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Dimension decomposition algorithm for multiple source loca—
lization using uniform circular array

1 1,%

2

1 1 1

SU Xiaolong , HU Panhe | , WEI Zhenhua , LIU Zhen , SHI Junpeng , and LI Xiang

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China;
2. Combat Support College, Rocket Force University of Engineering, Xi’an 710025, China

Abstract: A dimension decomposition (DIDE) method for multi-
ple incoherent source localization using uniform circular array
(UCA) is proposed. Due to the fact that the far-field signal can be
considered as the state where the range parameter of the near-
field signal is infinite, the algorithm for the near-field source
localization is also suitable for estimating the direction of arrival
(DOA) of far-field signals. By decomposing the first and second
exponent term of the steering vector, the three-dimensional (3-D)
parameter is transformed into two-dimensional (2-D) and one-
dimensional (1-D) parameter estimation. First, by partitioning the
received data, we exploit propagator to acquire the noise sub-
space. Next, the objective function is established and partial
derivative is applied to acquire the spatial spectrum of 2-D DOA.
At last, the estimated 2-D DOA is utilized to calculate the phase
of the decomposed vector, and the least squares (LS) is per-
formed to acquire the range parameters. In comparison to the
existing algorithms, the proposed DIDE algorithm requires nei-
ther the eigendecomposition of covariance matrix nor the search
process of range spatial spectrum, which can achieve satisfac-
tory localization and reduce computational complexity. Simula-
tions are implemented to illustrate the advantages of the pro-
posed DIDE method. Moreover, simulations demonstrate that
the proposed DIDE method can also classify the mixed far-field
and near-field signals.

Keywords: source localization, parameter estimation, uniform
circular array (UCA), propagator, partial derivative, least squares
(LS).
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1. Introduction

Source localization plays an important role in array sig-
nal processing [1—5], which has important applications in
massive multiple input multiple output (MIMO) radar and
jamming suppression [6—9]. The near-field sources in
space need to be described by direction of arrival (DOA)
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and range parameter. In contrast, the far-field sources
only need to be described by DOA [10,11]. By applying
the orthogonal property of the steering vector and the
noise subspace, one-dimensional (1-D) multiple signal
classification (MUSIC) method and estimating signal
parameter via rotational invariance technique (ESPRIT)
method are used to estimate the DOA of far-field sources.
Compared with the above methods for estimating inco-
herent sources [12], the sparse representation method is
proposed to achieve the super-resolution estimation of
coherent far-field sources [13].

However, the near-field sources locate at the Fresnel
region of array and can be considered as spherical wave-
front [14—18], and the traditional algorithms with the far-
field assumption can not be applied to the near-field
source localization [19—23]. Near-field source localiza-
tion plays an important role for indoor passive detection,
underwater acoustic detection, etc. [24—27]. In addition to
DOA, the range parameter also needs to be estimated
[28—34]. By implementing the structure of uniform li-
near array (ULA) with the cocentered orthogonal loop
and dipole antennas, the theory of rank reduction (RARE)
is applied to obtain the joint DOA, range, and polariza-
tion of the rectilinear near-field signals (NFSs) [35]. By
utilizing the RARE principle [36], DOA and range
parameter are separated to solve the nonlinear optimiza-
tion problem, which can avoid the two-dimensional (2-D)
search process. Moreover, a new efficient method in [37]
employs the non-Hermitian cumulant matrix to reduce the
computational complexity, which requires only one
matrix and one eigenvalue decomposition.

Recently, numerous researches focus on the configura-
tion of uniform circular array (UCA) to estimate the 2-D
DOA and range parameter of near-field sources. Com-
pared to the configuration of ULA that can only achieve
the estimation of 1-D DOA of near-field sources [38], the
structure of UCA is an attractive array structure that can
be applied to acquire the 2-D DOA (i.e., azimuth angle
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and elevation angle) [39]. Although the three-dimen-
sional (3-D) MUSIC algorithm in [40] can jointly esti-
mate the 2-D DOA and range parameters of near-field
sources, it requires expensive computational cost to
search the spectrum peaks. By transforming 3-D localiza-
tion into 2-D and 1-D parameter estimation, the two-stage
MUSIC (TSMUSIC) method in [41] and the second-
order statistics (SOS) method in [42] respectively apply
the 2-D MUSIC algorithm and the ESPRIT-like algo-
rithm to estimate the 2-D DOA. Yet, both of the above
methods employ the 1-D MUSIC algorithm to acquire
range parameters. Noticeably, the 1-D MUSIC algorithm
needs eigendecomposition and the search process for
range estimation, which increases the computational cost.
By developing the least squares (LS) to reduce computa-
tional complexity, the phase-based algorithms [43—45]
were proposed to jointly acquire the 2-D DOA and range
parameter of near-field sources. However, the estimation
accuracy is lower than the 3-D MUSIC algorithm. By
decomposing the steering vector of ULA, the reduced-
dimension MUSIC (RDMUSIC) method [46] is pro-
posed to avoid the search process of range spatial spec-
trum and reduce computational complexity. However, the
RDMUSIC method can only estimate the 1-D DOA via
ULA. Thus, it can not be directly applied to estimate 2-D
DOA via UCA.

In addition, due to the fact that the far-field signal
(FFS) can be considered as the state where the range
parameter of the NFS is infinite, the algorithm for the
near-field source localization is also suitable for estimat-
ing the DOA of FFS [47,48]. To be exact, based on
whether the calculated range parameter is in the Fresnel
area of array, the algorithms for near-field source loca-
lization can be applied to classify the mixed near-field
and far-field sources [49,50]. In [51], the improved
ESPRIT-like method and 1-D MUSIC method were
exploited to obtain the spatial spectrum of 2-D DOA and
range parameter, where the pure near-field component
was extracted from mixed sources by employing covari-
ance differencing method. Noticeably, the propagator was
utilized to acquire the noise subspace, which can reduce
computational complexity. Moreover, the method in [52]
calculated the phase difference of the centro-symmetric
sensors to separate the 2-D DOA and range parameter.
Since the 2-D DOA of mixed sources was performed by
applying the phase-based algorithm, the computational
complexity was reduced while the accuracy of estimation
was also reduced. However, both of the above methods
require the search process for the peaks in the range spa-
tial spectrum, which implies increased computational
complexity.

Therefore, the motivation of this work is to achieve
satisfactory localization while reducing computational

complexity. Since the FFS can be considered as the state
where the range parameter of the NFS is infinite, the
algorithm for the near-field source localization can also
be utilized to estimate the DOA of far-field sources. In
this paper, we propose a dimension decomposition (DIDE)
algorithm to achieve 3-D localization by employing the
configuration of UCA. By decomposing the first and se-
cond exponent term in the steering vector of UCA, we
transform 3-D localization into 2-D and 1-D parameter
estimation. Firstly, we partition the received data and
implement propagator to acquire noise subspace. Then,
by constructing the objective function to deal with the
optimization problem, we exploit partial derivative to
acquire the spatial spectrum of 2-D DOA. Finally, by
applying the phase of the decomposed vector, we per-
form the LS method to estimate the range parameter. The
advantage of the proposed DIDE method is that it
requires neither the eigendecomposition of covariance
matrix nor the search process of range spatial spectrum.
Simulation results verify that the proposed DIDE method
can achieve the paired 3-D parameter estimation and
reduce the computational cost. Moreover, the proposed
DIDE method can also achieve the classification of inco-
herent mixed sources.

2. Signal model

As depicted in Fig. 1, the UCA is impinged by an NFS,
which is composed of M omnidirectional sensors with
radius R . The near-field area is from 0.62+/8R?/1 to
8R*/A, where A stands for the source wavelength. We
assume that the number of signals K is known in advance.
The kth NFS is located at (¢;,6,7,) in polar coordinate,
where azimuth angle ¢, is measured from the x-axis, ele-
vation angle 6, is measured from the z-axis, and range
parameter r; is measured from the center of UCA.

j‘ The kth near-field source
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Fig.1 Structure of UCA with a near-field source

In practice, the received data of the mth sensor at the
nth snapshot can be written as
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X(n) = D s+, ()

k=1

m=1,2,---,M;n=1,2,--- ,N (1)

where N denotes the number of snapshot, s,(n) denotes
the kth signal at the nth snapshot, and w,,(n) denotes the
additive complex Gaussian white noise. 7, is deter-
mined by

2n
Tkom = 7 (rk - rk,m) (2)
where r,, denotes the distance from the kth NFS to the
mth sensor, which can be expressed as

rk,m = \’ rk2 +R2 _2rkR§k,m' (3)

In (3), . is calculated as cos(y,, — ¢;) sin6, and vy, is cal-
culated as 2x (m—1)/M. By employing the second-order
Taylor series in [43,44], i, at R/r; can be expanded as

R? R?
Fiem = rk_R§Am+2_(1_{/3m)+0(_2) (4)
¥y T, %
Therefore, the 2-D DOA is split out from the steering
vector, and the signal model for the m th sensor can be
rewritten as

K 2R R?
Xm (}’l) = Z Sk(n)exp |:.] (%ng - Tl_rk (1 - glfm)) +Wm(n) =
k=1
D s mexp i —Eim)] + waln)
pay )

where 7, is written as (2nR/A){,,, and &, is written as
(nR*/ Ary) (1 - (,i”1). Since the exponent term in (5) is per-
formed through the Taylor series expansion, there is an
error between the simplified signal model and the actual

[ e 0
0 e
1 il o - o
a(n,f)—z“"(n)b(f)—i im0
O e‘j’?z
0 e 0

Note that the MxM dimensional matrix ¥(n) in (10) is
associated with the 2-D DOA of NFS and does not con-
tain the range parameter.

received data.

Obviously, when the range parameters exceed the near-
field area, the near-field sources can be regarded as far-
field sources. Compared with the signal model for near-
field source in (5), the signal model for the FFS does not
include range parameter r, and the second exponent term.

Thus, the signal model for the far-field source is given by
K

X(m) = Y s (e +w, (). (6)

k=1
To be specific, the matrix of the received data X=[x (1),

x(2),+ X(N)] with x(m)=[x,(n)xy(n), - x(m)]" s given
by

X=AS+W @)
where $=[s(1),s(2), --,s(N )] with s(n)=[s,(n),s,(n), -,
sK(n)]T denotes the NFS in matrix form, W=[w(1),
w(2), - ,w(N)] with w(n)=[w,(n),w,(n), ...,wM(n)]T deno-
tes the complex Gaussian white noise in matrix form, ( ~)T
denotes the transpose operator, and A denotes the steer-
ing matrix of UCA. A can be expressed as

A = [a(¢l’91’rl)va(¢2192sr2)v'“ ’a(¢K79Ker)]' (8)

Since the UCA holds the centro-symmetric property,
we can acquire {,.pmpn = =y and ¥, = ¥m + 7. Hence,
we can get & omp2 =Em a0d Mearoem = —Nim. Thus, the
kth column in (8) is given by

T
a(py, O, 1) = [ gy s Qs A+l > Aem ] =

[ el =i S, e —&km2 el —i€kmpe1 R eimm=i&im ] —

[ ej’]k.x—jfk.l IR ej']k,M/z‘jfk.M/z N e—jfh,l —jfk.l TN e—jm.M/z _jkaM,/E :IT.
©
Evidently, the steering vector of UCA is given by

0 e 0 -« 0 | e
0 i . e i
0 S S |
ejﬂ,tf,’z 0 . O ei’]/w,’z e—j‘f/w/z
0 e im 0 0 e (10)
—i&
0 e—j’lz e’
0o .0 _
e*j’]M/z 0 0 e*j’]wz ] L Cﬂf’"’z ]
3. Proposed DIDE method

In this section, the DIDE method is presented to realize
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the localization of incoherent signals. Specifically, par-
tial derivative and the LS solution are respectively
exploited to acquire the 2-D DOA spatial spectrum and
range spatial spectrum. Considering that the partial
derivative method needs to utilize the noise subspace, we
adapt the propagator to acquire noise subspace, which can
reduce computational cost. Due to the fact that the pro-
posed DIDE algorithm does not need the search process
for range spatial spectrum, the computational complexity
can be significantly reduced.

3.1 Propagator for noise subspace

Considering that the steering vector and the noise sub-
space of NFS are orthogonal, we first adapt the propaga-
tor in [51,53,54] to obtain the noise subspace. The
received data of UCA in (7) is divided as

x=| X 11
‘[XQ] (n

where X, € C¥¥ denotes the first row to the Kth row of
the received data in matrix form, and X, € CM-KxN
denotes the (K+1)th row to the Mth row of the received
data in matrix form.

Define the propagator P satisfying

PiX, = X,. (12)

Thus, we can obtain

[PH _IM—K] [Xl] :0(M—K)><N (1 3)

X,
where I,,  denotes the (M—K)x(M—K) dimensional iden-
tity matrix and 0 4.y denotes the (M—K)xN dimen-
sional zero matrix. By employing the LS method, the
propagator P can be calculated as

P=(x,Xx}) XX\, (14)
Define the M*(M—K) dimensional matrix U as
U=[P"-1]" (15)
Thus, based on (15) and (13), we can obtain
. X, N AS
U'x=|P"-I,. =|P"-I,._ =
el 1ol
SH Al H
[P 1« ] o |S=U"AS =000 (16)
2

where X and X, denote the matrices in (11).

Since the matrix §€ C¥V can be partitioned into
several KxK dimensional matrices belonging to inverti-
ble matrices, we can further conclude that

UHA=0(M_K)><K. (17)

It can be noticed that matrix U and steering matrix A
hold the orthogonal property, and matrix U can be
regarded as the noise subspace for the NFS. Note that the
partition dimension of propagation operator in (11) is
based on the number of signal sources. If we do not know
the number of signal sources, we can utilize the detection
criterion of the minimum description length (MDL) or
Akaike information criterion (AIC) to acquire the num-
ber of signals in advance. Moreover, we can calculate the
covariance matrix and apply the eigenvalue decomposi-
tion (EVD) to acquire the number of signal sources,
where the number of signals corresponds to the number
of larger eigenvalues. However, calculating the eigenva-
lues requires additional computational cost.

3.2 Partial derivative for 2-D DOA estimation

In this subsection, we exploit the orthogonal property of
the noise subspace U and the steering vector of UCA to
acquire the spatial spectrum of NFS. Based on the 3-D
MUSIC method in [40], the 3-D spatial spectrum of NFS
is given by

F@.0.0= (0" OV aw.0) =
(025" @ ¥ U Eab €)' =

(0256 (£©)Qb (©)) (18)

Obviously, the matrix Q(n) is related to the 2-D DOA
and independent of the range parameter of NFS. Obvi-
ously, the matrix Q(#) is a Hermite matrix. Thus, the 3-D
spatial spectrum function in (18) can be considered as an
optimization problem with the objective function being
expressed as

-1

min 0.25b" (&) Q()b (¢)
st. p'b(&)=0 (19)

where p=[1,0, ---, 0, -1,0, ---, 0]" stands for an Mx1
The first and the
(M/2+1)th elements of p are respectively set as 1 and —1.
Define the cost function L(1,¢) as

dimensional constraint vector.

L(1,6) = 025b" (©) Qb (&) +ep"'b (&) (20)

where ¢ is a constant. According to the matrix differentia-
tion in [46]. The partial derivative of the cost function
L(n, &) in (20) versus decomposed vector b(¢E) is given by

0L(p.8) _ 8(0.256" Qb &)  8(ep"b (&)
0b (&) 0b (&) 0b (&)

According to the derivation rule of the cross product to

. @1
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the column vector, the second term in (21) can be expre-
ssed as

d(ep"b©)  0("b©) [ 0p 85" () )
= = b =

@ @ @ 9 e P
e(0Xb (&) +1Ip) = &p. (22)

Since it is difficult to directly determine the partial
derivative of the first term in (21), we analyze the dimen-
sions of the matrix to obtain the result. Exploiting the
inexact product rule, the first term in (21) can be
expressed as

0(0.256" (£) Qb (&) 0 (6" () Qmd (&)

=0.2 .2
3 © N 1T E
Hence, we divide (23) into
0d (&)
25— =0.251, 24
0.25 2@ 0.25 (24)
and
0 (6" (©)Qm) 06" (&) 00" (n) )
0.25 =0.25 b =
3 © TG TR
0250 +0xb (&) =0.250(n). (25)
By applying dimensional analysis, we can obtain
0 (6" (©)Q0d (£)) 0 (6" (©)Q()d (&)
0.25 =0.25 =
0b(©) 0b (&)
(6" Q) od" (&)
025 ———————d 0.25 b)) =
0b @) ©+ ab(g)Q (mb (&)
0.25Q()d (£) +0.251Q" ()b (¢). (26)

Therefore, after comparing the dimensions, we can
acquire
0 (0.25b" (£) Qb (£))
0b (&)

=0.25(Q(m) + 0" )b ©.
27

Due to the fact that Q(#) is a Hermite matrix, we can
utilize the property Q(17) = Q" () to further obtain

0(0.256" (£) Qb (&)
0b (&)
Finally, the partial derivative of cost function L(#, &)

in (20) versus decomposed vector b(¢) can be expressed
as

=0.50mb(&).  (28)

0L (n,&)
0b (&)

Unfortunately, since the rank of angle subspace
Q) € C"M is M/2, Q(n) does not belong to an inver-
tible matrix. By implementing the pseudo inverse of
0(n), the decomposed vector b(¢) can be expressed by

b(¢) =-2eQ'(n)p (30)

where (-)+ denotes the pseudo inverse operator.

=0.50(mb (&) + &p. 29

Since b (&) b (£) = M, we can obtain

4e’p" Q' (mQ" (mp = M. €2y
Hence, the constant € can be expressed as
M
g= VM (32)

2P Q@ e’
Then, by inserting (32) into (30), we have
VMQ'(p
VP Q' (mQ (mp

Evidently, by substituting (33) into (19), the spatial
spectrum for estimating the 2-D DOA of NFS signals can
be acquired by applying the following optimization prob-
lem:

b(&)=- (33)

L . Mp"Q"(mQmQ (mp

1A Tabs(0"Q QT p)
abs(p"Q' (NQ' (M)

e M Q QM@ (e

Therefore, the spectrum peaks in (34) corresponds to
the estimation of 2-D DOA (c?ﬁk,@k).

(34)

3.3 LS method for range estimation

Considering that searching for the peaks of range spatial
spectrum require high computational cost, we exploit the
LS method to estimate the range parameter of NFS.
Based on (33) and the estimated 2-D DOA (é,6,), the
decomposed vector b(&,) in (33) can be calculated as

VMO (ap
PO H)0" (p

and thus the phase of b (&) is

g =arg (b(&)) =

~ ~ ~ T
[1-&.1-81-8] =ma  (36)

(35)

nR?

/1rk

where g = [1 -2 1-28,,01 —Z,iM]T and p, = TR/ Ary.
Define the objective function for the phase of b(&,) as

min |26, - &ill; (37

where the vector 8, is determined by [o, ,uk]T and o,
denotes the error. Moreover, the direction matrix Z can be
expressed as
1 1 '
Z - 22 22 22
1 _gk,l 1 _gk.2 1 _fk,M

Therefore, the LS solution of the vector & can be cal-

(38)
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culated as
§.=(2'2) 2% (39)
Finally, based on the second element f; in 3k, the esti-

mation for the paired range parameter can be obtained as

s
Ay

T (40)

Fig. 2 displays the flow chart of the proposed DIDE
method. Note that if the estimation of range parameter
exceeds the near-field area of UCA, the kth signal should
be regarded as an FFS.

|Received data of UCA X | | Steering vector of UCA a(¢,0,,r,) |

Propagator De(iomposition
Noise subspace U Decomposed Decomposed
matrix ¥(n) vector b(&)

Constraint vector p

Partial derivative
| 2-D DOA (¢,0) | |Directi0n matrix Z |

LS
Range 7

Fig. 2 Flow chart of the proposed DIDE method

3.4 Analysis of computational cost

As for the computational complexity of proposed DIDE
method, the propagator in (13) requires O(K*N + KMN)
calculation, the matrix Q(5 ) in (18) requires O((M*+
2M)(M - K)) calculation, the 2-D DOA search process in
(26) needs O((360x90/A},,)(10M + M?)) calculation,
and that of the performing LS method for range estima-
tionin(31)is O (13M), where Apo, stands for the interval of
2-D DOA spatial spectrum. Noticeably, the proposed
DIDE algorithm can acquire the range parameter without
searching for the peaks of range spatial spectrum.

4. Computer simulation results

In this section, 16 sensors with radius R=1 m form the
configuration of UCA. We first verify the effectiveness of
the proposed DIDE method for near-field source localiza-
tion. Then, the computational cost and root mean square
error (RMSE) are compared with that of the TSMUSIC
method in [41], the SOS-based method in [42] and the
phase-based method in [45]. Moreover, based on whether
the calculated range parameter is in the near-field area of
UCA, we apply the proposed DIDE algorithm to classify
of the mixed NFSs and FFSs.

4.1 Effectiveness of location

In the simulation, two NFS are respectively located at
(30°,50°,10 m) and (60°,20°,5 m). The wavelength of sig-
nal is 0.3 m and the interval of 2-D DOA spatial spec-
trum is set as 0.1°. The 2-D DOA spatial spectrum
obtained by the proposed partial derivative method is
shown in Fig. 3, where the signal-to-noise radio (SNR) is
set as 20 dB and the number of snapshot is set as 2 000. It
can be noticed that the spectrum peaks correspond to the
2-D DOA of the mentioned NFS.

100

$#=60.0°  $=30.0°

6=20.1° [6=50.0°

Spatial spectrum/dB
N
S

5304050607080

0180
; 120 o
Azlmuﬂ] anglo/ 60 0 010 ZE\evat'\O“ angle/(")

Fig.3 2-D DOA spatial spectrum

Based on the estimated 2-D DOA, the range parameter
of NFS are computed by applying the LS method, Fig. 4
displays the result of 3-D localization, where the red dots
and + shaped marks denote the estimated locations and
real locations of the mentioned signals respectively. We
can conclude that the estimated 3-D parameters are auto-
matically paired and the proposed DIDE method can rea-
lize near-field source localization.

10 10

+ : Real location;
* : Estimated loaction.

Fig. 4 3-D location result of two NFS

4.2 Comparison of computational cost

In order to further illustrate and discuss the performance,
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the computational complexity of proposed DIDE algo-
rithm is compared with that of the TSMUSIC method in
[41], the SOS-based method in [42], and the phase-based
method in [45]. By transforming 3-D localization into
2-D and 1-D parameter estimation, the TSMUSIC
method and SOS-based method respectively utilize 2-D
MUSIC and ESPRIT-like to estimate 2-D DOA. Yet,
both TSMUSIC method and SOS-based method employ
1-D MUSIC to acquire the range parameters of near-field
sources. In contrast, the proposed DIDE algorithm can
acquire the range parameter without searching for the
peaks of range spatial spectrum. Table 1 displays the com-
putational complexity of the above-mentioned methods.

Table1 Computational complexity comparison

Algorithm Computational complexity
2
DIDE O(K*M + KMN + (M +2M)(M — K) + (360X 90/A3, )
(M? +10M) + 13M)
O(M(N=1)/2+M*N+2M> + (360 x90/A2, )(M+ 2M%)+
TSMUSIC DOA
K(BR* /A~ 0.628R*/D"*)/ Arange)(M +2M2))
2 3 2
SOS-based O(M*N + M° +2K M(360><90/ADOA)+

K((8R?/A—0.62(8R*/)'/%) | Arange (M +2M?))

Phase-based O(KNM +20KM)

With regard to the time cost, the elapsed CPU time of
aforementioned methods are compared in the simulation.
As a result, the time consuming of the proposed DIDE
algorithm, the TSMUSIC algorithm, the SOS-based algo-
rithm, and the phase-based algorithm are 0.65 s, 1.16 s,
0.81 s, and 0.22 s, respectively. Similarly, we can con-
clude that the proposed DIDE algorithm is more compu-
tationally efficient than the TSMUSIC method and the
SOS-based method.

4.3 RMSE comparison of near-field sources

In this subsection, RMSE is utilized to verify the perfor-
mance of the proposed DIDE algorithm, which is calcu-
lated as

K 14
RMSE (8) = JKVZ‘Z (Bev =B -
k=12 K: v=1,2,--.V (41)

where K denotes the number of signals, V' denotes the
number of Monte-Carlo simulations, Bk,v denotes the esti-
mation of 3-D location parameter (¢,0,7) of the kth sig-
nal in the vth Monte-Carlo simulation, and 3, denotes the
actual 3-D location parameters (¢, 6, r)of the kth signal.
The RMSEs versus SNRs from 0 dB to 20 dB are
given in Fig. 5(a)-Fig. 5(c), where the number of Monte-
Carlo simulations is set to 500 and the number of snap-

shot is set to 2 000. Thus, we can conclude that the 3-D
parameter estimation accuracy of the proposed DIDE
method is higher than that of the phase-based method and
can be close to that of the SOS-based method at higher
SNR.

10!

RMSE of azimuth angle/(°)

0 5 10 15 20
SNR/dB
(a) Azimuth angle

10!

RMSE of elevation angle/(°)

0 5 10 15 20
SNR/dB
(b) Elevation angle

10’

RMSE of range/m

0 5 10 15 20
SNR/dB
(c) Range
-©-: Proposed algorithm; - : SOS-based method,
-6~ : TSMUSIC method; -8 : Phase-based method.

Fig. 5 RMSEs versus SNRs
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With regards to the resolution probability, we compare
the estimation successful probability versus the SNR,
where the estimation successful probability at each SNR
is calculated by the ratio between the number of success-
ful simulations and the number of total simulations. Fig. 6
displays the estimation successful probability from —20 dB
to 10 dB, where the two NFS are located at (30°,50°,10 m)
and (33°,53°,13 m), the number of Monte-Carlo simula-
tions and snapshot are set as 500 and 2 000, respe-
ctively. It can be noticed that the estimation successful
probability improves as the value of SNR increases.
Moreover, the estimation successful ability of the pro-
posed DIDE method is better than that of SOS-based and
phased-based methods especially in the case of low SNR.
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Fig. 6 Estimation successful probability versus SNR

4.4 RMSE comparison of mixed sources

In this subsection, we execute an RMSE under the sce-
nario of mixed NFSs and FFSs. Based on whether the cal-
culated range parameter is in the near-field area of the
UCA, we achieve the classification of the mixed sources.
To be exact, if the calculated range value is in the near-
field region of the UCA, the signal is regarded as an NFS.
Conversely, if the calculated range value exceeds the near-
field region of the UCA, the signal is considered as an
FFS.

By utilizing the configuration of UCA to achieve
mixed sources localization, the RMSE of the proposed
DIDE algorithm is compared with that of ESPRIT-like
algorithm in [51] and phase difference algorithm in [52].
The algorithm in [51] exploits the configuration of UCA
and utilizes the covariance differencing method to decou-
ple pure NFSs. Then, the improved ESPRIT-like method
and 1-D MUSIC method are respectively applied to
obtain 2-D DOA spatial spectrum and range spatial spec-
trum. The algorithm in [52] utilizes the phase difference
of the centro-symmetric sensors to separate 2-D DOA
and range parameter. Then, the closed-form method and

1-D MUSIC method are respectively performed to
acquire 2-D DOA and range parameter. Finally, if there is
a peak in the range spatial spectrum, the signal can be
considered as an NFS and the spectrum peak is corre-
sponding to range parameter. By contrary, if the range
spatial spectrum is not convergent, the signal can be
regarded as an FFS.

The RMSEs versus SNRs from 0 dB to 20 dB are
given in Fig. 7(a)-Fig. 7(c), where the NFS and the FFS
are respectively located at (30°,50°,10 m) and (60°,20°,
o), the number of snapshot and Monte-Carlo simulations
are respectively set as 2 000 and 500. Noticeably, as the
SNR increases, the RMSE of the proposed DIDE algo-
rithm gradually decreases. Since the signal model of the
NFS is simplified, it is affected by the error of Taylor se-
ries expansion. However, the signal model for the NFS is
not simplified, the estimation accuracy of FFS is more ac-
curate than that of NFS. Moreover, in comparison to the ph-
ase difference algorithm, the proposed DIDE algorithm
can obtain higher estimation accuracy of mixed signals.
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Fig. 7 RMSE versus SNR

5. Conclusions

In this paper, we present a DIDE algorithm to realize the
localization of incoherent signals via the geometry of
UCA. We respectively exploit propagator, partial deriva-
tive and LS method to obtain noise subspace, 2-D DOA
spatial spectrum and range parameter. The proposed
DIDE method can determine range parameter without the
searching process of the spatial spectrum, which is more
computationally efficient than the TSMUSIC method and
SOS-based method. Moreover, the 3-D parameter estima-
tion accuracy of the proposed DIDE method is higher
than that of the phase-based method. Furthermore, we emp-
loy the proposed DIDE algorithm to classify the mixed
incoherent NFSs and FFSs. In comparison to the phase
difference algorithm, the proposed DIDE algorithm can
obtain higher estimation accuracy of mixed signals.
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