally, the
overall utility of the swarm is optimized.

The development of unmanned combat force started
from the remote-control stage of human-machine interac-
tion, experienced the cooperative stage of human-
machine combination, and is developing toward the
autonomous direction of human-machine integration [43].
It can be predicted that the intelligent emergence of
unmanned swarms will also undergo evolution from
‘intelligent embedding” with manned systems as the main
and unmanned systems as the auxiliary, to ‘intelligent
support’” with manned systems as the auxiliary and
unmanned systems as the independent, and then to ‘intel-
ligent leading’” with bionic autonomy and swarm attack
and defense.

In the future, unmanned swarm operation systems will
have higher awareness, analysis, planning, decision-mak-
ing and execution capabilities and will move toward inde-
pendent Dbattlefield situation awareness, independent
operational task planning, independent implementation of
operational actions, independent links of operational
coordination, and independent evaluation of operational
effects [44].

2.2 Information network

A common task can only be completed through the coor-
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Framework for autonomous collaborative behavior in unmanned swarms

dination of units with different functions. When dealing
with such coordination problems, an important task is
how to build an information interaction network between
individuals. Different functional units conduct informa-
tion interaction based on the network, thus emerging the
ability and intelligence beyond each unit at a higher level,
so as to complete tasks that cannot be completed by any
single unit.

On the one hand, from the perspective of scale, future
swarm operations can be divided into three levels (taking
air force as an example). The first level is the follow type
with the number of less than 30 or 50. The second level is
the cluster type with the number ranging from 30 to 50 to
100; and the third level is the swarm type with the num-
ber of more than 100 or even more than 1 000. On the
other hand, from the perspective of intelligence, once the
unmanned swarm develops to the ‘intelligent leading’
stage, the scale of the swarm will naturally be extremely
large. The expansion of the scale refers to the exponen-
tial growth of the complexity of the interaction relation-
ship. Building the swarm network quickly based on the
information intractability and combined with the busi-
ness logic of the swarm operation is a difficult problem
that the operation planners must solve.

A representative idea of information network construc-
tion in unmanned swarm operations is to integrate the
characteristics of random networks [45] and community
networks [46,47] on the basis of traditional tree networks
to construct a network topology matching the combat
task.

For example, in the typical combat style of an
unmanned aerial vehicle (UAV ) swarm [48], a UAV
swarm can be divided into several sub swarms, such as
intelligence reconnaissance, electromagnetic interference,
and fire strike. The sub swarms are tightly coupled inside
and loosely coupled between them, presenting the topo-



602

logical organization structure of a ‘community network’.
The operational relationship is shown in Fig. 2. Among
them, information needs to be highly effectively transmit-
ted. Establishing the mapping relationship between mili-
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tary requirements, such as information flow and network
energy gathering and complex network characteristics,
such as scale-free and small world, is the most important
task in network form design.

Attack UAV
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Fig.2 Diagram of unmanned swarms attacking a ground force

2.3 Collaborative mechanism

An unmanned swarm operation system has the characte-
ristics of regional distribution, intelligent autonomy and
decentralization. The swarm must build orderly coordina-
tion and cooperation based on the information network to
ensure battlefield survivability and mission completion
ability. In addition, according to system theory, the ele-
ments of unmanned clusters and battlefield environments
constitute a complex giant system, and the elements are
interdependent, influence and restrict each other. The ulti-
mate essence of a multi-unmanned platform cooperative
operation is to find the best control strategy of the whole
large-scale system. Therefore, the design of a collabora-
tive mechanism is very important.

In the collaborative interaction, the unmanned plat-
form with intelligence needs to calculate and evaluate its
own energy, loss, cost, behavioral cost and other factors
to maximize its own pay-off. This process is inevitably
accompanied by competition among individuals, result-
ing in the deviation between the individual pay-off and
the total utility in the optimization. Therefore, one of the
key problems in the design of collaborative mechanisms
is maintaining the consistency between individual pay-off
and swarm utility.

For example, in the cluster fire strike task, the intelli-

gent combat platform with decision-making ability will
carefully control the fire resource launch amount to main-
tain its own combat effectiveness. From the cluster level,
the more firepower resources each combat unit con-
tributes to the cluster, the higher the overall survival rate
and the greater the operational efficiency. The contradic-
tion between the two will lead to “the tragedy of the com-
mons” [49]. This mechanism may lead to the delay of
fighters or give the enemy an opportunity to counter
attack.

A good collaborative mechanism design is the key to
solving the contradiction between individual benefits and
the total utility. At present, under the framework of the
classic multi-agent system (MAS) theory [50], complex
adaptive systems (CAS) theory [51] and complex net-
work theory, the competition and conflict between indi-
viduals and swarms in their respective optimization direc-
tions need to be studied further.

Above, the framework for autonomous collaborative
behavior in unmanned swarms is discussed from the three
aspects of emerging intelligence, information networks
and collaborative mechanisms. The research in this paper
is carried out under this framework, focusing on informa-
tion networks and collaborative mechanisms. This paper
attempts to design a topology adaptive dynamic reconfi-
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guration mechanism for information networks to pro-
mote the emergence of swarm cooperation.

3. Topology adaptive dynamic
reconfiguration mechanism

This section builds the topology adaptive dynamic recon-
figuration mechanism from the two processes of topo-
logy dynamics and strategy dynamics. Topological
dynamics describes the principle and process of adjust-
ing and reconstructing the edges between nodes; strategy
dynamics describes the selection of game models, the cal-
culation of node benefits, and the way to implement stra-
tegy transformation based on benefits. They complement
each other and support each other. They also alternate in
the topology reconstruction process. Topology is the spa-
tial carrier of strategy adjustment, and the strategy is the
basis of topology reconstruction.

3.1 Topological dynamic process of swarm evolution

The core of the topological dynamics process of swarm
evolution is to clarify three questions: Who will initiate
the topology adjustment? According to what principles
are adjustments made? How can the new topological rela-
tionship be reconstructed after adjustment? Based on mili-
tary needs, the following three rules will be presented to
answer the above three questions.

The maximum scale of unmanned swarm operation can
reach hundreds or even thousands [44]. For such a large-
scale node, it is neither realistic nor necessary to adjust
the topology simultaneously. Therefore, the first question
to be answered in topology reconstruction is: Which
nodes need to adjust the corresponding edges? In system
operations, it is emphasized to carry out key attacks
against key nodes, such as the enemy command and con-
trol center and communication center to achieve the goal
of destroying the enemy’s operational system. Therefore,
in topology reconstruction, we should also focus on the
key nodes that affect the overall operational effective-
ness of the swarm and take the corresponding edges as
the key adjustment objects. From the point of view of net-
work science, a node with a larger degree is often the hub
of the whole network, which plays a decisive role and can
act as the initiator of topology adjustment. Therefore, the
first rule for swarm topology adjustment is given.

Adjustment initiator rule (R;): All nodes in the swarm
network with a degree greater than 5 (hub —degree > 5)
are selected as initiators of topology adjustment. All the
edges connected to this node will be adjusted according
to certain rules, such as increasing the connection proba-
bility, decreasing the connection probability, and break-
ing.

In the swarm network, once the edge /;; with i and j as

nodes is generated, node i will be given an «;;. a;; obeys
the uniform distribution in interval [0, 0.9] and repre-
sents the probability that edge /;; remains unchanged dur-
ing the topology adjustment initiated by node i. In gene-
ral, @;; # a; and the interval is set as [0, 0.9] instead of
[0, 1], mainly considering the fact that there are few per-
manent connections in the real situation. Based on the
above settings, the second rule for swarm topology
adjustment is given.

Connection expectation adjustment rule (R,): Each
topology adjustment initiator in the swarm adjusts the
edge connection probability according to the current stra-
tegy of its neighbors. The specific adjustment principles
are as follows:

S, =C
@ =a;-7,8;=D (1)
a;=a;+1, §;=C

(,Yﬁ:a'j,‘_T, Sl:D

where 7 describes the adjustment frequency. The larger 7
corresponds to the faster adjustment frequency, and the
smaller 7 corresponds to the slower adjustment fre-
quency. When a reaches the extreme value (i.e., 0 or
0.9), @ will only be allowed to change in the opposite
direction. C and D represent two strategies (i.e., collabo-
ration and defection, respectively), and S; stands for stra-
tegy adopted by i’s neighbors (i.e., /).

It should be noted that while the topology adjustment
initiator i adjusts its edge connection probability, its
neighbor j will also synchronously adjust its edge con-
nection probability. After i and j adjust their edge con-
nection probabilities «, it will be decided whether to con-
tinue to maintain the connection relationship between i
and j, that is, whether edge [; continues to exist or
breaks to build a new connection. Therefore, the third
rule for swarm topology adjustment is given.

Connection reconfiguration rule (R;): In the edge
adjustment initiated by i, /;; will be disconnected with
probability 1—q;;. Once i removes j from its neighbors,
i will randomly select one of its non-neighbor nodes to
establish a new connection. There are two criteria for
selection:

(1) It must be the same type of node. For example, the
command and control node still selects the command and
control node. Corresponding to the swarm network, it
selects the node in the same community.

(i1) The distance d between i and the selected node
(i.e., the network hops) should be moderate. The distance
should not be too large. The network hops reflect the
actual communication distance of the battlefield, and
practical problems, such as communication loss and inter-
ference must be considered. The distance should not be
too small. Information exchange can be realized between
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nodes with small distances through other nodes as relays,
and there is no need to establish direct links. Generally,
3<d<4.

In R,, the node adjusts its edge probability according to
its neighbors’ current policy. However, the strategy of
each node in the network is not unchanged. It is updated
from time to time based on its benefit. The next section
describes the dynamic process of node policy updates in
the swarm within the framework of evolutionary game
theory.

3.2 Dynamic process of the swarm evolution strategy

Autonomous collaboration in swarm warfare has two
characteristics: ‘evolution’ and ‘game’. On the one hand,
although the individuals are intelligent, the achievement
of the overall utility optimization at the swarm level is
not achieved overnight but an iterative and self-orga-
nized evolution process. Individuals must conduct a large
number of repeated interactions and improve strategies
through learning, imitation and trial and error to con-
stantly adapt to the external environment and finally
achieve the optimal overall utility. On the other hand,
autonomous collaboration of unmanned swarms is the
multiple interaction and coordination optimization of
multiple combat units based on factors such as loss, cost
and behavioral cost. The collaborative process is not only
related to its own strategy selection but also depends on
the strategies of other units in the swarm, which is mani-
fested as a multiplayer game.

Among many evolutionary game models, the public
goods game (PGG) provides a basic theoretical frame-
work for revealing the cooperative evolution mechanism.
This game model takes the public goods investment as
the background and depicts that the cooperators and
defectors (free-riding) play a strategic game over time
based on parameters such as cost, benefit coefficient and

selection intensity, which makes the proportion of coo-
perators and defectors change dynamically and finally
tend to evolve into a steady state. In PGG, balancing indi-
vidual benefits and overall utility and improving the pro-
portion of collaborators are important prerequisites for
solving the ‘tragedy of the commons’ and realizing
unmanned swarm autonomous collaboration.

For multiplayer games, one way is to regard it as the
superposition of multiple two-player games. The other is
to expand the traditional two-player game and embed the
‘multiplayer interaction’ into the pay-off [17]. According
to the second way, in a network of scale N, let the degree
of i be k; = kF+kP, where k© and kP are the number of
individuals holding strategies C and D in the neighbor-
hood of i in a certain round of the game.

(1) If i chooses strategy C, then the total contribution of
all players in the multiplayer public goods game com-
posed of i and its neighbors is k¢, +c,(where ¢, is the
cost contributed by a single collaborator). After multiply-
ing the benefit coefficient r, the total utility is
r(kc,+c,). Then, the benefit of each individual is
r(kfe, +¢,)/ (k;+1). Since the cost of i is ¢,, the pay-off
of i is r(kc, +¢,)/ (ki+1)—c,.

(i) If i chooses strategy D, then the total contribution
of all players in the multiplayer public goods game com-
posed of i and its neighbors is k“c,. The total utility is
rkfc,, and the benefit of each individual is rk‘c,/ (k; + 1).
Since i has no cost, the pay-off of i is rkc,/(k;+1). If
a;c and by are the pay-offs of i with strategies C and D,
then

ak’c = k; +1 —Cos (2)
b = rkCc, 3)
T A

The pay-off matrix is shown in Table 1.

Table 1 Pay-off of multiplayer public goods evolutionary game

Number of collaborators in i’s neighbors

Strategy of i
& k; kE 1 0
C ro=Co r(keco+co) /it 1) =co 2re,/ (ki+1)—c, reo/ (ki+1)=c,
D rkico/ (ki +1) rk{co/ (ki + 1) reo/ (ki+1) 0

At each complete time step, node i plays games with
all its neighbors. According to (2) and (3), the pay-off is
calculated within the framework of the multiplayer pub-
lic goods evolutionary game, and then the strategy is
switched with probability according to the strategy update
rule. At present, there are several typical strategy update
rules in evolutionary games, such as unconditional imita-

tion [52], replicator dynamics [53], and the Fermi rule
[54]. The Fermi rule emphasizes the comparison of player
pay-off and neighbor pay-off. Driven by this rule, the
probability of i switching its strategy in the strategy space
{C, D} is

1

“)

PS(EQC, D} =
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where w € [0, 1] is the selection intensity, which can
amplify or reduce the influence of F,—F, on the stra-
tegy update probability. Through the reality test, the weak
selection intensity (w << 1) can promote cooperation. Let
F; € {ae, byc} be the pay-off of i and F, be the average
pay-off of its k; neighbors. Let A = F;— F, . If A=0, then
Ps.cic.py = 1/2, and the unmanned platform has the same
preference for strategies C and D. If A>0 (the individual
pay-off F; is higher than the average pay-off of neigh-
bors F i )> then Ps o py < 1/2. At this time, the unmanned
platform prefers to maintain the current strategy. If A<0
(the individual pay-off F; is lower than the average pay-
off of neighbors Fk,), then Ps.c p > 1/2. At this time,
the individual prefers to update the current strategy to
another strategy in the strategy space {C, D}.

The dynamic process of the swarm evolution strategy
is abstracted into three steps:

(1) According to the network generation algorithm, an
unmanned swarm network with a scale of N is generated.
Implement a random policy distribution for N network
nodes (C and D strategy holders each account for approxi-
mately 50%).

(i1) An individual i forms a game group G with all its
neighbors who have direct network connections. Accord-
ing to the multiplayer public goods evolutionary game,
the pay-off F; and F,, can be calculated separately.

(iii) After the end of each round of the game, the indi-
vidual i evaluates the pay-off and updates the strategy
according to the Fermi rule.

It should be noted that while i unilaterally updates its
strategy, each neighbor jin G will also synchronously
update the strategy according to the above process.

In specific application scenarios, a single unmanned
platform in the swarm acts as an individual player in the
game. Swarms composed of multiple unmanned plat-
forms have common missions, such as fire attacks on the
same position and intelligence reconnaissance on the
same area. The individual has optional different behavior
modes as a game strategy. At every moment, the indivi-
dual interacts with its ‘neighbors’ (other individual with
physical connection based on geographical location and
logical connection based on information communication).
The individual obtains a certain combat effectiveness and
a certain pay-off according to his or her own and neigh-
bor strategies. An intelligent unmanned platform with
independentdecision-makingcapability canchangeitsbeha-
vior (strategy update) by assessing its combat effective-
ness (pay-off). Through multiple rounds of games and
repeated strategy updates, a high degree of coordination
has emerged at the swarm level, making the swarm con-
trol finally reach the evolutionary stable state (such as
consistency and synchronization). In the above process,
the selection of the game type, the design of the revenue

calculation method and the determination of the strategy
update rules are of great importance. The above factors
are the key to realize the objective of swarm autonomous
collaboration.

Whether it is topology dynamics or strategy dynamics,
the premise of topology reconstruction and policy updat-
ing is based on the ‘information network’ of a specific
structure. Therefore, the next section focuses on the
swarm network generation algorithm.

4. Swarm network construction

The unmanned swarm information network must be able
to reflect the rules of the battlefield combat system. First,
it should be able to reflect the correct flow of material,
energy, and especially information. Second, it can reflect
the information cohesion of homogeneous (functional)
combat units and the information loose coupling charac-
teristics between heterogeneous units. In addition, if the
operational command relationship is considered, the net-
work hierarchy must also be considered. According to the
requirements for information network construction, this
section proposes a method for building an unmanned
swarm community network and analyzes its degree distri-
bution. A community network is the spatial basis for
topology reconstruction and strategy update behavior of
unmanned swarms.

4.1 Community network generation

A community network is a special complex network that
is closely coupled internally and loosely connected exter-
nally. It exists widely in natural biological communities,
social groups, scientific research teams and military
swarms.

In a certain military operation, there are four types of
unmanned swarms with command and control, investiga-
tion, firepower and support, which are required to coope-
rate to complete the combat task, that is, the number of
communities, M =4. The community network genera-
tion algorithm of inner-community preferential attach-
ment and inter-community preferential attachment is
adopted to generate a multi-community unmanned swarm
network with a scale of N and a community number of
M. The generation process is as follows.

4.1.1 Initialization

Each community is initially composed of myqy(m, > 1)
fully connected nodes. A fixed node is randomly selected
in each community, and C2, edges are used to connect
each community with the other M —1 communities to
ensure that there is one edge between every two commu-
nities.

An initial network of M =4, m, = 3 is shown in Fig. 3.
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Fig. 3 Initial network of M=4, my=3

4.1.2 Increase

In each time step, a new node is added to a random com-
munity. The new node is connected to the existing
m(1 < m < my) nodes in the community through m edges;
n(0 < n < m) nodes are connected to other M —1 commu-
nities through n edges.

4.1.3  Priority connection

The preferential connection occurs at both the internal
node and the external node.

Journal of Systems Engineering and Electronics Vol. 34, No. 3, June 2023

(i) Inner-community preferential attachment

When a new node is internally connected with a ran-
domly selected community (such as j), the probability
1_[ ~ that node i in community j is selected is propor-
tional to its internal degree s;;.

I Is,»j

_ S
2%
k

(ii) Inter-community preferential attachment
When a new node has an external connection with
node i of the other k(k # j) community, the probability

l_L that i is selected is proportional to its external
ik

®)

degree [;.
Lix

(6)

The above steps are repeated, and a community net-
work containing M communities, Mm,+¢ nodes and
(MC;, +C;)+(m+n)t edges is generated after rtime
steps.

With the Netlogo simulation platform, the final gener-
ated network is shown in Fig. 4.
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Fig. 4 Simulation interface and generated final network
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The upper left panel of the figure shows the initial
parameter settings of the network generation, such as the
total number, the initial number of nodes m, in each com-
munity, the new connections m in each time step, and
edge adjustment frequency 7. The upper right panel
shows the network connection and node classification.
The round point is the command-and-control node, the
square point is the investigation node, the triangle point is
the fire node, and the star point is the support node. In
addition, there are current network parameters, such as
the number of reconnections of various types of edges
(number-rewired, c-c-rewired, c-d-rewired, d-d-rewired)
and the current proportion of various types of edges in the
network (c-c, c-d, d-d). The lower left panel shows the
degree distribution of the network, including average
degree, internal degree and external degree. The network
presents typical scale-free characteristics. The lower
panel of the figure shows the overall cooperation level of
the swarm after the network is generated based on topo-
logy dynamics and evolves with strategy dynamics.

4.2 Network characteristics analysis

Close to the actual combat network, we hope the network
model constructed in Subsection 4.1 has scale-free cha-
racteristics, as well as community characteristics. There-
fore, in this part, we will verify whether the above model
have these characteristics through mathematical infe-
rence.

Let s;; be continuous. According to the mean field theo-

ry [55], 1—[ = s,-j/Z s;; can be approximately
expressed as the continuous rate of change of s;;. There-
fore, for node i in community j,

Sij

2.
k

For community j, As;=m/M and sl-j=Zskj=
k

1
2th +mg(my — 1). Therefore,

O, Sij

n
0, MZSkj.
k

®)

. . 1
For larger time ¢, smcezk: S = 2mtﬁ +my(my—1) =

1
2mt— , therefore,
M

that is,

5;;(0) = (™. )

In one time step (interval) ¢;, the new node i is added
to the swarm j, thus satisfying the initial condition of
s;;(t;) = m. We substitute s;;(#;) =m into the above equa-
tion:

¢ 0.5
5;;(1) = m(t—) . (10)
Then, the probability that the node degree is less than k&
is
m’t
P(s;j(t) <k)=P[t; > = | (11
Assuming that all nodes (including the initial nodes)
are added to the network at the same time step (interval),
then the time step ¢; is a random variable subject to uni-
form distribution. The probability density is

Pi(t) = . 12
W= (12)
If (12) is brought into (11), then
m’t m’t m’t
Plt;> —|=1-PIt;<S —|=1-—————. (13
(’> kz) ( kZ) emmrn

After deriving (13), the probability density P(k) is
obtained as

OP(s; () <k) _ 2m%

P(k) = =

k>, (14)

P(k) obeys the power-law distribution of y =3,
P(k) ~ k™.

Similarly, for the degree of the externality distribution
of nodes, the following conditions are satisfied:

g, M-1__ I

= n
Z lmn

0, M
m,n,n#j

(15)

where

Z L, = ZM]V_I lnt+[M(M— = (M- 1)],

m,n,n#j

and the solution of the above equation can be approxi-
mated as

t+,8)' (16)

() = ”( Py

where



608 Journal of Systems Engineering and Electronics Vol. 34, No. 3, June 2023

MM -1)- (M- DM
B 2n(M - 1) ’

when ¢ is large, 2 nt>[M(M—-1)— (M —1)] holds,

$0 0,/ 0, = I;/2t, that s,

¢ 0.5

lik(t)zn(—) . 17

1

Therefore, the degree distribution of the external con-
nection can be expressed as

2n’t 5

P(k) = ———
() Mm0+t

(18)
P(k) obeys the power-law distribution of y=3,
P(k) ~ k™.
Combined with the above conclusions, the degree of
node i in community j is

0.5
t
k() = s;;,() + 1;(t) = (m+n)(;) . (19)
Then, the degree distribution of the community net-
work is

2(m+ n)ztkig.

P(k) =

(20)

The whole community network also follows the power-
law distribution of y = 3.

In addition, since n<m, it can be seen from (10)
and (17) that the external degree of the node is
always smaller than the internal degree. Therefore, the
characteristics of ‘internal tight coupling and external
loose connection’ of community networks are also con-
firmed.

5. Mechanism characteristic analysis

Based on the topology dynamics and strategy dynamics
process in Section 3 and the community network con-
struction algorithm in Section 4, this section analyzes
the characteristics of the topology adaptive dynamic
reconfiguration mechanism from three aspects. First,
we compare and analyze the cluster cooperation level
generated by the classical pure strategy dynamic pro-
cess and the dynamic reconfiguration mechanism pro-
posed in this study. Then, we simulate and analyze the
relationship between the cooperation level and cost ¢
and benefit coefficient r under a dynamic reconfigura-
tion mechanism. Third, the change law of the cluster
cooperation level under the coherent effect of cost, bene-
fit coefficient and adjustment rate is simulated and ana-
lyzed.

5.1 Coevolutionary process of group strategy
dynamics and topological dynamics

The literature on pure strategy dynamics process
can be divided into two categories: one is to model the
space of strategy games as a well-mixed one (which
can be considered as a fully-connected network)
[22,56,57]; the other is static network (strategic dyna-
mic process occurs on a network that is always cons-
tant), lattices, ER random graphs,
small world networks, and scale-free networks. Nowak
of Harvard University has done a lot of pioneering work
in this field [3-5,7,8,11,12,16], and introduced the con-
cept of spatial dimensions into evolutionary games, open-
ing a precedent in the study of spatial evolutionary
games.

such as ring,

To investigate the effect of the topology adaptive
dynamic reconfiguration mechanism on the level of
swarm cooperation, a group of comparative experiments
are conducted. The swarm cooperation level under the
pure strategy dynamics mechanism (red broken line in
Fig. 5) and the swarm cooperation level after adding the
topology adaptive dynamic reconfiguration mechanism
(blue broken line in Fig. 5) are simulated and compared.
Parameter values are set as follows: Swarm scale
N=1012, benefit coefficient r = 1.2, cost ¢, = 1.0, selec-
tion intensity w = 0.1, and adjustment rate 7=0.1. f.(k)
is used to characterize the collaboration level of the
swarm. The simulation settings are as follows: Each data
point is run 100 times (10 network topology implementa-
tions correspond to 10 initial policy distributions) and
then averaged. For each operation, the cooperators and
defectors are randomly distributed in equal proportion on
the network, and after 10000 steps of evolution, the
results of 2000 steps are averaged. Unless otherwise
specified, the subsequent simulation settings are the
same.

41 . . . . . . . .
0.1 02 03 04 05 06 07 08 09 1.0
)
—e— : Strategy dynamics; —+- : Topological dynamics.
Fig. 5 Comparison of the swarm cooperation level between stra-
tegy dynamics and topological dynamics
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It can be seen in Fig. 5 that the cooperation level of the
cluster is maintained below 50%, that is, f.(k) <0.5, and
this equilibrium is a noncooperative dominant equilib-
rium. Comparing the two broken lines, it is not difficult
to find that when topological dynamics are added, indi-
viduals can adaptively adjust the interaction relationship
according to the strategy of the interaction object, which
greatly improves the level of cooperation. Especially with
the increase of selection intensity w, topological dyna-
mics can promote swarm cooperation more obviously
than single strategy dynamics (If A f.(k) represents the
difference between the two in the level of cooperation,

x10* x10*

609

then A f.(k)|,=00 =0.01 > A f.(k)|,-01 = 0.001 holds). An
adaptive dynamic reconfiguration mechanism can resist
the inhibition of cooperation by the increase of selection
intensity, and the collaborators will be more competitive
in the process of swarm evolution.

Furthermore, in the coevolution process of group stra-
tegy dynamics and topological dynamics (adaptive
dynamic reconfiguration mechanism), the evolution trend
of the connection number n of different types of edges
with time is investigated. The statistical results are shown
in Fig. 6.

gl
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Fig. 6 Evolution of the number of different types of edges

Fig. 6 shows that with the evolution of time, the num-
ber of all types of connected edges in the network shows
an upward trend, including the concerned edges, c-c,
indicating that the edges connected with the partners will
be more stable.

In Fig. 6(a), when the adjustment frequency 7 of the
edge connection probability is low (7=0.01) , the size
of edge d-d in the swarm will be dominant, while the size
of edge c-c is at the lowest level of the three types of
edge connections. However, when 7 is increased (7 is
increased from 0.01 to 0.3), the number of c-c edges in
the swarm will overwhelm the number of d-d edges and
c-d edges to occupy an advantage (as shown in Fig. 6(b)).
However, we make a horizontal comparison of the num-
ber of various connected edges under different 7 and find
that the direct impact of the 7 increase is the increase in
the number of c-c edges and the decrease in the number
of d-d edges and c-d edges. If the number of links is rep-
resented by nol, then nol. |,-93 > nol. ;=001 , NOleg|r=03 <
Nn0lg 001, and nolyg |03 < NOlgq|r—001 hold simultane-
ously (as shown in Fig. 6(c)). Therefore, as the core
parameter of the topology adaptive dynamic recon-

figuration mechanism, the adjustment frequency
can greatly enhance the interaction between collabora-
tors.

5.2 Relationship between the cooperation level and
the cost and benefit coefficient

It is of great practical significance to investigate the
impact of operational costs ¢ (such as communications,
intelligence, and firepower) and benefit effectiveness on
swarm cooperation. In real operations, it seeks to
exchange the lowest cost input for the optimal swarm
cooperation effect and ultimately achieve the maximum
operational efficiency. In contrast, if the cost is too high,
even if the combat goal is finally achieved, the gain will
outweigh the loss. Benefit coefficient r determines the
appreciation rate of individual resources. The apprecia-
tion of resources comes from the improvement of the
“l + 1 > 27 capability brought about by the internal
swarm cooperation, which is manifested in the overall
operational effectiveness of the swarm’s attack and
defense beyond a single combat platform. Too small
a benefit coefficient cannot promote the transformation
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of unmanned platforms to a cooperative strategy, and
too large a benefit coefficient has no practical signifi-
cance. It is of great importance to study the influence
of the benefit coefficient on the level of swarm coo-
peration to reasonably set the size of the benefit coeffi-
cient and improve the overall level of swarm coo-
peration.

The value range of ¢ is generally set as ¢ € [1.0, 3.0].
c=1 represents the total amount of basic combat
resources; if ¢ > 3, from a practical point of view, the
cost of input resources is too high and has lost its opera-
tional significance. Here, let ¢ €[1.0, 5.0], which not
only covers the general value space but also considers the
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unexpected situation. In addition, as the core parameter
of topology dynamics, the degree of hub nodes will
have a direct impact on the level of swarm cooperation.
Therefore, this section takes the cost and benefit coeffi-
cients as independent variables to investigate their impact
on the level of swarm cooperation under different hub
degrees.

Fig. 7(a) shows the change curve of cooperation level
fe(k) with the cost under different adjustment rates. Let
re[l, 10], hub-degree €[2, 10], 7=0.1, and c=1.
Fig. 7(b) shows the change curve of cooperation level
fe(k) with the benefit coefficient under different adjust-
ment rates.
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Fig. 7 Relationship between the cooperation level and the cost and benefit coefficient

The results show that the level of cooperation is nega-
tively related to the cost, that is, an increase in cost will
reduce the level of cooperation. With the increase of be-
nefit coefficient r, f-(k) shows a single increasing trend.
This indicates that due to the increase of benefit coeffi-
cient, a large number of cooperation phenomena appear
in the swarm, and the ‘free riding” behavior is suppressed.
The above conclusions are consistent with our previous
conclusions in hybrid homogeneous networks and static
community networks [36,38]. In addition, the larger the
hub —degree, the lower the level of swarm cooperation,
while the smaller the hub — degree, the higher the level of
swarm cooperation.

In the actual control, we should try our best to improve
the benefit coefficient of the unmanned combat swarm.
For example, with the help of management, for each com-
bat unit of the cluster, the ‘investment’ cost (such as the
total amount of bombs) of its previous combat operations
can be accumulated. In subsequent combat operations, the
higher the investment cost, the more materials and ammu-
nition will be supplied or the higher the priority of mate-

rials and ammunition supply. The cost of a single opera-
tion should be reduced and maintained as much as possi-
ble. For example, we can improve the reliability and sur-
vivability of the combat platform and we improve the
strike accuracy and damage power of the unit ammuni-
tion with the help of advanced technical means. In addi-
tion, since the hub node often acts as the key node of the
swarm command, the control center and the communica-
tion center and is also the initiator of topology adaptive
reconstruction, an excessively small hub —degree will
lose its practical significance, and an excessively large
hub —degree will inhibit cooperation. Therefore, when
designing the topology adaptive dynamic reconfiguration
mechanism, the selection of hub — degree should be com-
prehensively considered in combination with the actual
background to ensure the effective emergence of swarm
cooperation behavior.

5.3 Coherent effects of cost, benefit coefficient and
adjustment rate on the level of cooperation

In reality, it is too idealistic to regulate the overall beha-
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vior of the cluster by adjusting a single parameter. In
more cases, it is necessary to comprehensively regulate
multiple parameters. In this section, we comprehensively
consider the coherent effects of three key parameters,
benefit coefficient r, cost ¢,, and adjustment rate 7, on
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As shown in Fig. 8, regardless of the 7 value, the coo-
peration level of swarm evolution equilibrium will
decrease with the increase of ¢,/r. Moreover, the coup-
ling evolution between strategy and network structure
does pave the way for the propagation of collaborative
behavior in the space public goods game. Moreover, a
larger adjustment rate 7 often corresponds to a larger
threshold ¢,/r(once these thresholds are exceeded, col-
laborative behavior will disappear). It is shown that the
promotion effect of the adaptive dynamic reconfiguration
mechanism on cooperation will monotonically increase
with an increasing 7. The cluster more easily maintains a
high level of cooperation over a wide range of r and c,;
that is, the faster the adjustment of the topology is, the
more successful the cooperation will evolve.

the level of cooperation. Fig. 8 depicts the dependence of
the cooperation level on the parameters c,, r, and 7 in the
public goods game when the system is in the equilibrium
state. Fig. 8(a)—Fig. 8(d) correspond to the results with 7
values of 0.01, 0.05, 0.1 and 0.3, respectively.
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Fig. 8 Coherent effects of cost, benefit coefficient and adjustment rate on the level of cooperation

In addition to examining the impact of key parameters
on the level of cluster cooperation, such as c¢,, r, T and
hub-degree, another interesting issue is the way that the
network topology evolves with time under the topology
adaptive dynamic reconfiguration mechanism. Generally,
the variance of the normalized degree distribution given
by (21) is used to quantify the structural change of the
network.

5= I_‘zz __ ]_sz
ki
where k; is the degree of i. With 7=0.1,0.2,0.3,0.4, the
network degree distribution variance corresponding to
different hub-degree values is plotted, as shown in
Fig. 9(a).

ey
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Fig.9 Normalized degree distribution variance of swarm networks

Fig. 9(a) shows that for a large range hub-degree, the
degree distribution of the network is substantially differ-
ent from that of the static network (Poisson distribution,
6% ~ 1.087); that is, the topological structure of the clus-
ter shows heterogeneity under the effect of topological
dynamics. The heterogeneity represented by 6* shown in
Fig. 9(b) can considerably promote cooperation. In fact,
this conclusion has also been proven in the [18,19]. In
addition, Fig. 9(a) also shows that the larger the adjust-
ment rate 7 is, the smaller 6% is. However, we confirm
that ‘the promotion effect of the adaptive dynamic recon-
figuration mechanism on cooperation is monotonously
enhanced with the increase of 7’ in Fig. 8. The two con-
clusions contradict each other; that is, it is impossible to
directly form a logically consistent chain with the para-
meters 7, 6%, and f.(k).

Furthermore, it can be seen from (1) that the increase
of 7 makes the network connection between collabora-
tors tighter and the connection with defectors looser,
which directly promotes the improvement of the level of
swarm cooperation. At the same time, 7 can also indi-
rectly affect the level of swarm cooperation by affecting
67; the larger 7 is, the smaller 62 is. The above two forces
compete with each other on the parameter of “swarm
cooperation level ”, but the overall performance shows
that 7 promotes the cluster cooperation level.

In this part, we embed the topological dynamics pro-
cess into the classical strategy dynamics process and simu-
late the influence of relevant parameters on the coopera-
tion evolution under the dynamic reconfiguration mecha-
nism. Under this mechanism, individuals adjust the inter-
action relationship in a softer, adaptive and more realistic
way. The results show that the topology adaptive
dynamic reconfiguration mechanism can considerably
promote the generation of swarm cooperation behavior,
and the level of swarm cooperation is closely related to
cost, benefit coefficient, and adjustment rate. The lower

the cost and benefit coefficient, the smaller the degree of
the hub node, and the faster the adjustment rate, the more
successful the cooperation will evolve in the swarms.

6. Conclusions

Autonomous cooperation of unmanned swarms is the
research focus on ‘new combat forces’ and ‘disruptive
technologies’ in the military fields. A key issue in
autonomous collaboration is designing a reasonable
mechanism to improve the cooperation level of the opera-
tional swarms to ensure the overall operational efficiency
of the swarms. This paper designs an adaptive dynamic
reconstruction mechanism of unmanned swarm topology
based on an evolutionary game to meet the real needs of
dynamic adjustment of swarm networks under highly
dynamic and strong confrontation scenarios and simu-
lates and analyzes the impact of the cost, benefit coeffi-
cient and adjustment rate on the level of swarm
autonomous collaboration under this mechanism. This
paper creatively introduces evolutionary game theory and
complex network theory into the collaborative mecha-
nism design of unmanned swarms. The framework,
mechanism and method provide a new perspective and
technical approach for solving the network topology
reconstruction problem in unmanned swarm operations.
Some parameters in this paper are set by subjective
research and judgment of experts in the field and are all
simulation data. In fact, the values of parameters such as
network degree k in the ‘adjustment initiator rule’ and
network hop d in the ‘connection reconfiguration rule’ are
very important for operational decision-making. Reason-
ably determining the value range for specific combat
tasks and battlefield situations will directly determine the
benefits of evolutionary games and the level of swarm
cooperation. In addition, this research just focuses on the
binary strategy of this research just focuses on the binary
strategy of collaboration and defection, and the diversity
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of strategies is also the content that we will study in the
next step. The difficulty lies in the determination of the
strategy set and the calculation of the game pay-off. Next,
we propose to implement simulation analysis based on
real data, further optimize the model algorithm, and pro-
vide methods and means to assist scientific and accurate
battlefield decision-making.
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