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Parameter estimation of LFM signals based on time reversal
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Abstract: In this paper, parameter estimation of linear fre-
quency modulation (LFM) signals containing additive white
Gaussian noise is studied. Because the center frequency estima-
tion of an LFM signal is affected by the error propagation effect,
resulting in a higher signal to noise ratio (SNR) threshold, a
parameter estimation method for LFM signals based on time
reversal is proposed. The proposed method avoids SNR loss in
the process of estimating the frequency, thus reducing the SNR
threshold. The simulation results show that the threshold is
reduced by 5 dB compared with the discrete polynomial trans-
form (DPT) method, and the root-mean-square error (RMSE) of
the proposed estimator is close to the Cramer-Rao lower bound
(CRLB).
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1. Introduction

Linear frequency modulation (LFM) signals are widely
used in the fields of radar, sonar, geological detection,
and assisted driving [1,2]. The associated parameter esti-
mation problem has been a hot spot in the field of signal
processing. For example, in radar imaging, the motion
parameters of the target must be estimated and then com-
pensated to prevent defocusing and improve image qua-
lity. With the development of digital signal processing
technology, how to estimate signal parameters quickly
and accurately at low signal to noise ratios (SNRs) is of
great significance [3,4]. The radar echo, which contains
the second-order motion parameters of the target, can be
modeled as an LFM signal. Doppler frequency estima-
tion of radar echo essentially estimates the parameters of
LFM signals corrupted by additive white Gaussian noise.
Regarding the parameter estimation of LFM signals,
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there are many methods. The maximum likelihood esti-
mator (MLE) is a traditional method to estimate the
parameters of LFM signals, but it is difficult to apply to
engineering practice because of its complex calcu-
lation [5,6]. Most of the commonly used LFM signal
parameter estimation methods are based on time-frequ-
ency characteristics, which transform one-dimensional
(1D) signals into two-dimensional (2D) time-frequency
planes and search in 1D or even 2D space, therefore they
require a large amount of calculation [7—13]. Abatzoglou
used 2D Newton iteration to calculate the MLE [14],
which reduces the amount of calculation, but it needs to
have an iterative initial value close to the true value. The
discrete chirp Fourier transform (DCFT) [15] and frac-
tional Fourier transform (FRFT) [16] use kernel func-
tions matching LFM signals and exhibit good perfor-
mance when used for parameter estimation of LFM sig-
nals. The performance of the parameter estimation
method based on FRFT has been improved, which has
certain engineering application value [17—19]. Computa-
tionally efficient algorithms for estimating the parame-
ters of a complex LFM signal in white Gaussian noise
were proposed in [20]. The discrete polynomial trans-
form (DPT) method proposed in [21] and [22] needs only
two Fourier transforms and two 1D searches to obtain the
estimates of the starting frequency and the frequency
modulation (FM) slope. The accuracy and scope of appli-
cation of the DPT method was expanded in [23]. The
phase method [24] requires a small amount of calculation,
and the accuracy is close to the Cramer-Rao lower bound
(CRLB) when it is higher than the SNR threshold. A
novel method for estimating the parameters of the LFM
signal was provided in [25] based on a modification to
the filter bank approach for maximum likelihood estima-
tion. This method was found to be especially effective in
the case of low-SNR conditions. Chen et al. proposed a
method to analyze multicomponent LFM signals, which
eliminated cross terms in the conventional Wigner-Ville
distribution (WVD) [26]. A parameter estimation algo-
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rithm of a multicomponent chirp signal based on an
improved cubic phase function was proposed in [27]. The
algorithm presented in [28] was found to have good noise
immunity, good universality, high precision of parameter
estimation, and better performance under low-SNR con-
ditions. Phase-domain estimation has also been presented
[29], and the SNR threshold was found to be lower than
that of conventional phase-domain methods. A parameter
estimation method based on morphology operations was
proposed to estimate the parameters of LFM signals to
resolve the contradiction between the estimation accu-
racy and the computation [30]. Song et al. proposed an
algorithm to determine the optimal delay time and delay
length in the autocorrelation sequence based on the
sequence convolution method, and the accuracy of LFM
signal estimation was still close to the CRLB at a lower
SNR [31]. A novel and efficient parameter estimate tech-
nique for LFM signals was given in [32]. A new chirp
rate estimation algorithm by multiple DPT and weighted
combination was proposed to reduce the complexity in
high-SNR scenarios [33]. The improved fast algorithm
given in [34] can accurately estimate the initial fre-
quency and the chirp rate of a wideband LFM signal. A
novel parameter estimation method based on a modified
convolution kernel function (MCKF) was proposed for a
multicomponent LFM signal in [35]. This method has
fewer external crossterms and a lower computational bur-
den because of nonsearching operations. The problem of
fast and accurate chirp signal parameter estimation in
fractional Fourier domains was addressed in [36]. A fast
and robust parameter estimation method for multicompo-
nent LFM signals was proposed in [37], which has low
computational complexity and favorable performance
under a low SNR due to the low-order nonlinearity of
generalized adjustable parameter correlation kernel
(GAPCK).

Among the above methods, the DPT method involves
quasi-maximum likelihood estimation, and its perfor-
mance is close to that of the CRLB. It has many advan-
tages, such as high accuracy and low calculation, and it is
the most widely used method. On this basis, researchers
have proposed many improved algorithms; however,
these methods share the common problems of DPT: the
estimation of chirp rate and carrier frequency are coupled,
the estimation error of chirp rate spreads to the carrier
frequency, and the delay conjugate multiplication in the
calculation process leads to a greater decrease in the
SNR. Therefore, a novel parameter estimation method for
LFM signals is proposed here, which can solve the prob-
lem of the high SNR required by previous methods. First,
we denoise the original signal and estimate its bandwidth.
We use operations such as constructing reference signals

and time reversal (TR) to obtain approximate estimates of
the central frequency f and the chirp rate k. After low-
pass filtering, the DPT method is used to obtain a fine
estimate of k. We reincorporate k into the original signal
to obtain a precise estimate of f. The simulation shows
that the required SNR of the method proposed in this
paper is lower than that of the DPT method, and the for-
mer has better accuracy, offering application value.

This paper is divided into five parts. After a brief intro-
duction into the content of the paper, the signal model
and the specific methods of this article are given. Then,
the simulation results are shown. Finally, the content of
this paper is summarized.

2. LFM signal model and problems of time-
delay estimators

The mathematical expression of a noise-contaminated
LFM signal is
r(n) = s(n)+wn) =

ty . 2
rect(f)e](annﬂtkn +6) + W(n),

n=-N,-N+1,--- N (1)

where f is the central frequency of the LFM signal, k is
the chirp rate, T is the period of the signal, 6 is the initial
phase and w(n) is additive Gaussian white noise with

. t
zero mean and variance o2, and rect(?) represents a

rectangular signal:

t L,
rect(—) =
T

0, otherwise

<1

2

The instantaneous frequency of the signal can then be
written as

3)

T T
= kt, —— <t< —.
f@) = f+kt, 5 S5

The sampling number is 2N + 1. Fig. 1 shows the rela-
tionship between f and k.

B‘ A B‘ A

(a) Up-chirp (£>0)
Fig. 1

(b) Down-chirp (k<0)
Typical LFM signal

Due to the error propagation effect of the DPT method,
the estimation error of k affects the estimation accuracy
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of the frequency f. In addition, chirp rate estimation
requires a higher SNR threshold, which indirectly raises
the SNR threshold of frequency estimation. It is found
that the odd and even modulation terms in the signal can
be separated by appropriate operation between the TR
signal and the original signal. According to this property,
we propose a parameter estimation method that can avoid
the effect of error propagation and reduce the SNR
threshold of LFM parameter estimation. Next, we briefly
introduce the error propagation effect of the DPT method.

We choose a fixed delay amount 7 (1 <7 <2N+1);
the estimation of the central frequency can be obtained by
finding the @ that maximizes DAF(r,w, ) as

& = argmax {[DAF(r,w, 7))} 4)

Referring to (8) in [38] for DAF(r,w, 7). Then, the esti-
mated value of the frequency modulation slope is given
by

N

~ D
k= —. 5
2nt )

Removing the FM term from the received signal, we
have

r(l)(n) — r(n)e—jn/?n?’ n=-N,-N+1,---,N (6)

and we maximize the new DAF(r,w,1), i.e., DFT(#", f)
with respect to f, i.e.,

P

f=arg mjglx“DFT(r(”, - 7)

As seen from the introduction of the DPT method, to
estimate the center frequency f of the LFM signal, it is
necessary to estimate the chirp rate k first. After the chirp
slope component in the received signal is removed by (6),
the estimate of the center frequency can be obtained from
the residual signal r"(n). The estimation error of the
chirp rate k is brought in (6), which is the error propaga-
tion effect of LFM signal parameter estimation. In addi-
tion, when the discrete ambiguity function is formed, the
delay correlation operation causes the length of the sig-
nal to change from 2N +1 to 2N +1—7, which leads to
an increase in the SNR threshold required for the center
frequency estimation.

3. TR LFM parameter estimator

The TR operation can divide the phase term of a com-
plex signal in the form of a higher-order polynomial into
two parts, i.e., odd terms and even terms [39]. Based on
this property, the chirp rate and the center frequency of
the LFM signal can be decoupled, and the problem of
error propagation can be solved. At the same time, the
problem of signal length shortening can be avoided,
which makes the SNR threshold of LFM parameter esti-

mation lower. Next, the TR algorithm is introduced, and
then the parameter estimation method based on TR for
LFM signals is given.

Performing a TR operation on the noise-free LFM sig-
nal s(n), we have

S(—n) - Aé(*annJrnkanrH). (8)

Conducting vector dot multiplication to s(n) with
s(—n) and s*(—n), we obtain C, and C,, respectively, as

C, =r(n)- s(-n) = A%+ )
and
C.=r(n)-s(—-n) = A%e*", (10)

The even-order and odd-order terms in the phase mo-
dulation of the LFM signal are contained in C, and C,
respectively, which indicates that the even-order and odd-
order terms of the phase modulation are decoupled.

Since the parameters of the received signal are
unknown, the noise-free signal s(n) in (8) should be
replaced by the received signal r(n). However, if r(n) is
used to generate the TR signal, i.e., C, and C,, there is a
large loss of SNR since r(n) contains noise. To solve the
SNR loss problem, it is necessary to construct a noise-
free reference signal, so the parameters of the LFM sig-
nal must be estimated coarsely. However, the classic
LFM signal parameter estimation methods, namely, DPT
estimators, inevitably suffer from SNR loss when per-
forming the discrete ambiguity operation, i.e., DAF(r, w, 7)
in [38]. Therefore, if we can approximately estimate the
chirp rate of the LFM signal, the squared term e™" of the
LFM signal can be removed by using this coarse esti-
mate so that most of the energy of the signal is focused
on one to several spectral lines. Therefore, the center fre-
quency can be estimated under the condition of a lower
SNR. Next, we discuss how to estimate the chirp rate
under low-SNR conditions.

According to the relationship between the chirp rate k
and the bandwidth B, i.e., k = B/T (where T is the pulse
width), as long as the bandwidth B is estimated, the esti-
mate of the chirp rate can be obtained. Because the
energy of the LFM signal is dispersed in its bandwidth B,
the spectral peak of the signal may be lower than the
noise when the SNR is low. However, even though the
spectral peaks are submerged in noise, all the spectral
peaks of the LFM signal are distributed continuously in
its bandwidth B and can be viewed as a block. A denois-
ing method based on the block threshold in [40] is pro-
posed and can be used for denoising the received signal
r(n). Block thresholding can be seen as an automatic
hypothesis test. Select a set of important variables
(wavelet coefficients) by ignoring unimportant variables
and adapt the data to a model that contains only impor-
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tant variables. After denoising, the noise term is adap-
tively smoothed, and the signal term is basically retained.
A comparison between the original signal spectrum and
the smoothed signal spectrum is shown in Fig. 2.
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Fig. 2 Signal spectrum comparison before and after smoothing

The estimate of the signal bandwidth can be easily
obtained from the smoothed signal spectrum. Assume
that the sampling frequency is f;, and the number of sam-
ples is N. Then, the frequency quantization interval cor-
responding to each sample is f,/N. Taking the maximum
spectral peak of the smoothed signal spectrum as a refe-
rence, the 3 dB bandwidth can be obtained by calculating
the number of spectral peaks around the largest peak that
are larger than 0.5 times the largest peak. Let the number
of peaks calculated be m; then, the bandwidth estimate is
obtained by

B=m-f,/N. (11)

Then, the estimate of the chirp rate is k=B/T.
It is now possible to construct a noise-free reference
signal

si(n) = ™" (12)
The TR signal is
s1(=n) = e = (13)
Multiplying s;(—n) with r(n), we have
Ce/ — r(n) . sx;(_n) :Aej(ann+nkn2+€) . e—jrzl}n2 :Aé(lnfn-ﬁ—e)én(k—fc)nz'
(14)
By estimating the frequency of C,’, a coarse estimate
of the center frequency can be approximately estimated
and denoted as f.
Next, we obtain the fine estimate of the chirp rate.
Although the coarse estimation of k can be obtained

through denoising, the block denoising operation leads to
distortion of the signal spectrum, resulting in loss of esti-

mation accuracy. For this reason, we need to consider
other methods of chirp rate estimation under low SNR
conditions.

Converting (1) to baseband using f,

¥ (n) = r(n)-e 7", (15)

Performing low-pass filtering on r'(n) yields r”(n).
The low-pass filter can be designed with reference to B.
The principle is that the bandwidth of the filter is slightly
larger than B to ensure that the signal energy is not fil-
tered out by the low-pass filter. The spectrogram before
and after low-pass filtering is shown in Fig. 3.
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(b) Spectrogram after low-pass filtering

Fig. 3 Signal spectrum comparison before and after low-pass fil-
tering

Note that 7’(n) has a higher SNR than r'(n) after low-
pass filtering. Assuming that the bandwidth of the low-
pass filter is Bip, the SNR improves by approximately

101g(f,/B.p) dB. _
We use the DPT method to estimate k for »’(n). The
noise-free reference signal is constructed again as

Sz(l’l) — é(21tf~n+nfcn2). (16)
Conducting TR on s,(n) yields
52(—71) — ei[*ZﬁantlAc(fn)z] — ej(721tf_n+1t7<n2). (17)
Multiplying s;(—n) with r(n) yields

C” =r(n)-s(-n) =
Aei(ann+nan+9) . ej(*annH[fcnz) ~ Aei(ZnAan?) (1 8)

where Af = f — f. Using the sinusoidal frequency estima-
tor to find the estimate Af [14], the final estimate of the
center frequency can be obtained by f = f+Af. The spe-
cific algorithm flow is shown in Fig. 4.



678 Journal of Systems Engineering and Electronics Vol. 34, No. 3, June 2023

Oriﬁinal siﬁlllal

v v
DPT method Construct a noise-free
e reference signal
A
"r"(n)

Low-pass
filter

o (n) sy (*n)v‘ 55 (—n)
Convert r (n) Vector dot
to baseband multiplication
A Ce! ‘ Ce"
f Construct a noise-free

reference signal

Final estimate of the

Fig. 4 Algorithm flow chart of the TR method

The purpose of the operation shown in Fig. 2 is to
obtain an estimate of the signal bandwidth. The denois-
ing process has little effect on the final fine estimation,
and the algorithm performance can be guaranteed as long
as the signal bandwidth estimation result can make the
baseband signal, i.e., (16), be within the bandwidth of the
low-pass filter.

4. Simulation

In this section, simulations are conducted to demonstrate
the effectiveness of the proposed method. In each simula-
tion, a Monte Carlo simulation (with 1000 iterations) is
carried out to compute the root-mean-square errors
(RMSEs).

In our simulations, the parameters are defined as fol-
lows: sampling frequency f, =100 MHz, center fre-
quency f =20 MHz, and chirp rate k =4x10". The va-
lues of N are 255 and 511, and the corresponding sample

numbers are 511 and 1023. The CRLBs of the LFM sig-
nal center frequency and chirp rate estimation [14] are
defined as

6
CRLB(f) x ——————— 19
) (2m)* - SNR - A2N3 (19)
and

90
RLB(k)~» ———————— 2
CRLB() 2 - SNR - A*N* (20)

AZ

where the SNR is defined as SNR = =t

The performance of the proposed method (for conve-
nience, abbreviated as TR) is compared with that of DPT
and the method proposed in [36] (for convenience, abbre-
viated as FrFT-GSS). The results of center frequency esti-
mation are shown in Fig. 5 and Fig. 6. The chirp rate esti-
mation results are shown in Fig. 7 and Fig. 8. Note that
since the simulation conditions in this paper are the same
as those in [36], the simulation results do not show the
performance curve of FrFT-GSS.
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Fig. 5 Comparing the frequency estimation of the DPT and TR
methods (N=511)
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methods (N = 255)



MA Xinjie et al.:

13.0
4

12.5

12.0

—_
—_
W

11.0
10.5
10.0
9.5 k-
9.0
8.5 . . . :
-10 -8 -6 —4 -2 0
SNR/dB
--&-:DPT; —e—: TR; -*-: CRLB.

Fig.7 Comparing the chirp rate of the DPT and TR methods
(N=511)

RMSE/(kHz/s)

RMSE/(kHz/s)

Fig. 8 Comparing the chirp rate of the DPT and TR methods
(N=255)

The simulation results show that when the number of
samples is 511 (i.e., N = 255), the SNR thresholds of the
TR estimator for frequency and chirp rate estimation are
—6 dB and —5 dB, respectively. The SNR thresholds of
the DPT method are —2 dB and —1 dB, respectively. From
[36], when the number of samples is 512, the SNR
threshold of the FrFT-GSS estimator for chirp rate esti-
mation is approximately —3 dB. When the number of
samples is 1023 (i.e., N = 511), the SNR thresholds of
the TR estimator for frequency and the chirp rate estima-
tion are —8 dB and —7 dB, respectively. The SNR thresh-
olds of the DPT method are both —3 dB. From [36], when
the number of samples is 1023, the SNR threshold of the
FrFT-GSS estimator for chirp rate estimation is approxi-
mately —6 dB.

The simulation results show that the TR method is bet-
ter than DPT and FrFT-GSS. In addition, the computa-
tional complexity of the TR estimator is only slightly
larger than that of the DPT estimator but smaller than that
of the FrFT-GSS estimator. Table 1 shows a comparison
of the computational complexity of TR and FrFT-GSS.

Parameter estimation of LFM signals based on time reversal 679

Table1 Comparison of computational costs of different algorithms

Algorithm Computational cost
FrFT-GSS OKN1g’ N)
Proposed algorithm O(NIgN)

The algorithm is verified by the measured data, which
was collected by Altium designer (AD) board based on TI
company. The emitter may be a radar emitter with a cen-
ter frequency of about 3220 MHz. The collected radar
pulse signal is shown in Fig. 9.
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Fig. 9 Radar pulse train signal

The waveform of one of these pulses is shown in
Fig. 10. I and Q are the real and imaginary parts of the
signal, respectively. It shows that the signal is a typical
LFM signal with a high SNR of about 23 dB. Add Gaus-
sian white noise of different magnitudes to the signal, and
we use the DPT and TR methods to estimate the parame-
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Fig. 10 Time domain waveform of a pulse
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The performance of center frequency estimation is
shown in Fig. 11. It shows that the simulation results of
measured data are similar to the simulation data, and the
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SNR threshold of the TR method is about 4 dB lower
than that of the DPT method.

RMSE/kHz

SNR/dB
--A&-: DPT; —e—: TR; -%-: CRLB.

Fig. 11 Comparing the frequency estimation of the DPT and TR
methods (N=1842)

5. Conclusions

The LFM parameter estimation algorithm based on TR
proposed in this paper can estimate the center frequency
and the chirp rate of the LFM signal under the condition
of a lower SNR. The proposed method decouples the cen-
ter frequency and the chirp rate of the LFM signal by a
TR operation and avoids the effect of error propagation in
LFM parameter estimation. The SNR threshold of the
proposed method is decreased by a few decibels, while
the accuracy is also improved. When the SNR is higher
than the SNR threshold, the estimation accuracy reaches
the Cramer-Rao bound. Simulation and measured data
processing results show the effectiveness of the proposed
method.
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