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Abstract: The development of image classification is one of the
most important research topics in remote sensing. The predic-
tion accuracy depends not only on the appropriate choice of the
machine learning method but also on the quality of the training
datasets. However, real-world data is not perfect and often suf-
fers from noise. This paper gives an overview of noise filtering
methods. Firstly, the types of noise and the consequences of
class noise on machine learning are presented. Secondly, class
noise handling methods at both the data level and the algorithm
level are introduced. Then ensemble-based class noise handling
methods including class noise removal, correction, and noise
robust ensemble learners are presented. Finally, a summary of
existing data-cleaning techniques is given.
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1. Introduction

With the fast development of remote sensing techniques,
abundant information can be contained. Such informa-
tion has proved to be useful in applications like land
cover mapping, military field, precision agriculture, and
environmental modeling and monitoring [1,2]. Classifica-
tion is a key issue in all the above applications and has
received significant attention [3]. According to the differ-
ence in the number of requirements for labeling informa-
tion, classifying methodologies can be divided into three
types: unsupervised, supervised, and semi-supervised
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classifications [3]. Among these methods, supervised and
semi-supervised methods need labeled samples to build
specific learning models. Supervised learning obtains bet-
ter results and a wider application field than other me-
thods [4]. However, its performance depends strongly on
the quantity and quality of the labeled samples [1,2,4].
Semi-supervised methods extract information from both
the labeled and the unlabeled instances [3,4]. It not only
is susceptible to noise in the original sample but also has
a high risk of generating more artificial noise [3].

Real-world data is not perfect and often suffers from
noise [5,6]. Labeling training instances is a costly and
rather subjective task that usually induces some labeling
errors in the training set [7—9]. Moreover, non-expert
annotators might mislabel images due to a lack of knowl-
edge. The presence of noisy data always produces se-
veral negative consequences for classification technolo-
gies [10—12]. Learning from noisy data can create overfit-
ting by altering the relationship between the informative
features and the measure outputs [13]. Moreover, effec-
tive noise handling is one of the most difficult problems
in machine learning [7]. Therefore, how to reduce noise
consequences and form an efficient training set is a major
issue in both supervised and semi-supervised classifica-
tion [14].

2. Types and consequences of class noise

The quality of the training data is influenced by several
factors, but the class labels and attribute values are two
major components directly affecting the performance of a
classification algorithm [5]. These two clements are the
focal spot and determining factors of designing a noise-
handling method [10]. Therefore, before exploring spe-
cific research, it is significant to understand three factors:
(i) the meaning of class noise and attribute noise; (ii) why
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handling class noise is more crucial than addressing
attribute noise; and (iii) the potential negative outcomes
of class noise [5,7,15].

2.1 Types of class noise

Class noise, which is also known as label noise or misla-
beled data, arises when an example is inaccurately
labeled due to various reasons, such as subjectivity dur-
ing the labeling process, data entry errors, or inadequacy
of the information used to distinguish each example.
There are three types of class noise [11,16]: contradic-
tory examples, misclassification examples, and outliers.
The contradictory samples refer to the same examples
that appear more than once and are labeled with different
class labels [17]. Misclassification examples, on the other
hand, are examples labeled with class labels that do not
match their actual labels [18].

In addition, mislabeled instances may be outliers if
their labels have a low probability of occurrence in their
vicinity [19]. In some cases, instances can appear unusu-
ally to the class that corresponds to their incorrect label.
As a result, many techniques used to address class noise
have similarities to outlier and anomaly detection tech-
niques. Several methods, which have been developed to
handle outliers and anomalies, can also be utilized for
class noise.

Nonetheless, it is crucial to note that mislabeled
instances do not necessarily qualify as outliers or anoma-
lies [20]. For instance, if labeling errors occur in a boun-
dary region where all classes are equally likely, the misla-
beled instances neither appear unusually nor are rare
events. Similarly, an outlier is not always a mislabeled
example since it can result from attribute noise or simply
be a low-probability occurrence [20].

2.2 Class noise versus attribute noise

Attribute noise occurs in the attribute values of the train-
ing set. It contains unknown attribute values, erroneous
attribute values, attribute value missing, and incomplete
attribute values [11]. In addition, class noise is more
harmful than attribute noise when a classification model
is built [21]. For example, Saez et al. reckoned that
although detecting and handling noise from attribute
information is the best solution for improving classifica-
tion accuracy in some cases, and class noise leads to more
formation of contradictory learning instances [21]. More-
over, Quinlan showed that cleaning the mislabeled train-
ing instances could result in a classifier with higher learn-
ing accuracy, but handling attribute noise of higher le-
vels can decrease the predictive accuracy of the resulting

classifier [22]. To put it another way, experimental study
in [23] found that prioritizing the management of class
noise over attribute noise can lead to more significant
improvements in the performance of classification mo-
dels. This suggests that removing attribute noise is not
always necessary for building an effective model [23].
Moreover, the greater impact of class noise on the model’s
performance can be attributed to the facts that there are
numerous features, but only one class label and that the
significance of each feature for learning varies, while
labels always have a significant impact [20].

2.3 Consequences of class noise

In real-world datasets, class noise is pervasive and can
have adverse effects on classification models [9].

(i) The existence of class noise has been shown to
result in reduced classification performance, as evi-
denced by theoretical proofs for basic models like K-
nearest-neighbors (KNN) [24] and linear or quadratic
classifiers [20].

(i1) Supervised classifiers, such as ensemble classifiers,
may fail to function correctly with class noise. High le-
vels of class noise can make it more difficult to learn
through multiple models, as some samples become more
challenging for all models, leading to poor classification
by an individual model [20,25].

(iii) The presence of class noise can have various
impacts on the learning process, such as increasing the
required number of training instances, making the learned
models more complex, increasing the number of nodes in
decision trees, increasing the number of support vectors
in support vector machines (SVMs) [20], and increasing
the size of an ensemble (i.e., the number of base classi-
fiers).

(iv) Class noise can make it more difficult to identify
important features, affect the estimated error rate in multi-
class problems, and lead to overfitting [5,13,26].

Hence, this work focuses on the review of the class
noise addressing methods in the following sections.

3. Class noise handling methods

High quality labeled data set is an important factor in
building a high quality learning system. Mining from
noisy labeled data has been an important subfield of clas-
sification research. Several literature present an explana-
tion of how the constraining of the class noise uses both
data pre-processing-based and model optimizing-based
approaches: preprocessing training set by removing noisy
samples, correcting the labels of misclassified instances,
as well as designing noise robust learning techniques
[15,16]. The first two class noise handling methods can
be briefly described by Fig. 1.
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Fig. 1 General procedure for learning under class noise with training data cleansing [27]

3.1 Dealing with class noise at data level

3.1.1 Class noise identification and removal

Problems corrupted by class noise are very complex. It is
difficult to achieve accurate solutions without designing
specialized techniques, particularly for noise-sensitive
learning methods [11]. Noise filters are commonly
applied to improve classification performance. Those
methods that rely on preprocessing techniques identify
and remove noisy instances from the training set [8,28].
Moreover, the efficiency of a noise filter can be affected
by several factors, including the attributes of the training
data, the degree of class noise, the noise tolerance of the
supervised classifier, and the generalization ability of the
learning algorithms [28].

A simple and comment data cleansing method is to
remove the mislabeled instances. Many such methods
exist in the class noise-related literature. For example,
classification filtering uses the predictions of some high
noise robustness classifiers to identify the potentially mis-
labeled samples [20]. Thongkam et al. built an SVM
model with all the training samples, then removed all
misclassified instances from the training set [29]. The fil-
tering approach not only induces relatively low computa-
tional costs but also is easy to implement [30]. However,
a major drawback of this approach is that some valuable
instances might be dropped from the data set [31]. And
the operation is particularly harmful to small sample
learning and class imbalance learning. Although the noise
filtering approach cannot completely clean up the misla-
beled instances caused by a human operator or measure-
ment errors when the noise levels are greater than 30%
[32], keeping those samples may hinder perfor-
mance more than removing too many correctly labeled
samples [8].

Hughes et al. extended the above method by deleting
the labels of misclassified instances that were deemed
unreliable by experts and then used semi-supervised
learning with both labeled and unlabeled data [33]. This
approach preserves the distribution of the data, thereby
avoiding a potential bias in the results [20]. Nonetheless,
this approach encounters a conundrum known as the
chicken-and-egg problem, whereby learning in a noisy
setting can result in suboptimal classifiers, despite the
need for accurate classifiers for effective classification

filtering.

Noisy data removal can also be said to be selecting
potentially correct data. According to Wang et al., the
identification and removal of noisy data can aid in the
training of neural networks and subsequently improve
their ability to detect clean instances [34]. Therefore,
based on this idea, Wang et al. proposed a framework
combining a network training algorithm with a scalable
regularized regression (SRR) approach. The training
algorithm involves both supervised and semi-supervised
training and randomly selects one training scheme for
each mini-batch with a predefined probability. Following
the completion of training, the signal to noise ratio (SNR)
approach receives features and labels of data and a noisy
set and then employs theoretical guarantees to identify
noisy data. To accomplish this, Wang et al. proposed an
equivalent leave-one-out test approach as a penalized lin-
ear model, in which non-zero mean-shift parameters can
serve as an indicator for noisy data [34].

The blame-based noise reduction (BBNR) algorithm
is an easy-to-understand technique for
noisy instances from a dataset. This algorithm elimi-
nates all samples that are responsible for the mis-
classification of their nearest neighbors, as well as
those that can be safely removed without causing any
other instance to be misclassified. Notably, BBNR
does not require a highly accurate classifier for noise fil-

removing

tering, but it may incur increased computational complex-
ity [35].

3.1.2 Class noise identification and correction

All the above algorithms primarily aim to enhance the
data quality by identifying and eliminating class noise.
Teng demonstrated that using a classifier constructed
from corrected data can lead to greater predictive
power than using filtered data [31]. Teng [31] introduced
an alternative approach called polishing, whereby
instead of removing the noisy instances, they are
repaired by replacing their erroneous class label values
with predicted class labels. And the corrected instances
are then reinserted into the dataset. The depuration algo-
rithm presented in [32] employs an iterative approach to
adjust the class labels of instances whose assigned label
conflicts with the majority of their neighboring instances’
labels.
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Cluster analysis is a viable option for identifying mis-
labeled instances by leveraging neighborhood consis-
tency, as demonstrated by the depuration algorithm [32].
An instance with a label that is inconsistent and does not
align with the labels of its adjacent clusters is potentially
mislabeled [20]. In [36], this neighborhood consistency
criterion is utilized to create a clustering-based algorithm
that rectifies the labels of mislabeled instances. For
instance, the density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm employs two
parameters, i.e., radius of the cluster (eps) and the mini-
mum number of points in the cluster, to partition all
points into three categories: core points, border points,
and noise points. Specifically, all points take themselves
as the point of circles of the radius eps and the number of
other points they enclose is counted; on the ground of
such a number, every point can be categorized [37]. This
method can effectively distinguish isolated samples and
thus label them as noise points [38].

Nevertheless, noise correction is only practical for
small datasets since it tends to be time-consuming [11].
Despite some studies indicating that complete or partial
noise correction in the training data, while leaving the test
data still under noise, can boost test performance results
over no preprocessing at all [11,31], this method can
introduce additional noise (due to correction failure) into
the training data if too many genuinely clean examples
are mislabeled [39].

3.2 Dealing with class noise at classifier level

3.2.1 Robustness of learning algorithms

Robustness refers to an algorithm’s capacity to generate
models that are resilient to data corruption and less sus-
ceptible to the effects of noise. A more robust classifica-
tion algorithm builds classifiers that are less influenced
by noise, resulting in more comparable models built from
both clean and noisy data [11]. In the presence of noisy
data, robustness takes precedence over performance
results since it provides insight into the anticipated
behavior of a learning method against noise, especially
when the attributes of the noise are uncertain. [11]. By
considering the robustness in algorithm designs, it may be
more feasible to find real patterns in different contexts in
reality [40]. Therefore, it is reasonable to discuss robust-
ness against noise.

3.2.2 Robust algorithms against noise

Class noise can have a significant impact on decision
trees, leading to instability in their construction. How-

ever, they are still suitable for ensemble methods. To
improve the robustness of decision trees, an app-
ropriate splitting criterion should be carefully selected. In
the presence of class noise, various node split criteria
were compared in [41]. The imprecise information-
gain, based on imprecise probabilities and uncertainty
measures, was found to improve accuracy compared
to the Gini index, the information gain ratio, and the
information gain. Post-pruning is another approach
commonly used to deal with noise in decision trees [41].
This technique involves reducing the size of decision
trees by removing sections of the tree that provide
little power to classify instances, which reduces the com-
plexity of the final classifier and improves predictive
accuracy by reducing overfitting caused by the over-
specialization over the isolated (and usually noisy) exam-
ples [11]. Nonetheless, according to Gamberger et al.,
this method is less efficient than noise elimination and
correction [7]. It is worth noting that even a robust learner
may have poor performance if the noise level is rela-
tively high [11].

Li et al. introduced a new method for robust represen-
tation learning and noise handling called selective-super-
vised contrastive learning (Sel-CL) [42]. Sel-CL is an
extension of supervised contrastive learning (Sup-CL),
which is a powerful technique for representation learning
but can be negatively impacted by noisy labels. Sel-CL
addresses the main issue with Sup-CL, in which the cre-
ation of noisy pairs mislead representation learning due to
the pair-wise nature of the method [42]. To alleviate this
problem, confident pairs are selected out of noisy ones
for Sup-CL without knowing noise rates. It is achieved by
first identifying confident examples via measuring the
agreement between the learned representations and given
labels. Then, confident pairs are built using the confident
examples, and more confident pairs are identified from
the representation similarity distribution in the built con-
fident pairs. These obtained confident pairs are then used
for Sup-CL to improve representations. The method’s
robustness was evaluated on multiple noisy datasets, and
the experiments showed that it outperformed state-of-the-
art methods [42].

The KNN classifiers [43] are highly sensitive to class
noise, especially when the neighborhood’s size is small
[44]. In the presence of noise, it is often necessary to pre-
process the data to obtain good performance. Saez et al.
suggested data complexity measures to predict in advance
when a noise filter would statistically improve the predic-
tion results of INN [28].
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4. Ensemble-based class noise handling
methods

4.1 Ensemble methods for class noise filtering

4.1.1 Ensemble-based class noise removal

The removal of mislabeled instances is an important pre-
processing step in classification, but traditional methods
face the challenge of potentially removing valuable data
along with the mislabeled ones. To overcome this limita-
tion, ensemble approaches are widely used, where multi-
ple base classifiers are trained on the same dataset, and
their votes are
[8,13,18,45-48].

attempt to improve the quality of the training data by
detecting and removing mislabeled instances based on the

combined to make predictions
Ensemble-based filtering methods

votes of the base classifiers [45]. The majority vote filter
and the consensus filter are two typical approaches for
ensemble-based filtering [8]. The majority vote filter
eliminates instances incorrectly classified by over half of
the base classifiers. In addition, the consensus filter is too
strict as it requires that all base classifiers fail to classify
an instance, and may eliminate only a small portion of the
mislabeled instances [8,45]. However, a majority vote fil-
ter does not only remove mislabeled instances but also all
the clean training instances that the ensemble classifier
wrongly classified. The filter cannot differentiate these
false positives from mislabeled instances (true positives),
which is a significant drawback. This is because clean
training instances that were incorrectly identified as noise
contain crucial information, such as boundary instances
that are vital for classifier design [45]. Hence, neither of
these approaches is completely effective for mislabeled
instance filtering [45].

Verbaeten et al. investigated the issue of mislabeled
training examples in classification by applying ensemble
methods (bagging and boosting) to preprocess the train-
ing set [13]. Their study utilized C4.5 as a base classifier
[49]. Two distinct approaches they introduced are

(i) Filtering based on voting (consensus vote and
majority vote) of base classifiers of a bagging ensemble.

(i1) Filtering based on removing training examples that
obtained high weights in the boosting process. Indeed,
mislabeled examples are assumed to have high weights.

Results indicated that majority vote filters were more
effective than consensus filters, and bagging-majority
vote filters outperformed boosting filters, which tended to
incorrectly remove many accurately labeled instances
with high weights.

Zhu et al. put forward a technique to detect and elimi-

nate mislabeled instances in extensive or distributed
datasets by dividing them into subsets [18]. Their
approach involves partitioning a large dataset E into sub-
sets and learning a set of classification rules R; for each
subset of E. A special rule set GR; is then selected from
R; and used to evaluate all instances in the original
dataset. The approach involves utilizing two error count
variables, namely, the local error count and the global
error count. To identify noise, these variables keep track
of how each instance in E performs with the good rule
sets generated from all the subsets. Typically, exceptions
do not trigger GR; and noise is more likely to invalidate
GR;, resulting in a greater likelihood of noisy instances
receiving significant error values as opposed to clean
examples [18]. Noise is identified using two schemes:
majority and non-objection, and then removed along with
a portion of good examples after each round. The proce-
dure can be repeated if the filtering result is unsatisfac-
tory. This method was proved to be effective for exten-
sive datasets.

Miranda et al. combined four classifiers trained using
distinct machine learning techniques to form a heteroge-
neous ensemble and used voting to identify mislabeled
instances [50]. The detected noise was subsequently eli-
minated, resulting in increased accuracy. However, this
method removes instances that fall on the incorrect side
of the classification boundary, which can be problematic
[20,51]. Additionally, multiple parameters must be taken
into account while selecting various techniques as base
classifiers for a given dataset.

Feng et al. proposed a cleaning technique called the
ensemble method based on the noise detection metric
(ENDM) to clean corrupted training sets [10]. First, an
ensemble classifier is trained and used to derive four met-
rics assessing the likelihood of a sample being misla-
beled. Three thresholds are set for each metric to maxi-
mize the classifying performance on a corrupted valida-
tion dataset when using three different ensemble classi-
fiers, namely Bagging, AdaBoost, and KNN. These
thresholds are used to identify and then either remove or
correct the corrupted samples [10].

Edge analysis is another method to detect mislabeled
instances [52]. The edge of an instance is defined as the
sum of the weights of weak classifiers that misclassify the
instance in a boosting ensemble [53], in contrast to the
ensemble margin proposed by Schapire et al. [54].
Instances with high edge values are often misclassified by
classifiers, indicating This
approach involves classifying harder observations cor-
rectly in later rounds by initially classifying correctly

weak low confidence.
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labeled observations incorrectly. It removes instances
with top edge values, typically 5%, as mislabeled
instances tend to have high edge values due to persistent
misclassification [20].

In outlier removal boosting (ORBoost) [55], data
cleansing is integrated with the learning process instead
of being conducted after learning. During the boosting
process, instance weights above a certain threshold are set
to zero. This method is more robust than Adaboost
because it pays less attention to class noise. However, its
performance is good only when the noise level is low,
and the threshold selection is sensitive and requires vali-
dation set tuning [20]. The problem of selecting an appro-
priate ensemble-based class noise filter remains a major
issue in ensemble learning. Sluban et al. conducted a
study to examine how ensemble diversity affects the per-
formance of class noise detection. They hypothesized that
ensemble diversity helps identify noise detection ensem-
bles that perform well [56]. The study analyzed the
majority and consensus ensemble voting schemes and
found that increasing diversity in ensembles using major-
ity voting did not improve the noise detection perfor-
mance and may even degrade it. Conversely, for hetero-
geneous ensembles utilizing consensus voting for noise
detection, higher diversity resulted in higher precision in
class noise detection.

4.1.2 Ensemble-based class noise correction

As discussed in Subsection 3.1, the process of noise
removal can lead to the elimination of valuable informa-
tion, and, in certain situations, noise correction has
proven to produce more favorable outcomes than simply
discarding the noise from the dataset [31]. Rebbapragada
et al. proposed the utilization of active learning as a
means to address class noise issues [39]. To identify mis-
labeled data, they proposed two scores: active label cor-
rection (ALC)-mislabeled and ALC-disagreement. The
ALC-mislabeled score assesses the likelihood of an
example x being mislabeled by calculating the difference
in probabilities between the existing and predicted labels.
The higher the score, the greater the probability of misla-
beling x. The instances are arranged in descending order
based on their scores, and the & highest scoring examples
are submitted for expert evaluation. On the other hand,
ALC-disagreement chooses examples for relabeling those
not explicitly mislabeled ones. Instead, it selects exam-
ples that demonstrate a considerable level of ambiguity in
their predicted labels and can, therefore, be viewed as
“hard-to-classify” examples. This confusion is expressed
by the probability distribution over the class labels: the

closer it is to a uniform distribution, the more uncertain
the classification [39]. Finally, the predicted class labels
that receive the most votes are used to update the misla-
beled examples. Two automated cleaning techniques,
namely single-pass discarding and correcting, are used
for comparison with ALC-disagreement. Single-pass dis-
carding removes instances from the dataset if their proba-
bility or committee votes on the current label are lower
than the probabilities or votes on the predicted label. In
contrast, single-pass correcting is a simple technique that
corrects misclassified examples by updating them to their
predicted labels. The findings revealed that active learn-
ing performs better than these two automated data clean-
ing methods above. Nonetheless, similar to any active
learning strategy, human expertise is necessary, which is
a significant drawback compared to automated class noise
handling.

Miranda et al. expanded their noise detection approach
described in Subsection 4.1 to correct mislabeled data
[50]. Instances identified as noise are reclassified based
on the classes that are predicted most by the noise detec-
tion classifiers. As a comparison, the authors also pro-
posed a hybrid technique where KNN is used to decide
whether to remove or correct data identified as class
noise. The results demonstrated that the classifiers con-
structed using both class noise handling methods can
achieve higher accuracy than those using the original
training set. Furthermore, it was found that the classifica-
tion accuracy obtained through noise correction and
hybrid methods was comparable for the majority of the
datasets, despite their expectation that the hybrid
approach would perform better. Additionally, Shao et al.
grouped data by KNN for each class and divided them
into subsets, which were fed into ensemble branches [57].
Subsequently, these classification models of the ensem-
ble branches can yield graphs that represent local data
manifolds, and correction suggestions for a final correct
label result were obtained using the information of the
original sample-label pairs and sample-correction pairs.
To make the correction more convincing, it also attempts
to measure the confidence of the result which can opti-
mize the training process for the next epoch. However,
both methods were found to be less effective than their
noise removal technique described in Subsection 4.1.
Moreover, as discussed in Subsection 4.1, their noise
detection algorithm tends to identify many important cor-
rectly classified samples as noise. Thus, an imprecise
noise identification method can lead to less effective
noise removal and correction, regardless of how reason-
able the noise identification strategy is. Table 1 is a brief
summary of methods mentioned above.



42 Journal of Systems Engineering and Electronics Vol. 34, No. 1, February 2023

Table 1 Class handling method: removal and correction

Description Noise removal Noise correction
Basic . L . . Detecting and correcting the labels of the noisy instances with
Detecting and eliminating noisy data through noise filters & e . Y
procedure predicted labels

SVM for outlier detection [29]

Polishing: identify noisy data and replace its label by
predicted labels [31]

Non-ensemble ”
noise removal [33]

Semi-supervised learning of probabilistic models for

Clustering: detect and group noisy data based on a neighborhood

method . .
Scalable penalized regression for noise detection [34] consistency constraint [32,36]
The blame-based noise reduction algorithm [35] Density-based spatial clustering of applications with noise [37]
Bagging-majority vote filters [13] Active learning: active label correction (ALC-mislabeled and
Identifying and eliminating data through subsets and error counts [18] ALC-disagreement) to identify mislabeled data [39]
E bl Heterogeneous ensemble with four different base classifiers [50] . . ) )

nsemple - - - Single-pass discarding and correcting [39]
method Ensemble method based on the noise detection metric [10]

Edge analysis: a boosting ensemble to detect noisy data based on the

sum of the weights of weak classifiers [53]

Classification: relabel the noisy data by the class

Outlier removal boosting [55]

that is most predicted [50]

4.1.3 Exploiting the ensemble margin for class
noise filtering

The use of ensemble margins has been proposed as a
means of designing noise filters. In [45], noisy instances
are identified as those that are either mislabeled in the
training data, or are intrinsically ambiguous and challeng-
ing to categorize because their label value conflicts with
the majority of the other instance label values, despite
having similar attribute values. Guo [45] proposed an
algorithm that uses the unsupervised ensemble margin to
detect class noise, which refers to instances that are mis-
classified by most of the base classifiers in the ensemble.

In other words, class noise is identified as instances
that are classified with high margins as belonging to the
wrong class. Guo’s algorithm sorts all misclassified train-
ing instances in descending order based on their unsuper-
vised margin values, and removes a portion of the high-
est margin examples that are classified incorrectly. The
algorithm then employs two noise removal strategies,
namely adaptive filtering and fixed filtering, to estimate
or confirm the amount of noise. The results indicated that
the ensemble margin can effectively identify class noise,
and the adaptive filtering strategy is advantageous in
cases where the amount of noise is uncertain while in
other cases, they are comparable.

In [58], a reverse boosting algorithm is introduced.
This method distinguishes between safe, noisy, and bor-
derline patterns, and assigns them different weights dur-
ing boosting. The weights of safe patterns are increased,
those of noisy patterns are decreased, and those of bor-
derline patterns remain unchanged. The samples are clas-
sified into these three categories using a committee
machine called parallel perceptron. The ensemble margin
of the parallel perceptron is used to classify samples into

three categories: safe, noisy, and borderline. The pro-
posed approach enhances the performance of the parallel
perceptron algorithm when dealing with datasets that con-
tain noisy labels. However, classical perceptron gene-
rally outperforms reverse boosting [20].

4.2 Class noise tolerant ensemble learners

One of the widely used techniques for creating ensem-
bles is AdaBoost [59], which is preferred due to its sim-
plicity and flexibility [60]. However, AdaBoost tends to
overfit class noise because it assigns large weights to mis-
labeled instances during the later stages of training [20].
To address this issue, various methods have been pro-
posed to update the weights more cautiously to decrease
the susceptibility of boosting to class noise [20,61]. For
example, the AveBoost2 [62] algorithm replaces the
weight w!*! of the instance at step ¢+ 1 by the following
expression:

th(-t) + W§t+l)

t+1

AveBoost2 achieves larger training errors but smaller
generalization errors than AdaBoost. Besides, AveBoost2
slows down the growth of misclassified instance weights,
making it more robust to class noise than AdaBoost. Si-
milarly, modified AdaBoost (MadaBoost) [63] limits the
instance weight to the initial probability, preventing
weights from becoming excessively large as they do in
AdaBoost. This method has been shown not to overfit on
noisy data. Averaged boosting (A-Boost) [64] differs
from AdaBoost in that it calculates weights based on the
error rate of the current hypothesis on the original train-
ing examples and uses the average of the product of the
base hypotheses and weights, while AdaBoost uses the
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sum. On noisy data, A-Boost performs similarly to bag-
ging. However, modifications of weights, which are com-
mon losses in machine learning, may not always be effec-
tive, especially when dealing with high levels of noise
[65].

Cao et al. introduced a new boosting technique called
noise detection based Adaboost (ND-Adaboost) [60]. In
their work, They conducted an analysis of class noise
detection-based loss function and ensemble margin, and
subsequently proposed a novel loss function. The pro-
posed approach is an extension of Adaboost that inte-
grates the class noise-detection-based loss function. This
is done to adjust the weight distribution at each iteration
and to control the ensemble training error bound via a
regeneration condition [60].

In a separate study, Krieger et al. [66] proposed two
approaches to mitigate the impact of class noise in boost-
ing. The first approach involves limiting the number of
iterations of Adaboost to prevent overfitting, but the
authors did not investigate effective methods to deter-
mine the optimal number of iterations. The second
approach is to smooth the boosted classifier by combin-
ing bagging and boosting as follows:

(i) This hybrid method creates K bootstrapped training
subsets comprising a certain p percentage of the original
training set;

(il) K boosted classifiers are trained for a specified
number M of iterations;

(iii) The K predictions are aggregated to form the final
prediction. This approach aims to enhance the diversity of
the boosted classifier, ultimately leading to improved per-
formance in noisy environments compared to Adaboost
[66].

Bagging is a method that is more effective than boost-
ing in the noisy environment. Bagging improves the
diversity of base classifiers by creating different subsets
of training sets through bootstrap sampling, thereby
reducing the impact of each mislabeled sample on the
classifier [20]. Abellan et al. found that bagging ensem-
bles of credal decision trees, which are based on impre-
cise probabilities and information-based uncertainty mea-
sures, were effective in classification issues with high
levels of noise in the class variable [41]. In a compara-
tive empirical study [67], it was shown that bagging-C4.5
outperformed in the majority of datasets with 0 to 20%
noise, but failed when 30% noise was introduced.

Research indicates that the choice of sampling size for
bagging may not have a significant impact on the ensem-
ble’s generalization performance. However, the optimal
size of bootstrap samples is likely to vary depending on
the specific application, particularly in the presence of
class noise. As a result, subsampling is a promising

avenue to explore [68]. Sabzevari et al. demonstrated that
bagging, which involved training unpruned decision trees
on bootstrap samples ranging from 10% and 40% of the
original training set size, was more resistant to class noise
than standard bagging, which relied on a sampling ratio
of 100% of the original data [68].

In the context of machine learning, problems involv-
ing multiple classes can become increasingly complex
and may lead to higher chances of incorrect classifica-
tions, particularly in the presence of noise [11]. Several
studies have shown that one way to mitigate this issue is
to break down the multiclass problem into several binary
sub-problems [69]. This method involves a two-step pro-
cess:

(1) Problem division: The problem is divided into se-
veral binary sub-problems with each sub-problem solved
by independent binary classifiers.

(i) Combination of the outputs: The One-vs-One
(OVO) decomposition strategy is employed [69], which
divides a classification problem with M classes into
M(M-1)/2 binary subproblems. For each subproblem, a
classifier is trained only on the training examples corre-
sponding to the pair of classes (4;,4;), notably, i < j.

In [69], the effectiveness of the OVO decomposition
strategy in improving the accuracy of baseline classifiers
in the presence of class noise was evaluated. The robust
learners C4.5 and repeated incremental pruning to pro-
duce error reduction (RIPPER) [70] robust learners and
the noise-sensitive KNN method were tested with and
without the usage of OVO. The results showed that the
OVO decomposition enhanced the accuracy of all the
baseline classifiers in noisy datasets, possibly due to the
distribution of noisy examples in different subproblems
and the combination of information from different classi-
fiers [69].

5. Conclusions

Class noise is a complex problem in remote sensing due
to a significant number of mislabeled instances in train-
ing data, which can negatively impact classification out-
comes. There exist various methods to address class
noise, such as noise removal, noise correction, and class
noise-robust methods. However, there is no isolated
method that is entirely effective for all noisy data, and
machine learning practitioners must sort out the most re-
levant method for their field of application. For example,
class noise-robust methods may be sufficient if the class
noise is only marginal. In some cases, removing misla-
beled instances can be more effective than correcting
them, despite the fact that many data cleansing methods
are efficient and straightforward to implement. Neverthe-
less, instance removal methods may remove too many
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correct instances, leading to over-cleansing, which is an
important problem for imbalanced datasets in remote
sensing while retaining mislabeled instances has much
poorer performance than removing too many correctly
labeled samples. It is essential to find a compromise
between retaining mislabeled instances that can poten-
tially worsen classification results and removing too
many correctly labeled samples in the future research.

The use of ensemble learners, particularly random
forests, has shown to be more resilient against mislabel-
ing in comparison to single classifiers. Indeed, ensemble-
based methods for handling class noise are based on spe-
cific assumptions. Firstly, data cleansing methods rely on
various heuristics to distinguish mislabeled instances
from exceptions, which reflect different definitions of
class noise. Secondly, class noise-robust methods assume
that avoiding overfitting is enough to deal with class
noise. As a result, ensemble-based methods strike a ba-
lance between using instances as they are and identifying
potentially mislabeled instances, contributing to their suc-
cess in handling class noise.

There remain many unanswered research questions
concerning class noise, and numerous areas are yet to be
explored. One potential avenue is the use of semi-super-
vised learning, which has the benefit of not altering the
instance distribution. It would be worthwhile to investi-
gate whether this approach could be more effective in
managing class noise than merely eliminating question-
able instances from noisy data. Another possibility is to
use multiclass decomposition to alter the distribution of
noisy examples in sub-problems, which can enhance class
separability. This method can also be used for noise
detection and data selection. Ensemble margin is also a
promising approach for designing classifiers against noise
and identifying noisy data. Recent studies have revealed a
correlation between the generalization performance of an
ensemble classifier and the distribution of margins on
training examples. Additionally, the random forest has
been widely demonstrated to be the most resilient method
against noise in ensemble learning, making it a worth-
while research direction to explore how noise filtering
performs in random forest classification.
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