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Reinforcement learning-based scheduling of multi-battery
energy storage system
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Abstract: In this paper, a reinforcement learning-based multi-
battery energy storage system (MBESS) scheduling policy is
proposed to minimize the consumers’ electricity cost. The
MBESS scheduling problem is modeled as a Markov decision
process (MDP) with unknown transition probability. However, the
optimal value function is time-dependent and difficult to obtain
because of the periodicity of the electricity price and residential
load. Therefore, a series of time-independent action-value func-
tions are proposed to describe every period of a day. To approx-
imate every action-value function, a corresponding critic net-
work is established, which is cascaded with other critic net-
works according to the time sequence. Then, the continuous
management strategy is obtained from the related action net-
work. Moreover, a two-stage learning protocol including offline
and online learning stages is provided for detailed implementa-
tion in real-time battery management. Numerical experimental
examples are given to demonstrate the effectiveness of the
developed algorithm.
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1. Introduction

The cost of electric power in residential environments
undergoes distinct variations because of daily fluctua-
tions in load demand and generator capacity [1]. Con-
sumers usually pay little attention to these variations
when the electricity price is fixed. Dynamic pricing
makes it possible for consumers to reduce high power
costs by exploiting price fluctuations [2]. For the past few
years, the evolution of microgrids has provided various
benefits for the smart grid economy [3]. Particularly with
the development of multi-battery energy storage system
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(MBESS), consumers are able to manage energy storage
equipment to reduce charging costs without the need to
change their consumption habits. For example, con-
sumers can charge the batteries from the grid when the
electricity price is low and release energy when the price
is high.

However, it is challenging to efficiently manage
MBESS charging/discharging because (i) different char-
acteristics of batteries, extensive consumer behavior pat-
terns, and residential uncertainties make the modeling
task not universal, (ii) the battery levels must be kept in
their safe zones to prolong their lifetime as far as possi-
ble, and (iii) fluctuant load demand and electricity price
make the system model time-varying, which makes the
management of MBESS a non-stationary optimization
problem.

Numerous model-based algorithms have been widely
applied to deal with this problem [4—11]. For instance, in
[4] and [5], the MBESS optimization problem was con-
verted into a mixed-integer linear programming (MILP)
problem, and MILP algorithms were applied to decrease
the scheduling cost of the microgrid by reshaping the
load, such as peak shaving and valley filling. Some prac-
tical operation limitations for battery charging and dis-
charging were considered. In [6], a power generation-side
management policy for a modular energy system defined
as a general MILP was proposed to promote self-con-
sumption based on a day-ahead market. However, MILP
algorithms rely on deterministic rules and abstract con-
sumer-defined models, which may be deviated from the
actual MBESS model. Furthermore, MILP-based opti-
mization algorithms are centralized, limited, and lacking
in extensibility, as the computational complexity
increases with the number of variables in large-scale
MBESS [12]. In [8-11], several demand-side storage
management strategies based on model predictive control
(MPC) were developed to maximize energy power uti-
lization and benefit consumers. The uncertainties about
unpredictable customer behavior and time-varying load
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demand were all taken into account. Although the above
MPC-based optimization algorithms succeed in dispatch
scheduling, such model-based approaches are limited in
complex systems. Since the heterogeneity of ESS makes
the modeling task challenging and model-based
approaches are difficult to transfer from one scenario to
another.

In recent years, the newly developed reinforcement
learning (RL) algorithms have been a powerful tool to
tackle Markov decision process (MDP) problems in com-
plex decision-making applications [13—21]. Through RL
algorithms, agents can directly learn policies by interact-
ing with the system without requiring the system dynam-
ics. In [22], a Q-learning-based approach was proposed
for a single electric vehicle (EV) scheduling problem, and
a representation network was adopted to predict future
electricity prices. In [23], the optimal charging/discharg-
ing strategy was learned based on deep Q-learning for
single-battery considering an accurate degradation model.
A long short term memory (LSTM) model was applied to
predict the electricity price for the next day. For MBESS,
Q-learning-based algorithms are limited because the dis-
crete action space increases exponentially with the
increasing number of control variables. To deal with this
problem, some model-free energy optimization works
learn the continuous battery power discharge/charging
policy. For example, in [24] and [25], smart home energy
management algorithms based on deterministic policy
gradients were proposed to keep the building in a com-
fortable temperature range and encourage the consumers
to use electricity more efficiently. In [26] and [27], with
the aim of power flow optimization and the state of
charge (SOC) management, control strategies for MBESS
based on deep RL (DRL) were developed.

In practice, agents usually need to respond to time-
varying load demand and dynamic electricity price in real-
time scheduling, and hence the system dynamics or the
state transition probability of the environment changes
over time. In [28] and [29], two time-based reinforce-
ment learning (TBRL) algorithms were proposed for resi-
dential ESS control. Similarly, in [30], a TBRL-based
energy management algorithm for smart power buildings
was developed, where Photovoltaic (PV) energy and EVs
were taken into account. In [24] and [25], the smart home
energy management problem was formulated as time-
dependent MDPs, which contains the time index in the
system state to obtain the electricity price or the power
demand. However, for TBRL algorithms, the optimal
function is time-dependent and difficult to obtain when
agents interact with time-varying or so-called non-sta-
tionary environments. The effectiveness of these TBRL
algorithms is usually verified through experiments. The
properties of time are different from space. The latter is
more reachable and controllable than the former. An

object can be moved freely in space, but there are more
restrictions in time because time is asymmetric and unidi-
rectional [31]. In this case, the convergence property of
such TBRL algorithms has not been analyzed and may
diverge, which greatly limits the applications of the
TBRL algorithms [32,33]. To tackle this issue, a time-
independent RL approach with convergence guarantee is
developed in this work for time-varying MBESS charg-
ing/discharging problems.

In this paper, we first model the MBESS management
problem as an MDP with time-varying transition proba-
bility from the consumers’ perspective. Our objective is
to find an optimal strategy for the battery system schedul-
ing problem without changing residents’ consumption
habits. Then, we remove the time index from the original
MDP and introduce the periodic action-value functions. It
is proven that these functions can converge to the opti-
mal functions through periodic value iteration. To save
costs in real-time management, we develop a novel model-
free algorithm based on the periodic action-value func-
tion and deterministic policy gradient (DPG). Finally, the
experiment results demonstrate the proposed algorithm
can efficiently manage the battery system in the con-
strained control zone and save costs for consumers. The
main contributions of this paper are listed as follows:

(i) Different from the time-dependent MDPs formu-
lated in [24] and [25], we formulate the MBESS charg-
ing/discharging scheduling problem as a time-indepen-
dent MDP. We propose a series of time-invariant action-
value functions to describe every time period of a day and
introduce the periodic value iteration to learn the optimal
action-value functions. The convergence property of the
iteration process is guaranteed. A new algorithm called
multi-agent deep DPG with incremental number of agents
(MADDPG-INA) is proposed to accelerate the learning
process from the source MDP with N agents to the target
MDP with N + M agents.

(i) We propose a two-stage RL-based scheduling algo-
rithm, the DPG with periodic action-value functions.
After the offline training with the proposed periodic
deterministic policy gradient (PDPG) method, the conti-
nuous policy can be employed in real-time scheduling in
the online stage. We verify by two case studies the effec-
tiveness of the proposed algorithm which shows a higher
success rate of convergence than general TBRL algo-
rithms.

The rest of this paper is organized as follows. The sys-
tem model and the formulated MDP are presented in Sec-
tion 2. The detailed periodic action-value iteration and a
novel PDPG algorithm are presented in Section 3. The
numerical experimental results that show the perfor-
mance of the proposed method are given in Section 4.
The conclusion is presented in Section 5.
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2. System model and problem formulation

The smart residential MBESS considered in this paper is
composed of N batteries with different characteristics.
The energy scheduling problem is formulated as an MDP
from the perspective of consumers in discrete time steps
of 1h. At time step ¢, we obtain the battery energy levels
E ={E\,Ey, - ,E,}, the electricity price P, and the
residential load L,. Then based on the scheduling stra-
tegy, the charging/discharging action @, = {a,,,ay,, " ,a,,}
of the battery is decided. The goal of the scheduling stra-
tegy is to charge a mass of energy if the electricity price
is low and discharge at a high price to satisfy the load
requirements and reduce the cumulative charging cost for
consumers.

2.1 Battery model

The battery energy model is expressed as follows [28,34]:
Eiyo = Ei —ni(ai) ai, (1
where i represents the battery index. If a;, <0, the bat-
tery is charging, and if «;, > 0, it is discharging. a;, =0
represents that the battery is idle. We assume that a;,
(kW) is calculated hourly and hence equal to the value of
battery energy (kKWh). n;(a;,) denotes the efficiency of
charging actions, which depend on the loss of auxiliary
equipment in the battery system such as transformers,
inverters, and transmission lines. It can be defined as

I, a, >0
i(a Y 2
ma 7){ Mo =& lai,tl [Giraes @i <0 @)

where 7;, and &; are charging parameters of the battery i.
i 18 the rated power output.

In order to prolong the lifetime and guarantee the
safety of the battery, the energy stored in the battery must
be constrained in a safe zone as

Ei,min < Ei,r < Ei,max- (3)

Besides, the hourly charging/discharging power is also
limited to avoid damage as

ai,min < ai,t < ai,max- (4)

2.2 MDP formulation

MDP offers a basic framework for action deciding in
uncertain environments where the historic states have no
relation to the current states. An MDP can be described as
a five-tuple (S,A,P,R,y), where S and A denote the
entire state and action space, respectively, P represents
the state transition probability between  states,
R:SxA — R is the reward function which maps state-
action pairs to rewards, and y € [0, 1] is the discount fac-
tor which denotes whether the immediate or future
rewards are preferred. We formulate the battery manage-
ment problem from the consumers’ perspective as an
MDP with unknown transition probability.

(1) State

At time step ¢, the system state is s, = (Ey,,Ep;---,
E,., Pi,Li,t), which can be divided into three types of
information: i) The battery energy levels (E,,,E,;, -,
E,,)observed from the MBESS. ii) The electricity price
P, and the residential load demand L,. Although they
have dynamic fluctuations, their profiles exhibit a degree
of periodicity with the period 7 =24 h and typical pro-
files in a day are given in Fig. 1. In this paper, we assume
the electricity price and the load demand have already
been predicted (e.g., [35] and [36]). iii) The time index ¢,
used to obtain the price and the load demand.
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Fig.1 Typical electricity price and residential load profiles over 24 h

(i1) Action

We assume that the charging/discharging action
a, = (ay,, a2, ,a,,) at time step ¢ applies continuous
charging power and the input constraint (4) must be satis-
fied for each battery.

(iii) State transition probability

The state transition probability P(s.|s;,a;) is con-
trolled by action a, as in (1). Moreover, the electricity
price and the load demand are influenced by time index ¢
which makes them time-varying. To simulate the real-
world scenario, P(s,.|s,,a,) is considered to be unknown
and we propose a model-free algorithm to learn it in Sec-
tion 3.

(iv) Reward

The immediate reward at time step ¢ is calculated as

r(s,a)=r=

2
_ml(Lt —a,) +m2a1Pt’ Emin < Ei,t < Emax
rp, otherwise

®)

where m; and m, are given weighted coefficients. The
first item (L,—a,)* aims to minimize the power pur-
chased from the grid. The second item a,P, represents the
charging cost from the grid [22,33]. When the battery is
charging, this item is negative. When the battery releases
energy to residential load devices, this item is positive,
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which means the battery system saves an equal cost for
the consumer. The penalty item r, is a negative constant
selected small enough to prevent overcharging and over-
supply of the batteries.

(v) Action-value function

The learning objective is to obtain a policy & which
decides the charging/discharging action a, at time step ¢
and maximizes the following performance function:

T(!
Zymso,n] (©6)
t=0

where T, is the time step when the MDP terminates. The
action-value function or so-called Q-function maps state-
action pairs to the cumulative rewards defined as

J(m)=E

Ty
0" (s,a) =E, [Z Y Fiels, = s,a, = a} (7)
=0

which changes over time with system state. Then the
optimal Q-function is

QO (s,a) = maxQ” (s,a). (8)

3. Proposed approach

In this section, we first replace the time-dependent action-
value function with time-independent periodic functions
and introduce the periodic value iteration. Then, the
PDPG algorithm is proposed for the MBESS scheduling
problem.

3.1 Periodic action-value function

The optimal action-value function is derived based on the
Bellman optimality equation [37] which is given by
O (si,a,) = 1+ ymax Q" (81, Gri1) - )

RL algorithms follow the recursive relationship to esti-
mate the optimal action-value function as follows:
QiJrl (sp,a)=r, +)’maXQi (S41,@pi1) - (10)

Ay

For the formulation of the MDP, we can see that the
state s, is time-variant so that the optimal action-value
function Q*(s,a) consequently varies over time. For dif-
ferent time index ¢, the optimal action-value function is
different despite the same battery energy, electricity
price and residential load. This makes it challenging
and complex to obtain Q*(s,a) and the optimal MBESS
management becomes a time-varying optimization
problem. To tackle this difficulty, we define the new
time-invariant state s, = (E,,,Ea,, -, E,. Pi.L;). In the
meantime, the original time-varying optimal action-
value function is replaced by a series of time-indepen-

Q]: (Et’ at) =0 (s, a,) (k =
,T'—1). Then the Bellman optimal-

dent periodic functions

mod (+,7)=0,1,---

ity function (9) is rewritten as

Q*T—l (Sn ar) =r+ )’maXQS (st+l ,anl)

Ar+1

(08 (‘}tvat) = r,+ymaxQZ+1(S”,+1,a,+1), (b

1+1

k=T-2,T-3,---,0.
Therefore, the optimal charging/discharging policy is
determined by greedy strategies as
@ = n}g‘xQZ(E,a). (12)
The iterative periodic equations are generalized as
gl (E,,a,) =r, +ymaxQ, (E,H,am)

Qs

;':rl (Etaat) = rt +7maxQ§<+| (§t+l$at+])’ (13)

k=T-2,T-3,---,0.
In this paper, we assume y < 1, that is to say, we pay
more attention to the immediate reward than the future
reward.

Then the convergence analysis of the above periodic
value iterations is given as follows.

Theorem 1 Given an initial Q-function QJ, for
i=0,1,---,and k=0,1,---,7T -1, let Qi*' be obtained by
(13). Then iterative periodic Q-functions Q) converge to
their optimums, i.e.,

mor (a)-afis). oo

Proof Consider the case k= 0. Expanding the right
side of recursive equations (13), then we have

i+1 [ &
é) (st» at) =
T-1
e R
Z V’ r(st+r' s Apr ) +y Q6 (St+T9at+T):| .

t=
(15)
We also expand the Bellman optimality equation (11)
based on the same principle as

max--- max

a,€A a,+T—-1€A

(-
Qo (Sn at) =
T-1
¢ o Ty o
max--- max E Y V(Sm‘»am)"')’ Q() (SH-T»aH—T) .
a,€A a+T—1€A | & o
f=

(16)
Then subtracting Q;, from Qi' we have
i+1 [ & [ o
E)Jr (st’ at) - Qo (S,,a,) <
| (- _
max--- max y |0, (St+T’at+T) - QS (st+Ts at+T) <
a,€A a+T—-1€A
i (- _
Y Q:) (Sr+T9at+T) - QS (SH—Ts at+T) SRR
0
i+DT N0 [ o o
7(l+ ) Q() (SHD at+T) - Q;; (SHT’ at+T) . (17)
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Since Q) and Q; are obviously finite and y < 1, when
i— o0, QM (E,,a,) - 0 (E,,a,). Combining (11) and

(13), we can derive that when

i+l (E,,a,) — Q;(E,,a,),k: 1,2,---,T—1. Then the con-
vergence proof of the periodic value iteration is com-
pleted. O

In this paper, we take periodic electricity prices and
residential load into consideration. Therefore, the system
dynamics model is time-dependent. In this case, it is
intractable to obtain the optimal action-value function,
and the iteration process may not converge. Given that
the system model exhibits a degree of periodicity, we
remove the time index from the system state and utilize a
series of time-invariant periodic action-value functions to
describe every period of a day. The original complex
problem is transformed into a time-independent optimiza-
tion problem. The periodic action-value functions con-
verge to their optimums through an iterative way, and
hence the optimal charging/discharging strategy can be
derived. In [33] and [34], the concept of the periodic
value function has been utilized in energy storage sys-
tems. However, in [34], the partition of the state space
and the determination of membership parameters rely on
expert experience, which has subjectivity and uncertainty.
In [33], the single-battery scheduling optimization was
proposed, and multi-battery management has not been
considered.

I — oo,

3.2 PDPG algorithm

The DPG algorithm uses deterministic policy gradient
with continuous actions, which outperforms more effi-
ciently than usual stochastic policies. Our PDPG algo-
rithm combines the periodic action-value function and the
DPG algorithm with off-policy and actor-critic architec-
ture. With the continuous action space, the policy is
moved toward the gradient of the action-value function
rather than maximizing it. The proposed algorithm con-
tains multiple critics for different periods and offers
scheduling policies for each period. Each critic or actor
function is represented by separate neural networks.
These networks are connected in chronological order.

The actor functions A, (E;,uk) (k=0,1,---,T—1) take
the system state as input and output deterministic poli-
cies, parameterized by ;. The critic functions Q; (E,a;@k)

take the state and selected actions as inputs to approxi-
mate action-value functions, parameterized by 6,. The
actor networks are optimized by updating the policy
parameters toward the performance gradient as

V. Ji(Ay) =
B [Tt () 9.0 ()] 09

where p* represents the stationary state distribution and

the true Q-function Q™ (E,a) is approximated by the

critic function Qy (E,a;Gk . The critic networks uses tem-

poral-difference learning to iteratively update parameters,
and after the iteration converges, O (E,a;é’k) x QZ(E,a).

The target action-value y, at time step ¢ is defined based
on Qi (§3Ak (:Vz;llk);gkﬂ) as

:{ r+yQ,t+1), k=T-1 (19)
7, +yQ (t+ 1), otherwise

where Q, (1) = O (E,,Ak(E,;pk);Hk). Based on the Bell-
man equation, the temporal-difference error (TD-error) §,
is the difference between two sides without the expected
value which is defined as

5=y,- 0 (E,,a,;ek). (20)

Then the critic network parameter 6, is updated accord-
ing to the gradient descent method to minimize the TD-
error as

O — 9k+a’e5zvm Ok (Enazﬁk) (21)

where a; is the learning rate.

Note that the target value depends on the parameters of
critic networks and is updated during each iteration. In
this case, the training process may be unstable and even
divergent. To alleviate adverse impacts caused by data
limitation and stabilize the training process, as suggested
n [13] and [15], the target networks with the soft update
mechanism for generating the target value y, are intro-
duced. We use neural networks with parameters @ and 71,
to approximate 7 target critic networks and actor net-
works which slowly synchronize to 6 and u during every
training iteration as

O — 10+ (1-1)6,, (22)

ﬁk — T+ (11— T)ﬁk, (23)
where 0 <7< 1 is the soft update rate. Then the target
action-value (19) is rewritten as

r+ t+1), k=T-1

y, = 720 ( ) (24)
ri+7yQ, (t+ 1), otherwise

where Q, (1) = O, (E,,X,((E,;ﬁk);@).

To further improve the stability of the updating pro-
cess, the experience replay technique is also adopted [38].
We introduce T data sets D = {D,,D,,---,D;_;} and store
the agent’s transition experience {s,,a;,s,.;,7,} in the cor-
responding M-sized replay buffer D, at time step 7. The
action @, is chosen based on the e-greedy policy. In every
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a K -sized mini-batch of transitions
K

is randomly sampled from D, to cal-

training ~ step,

SijySiv1 1

j=1
culate the follovsjzing loss function:
IRSIE . 2
L. (6,) = EZ[yj_Qk(sj,aj;Hk)] . (25)
j=1

Then the critic parameter 6, is updated by gradient
descent of the loss function as
O — O+ Vo Li (6,). (26)

This technique has several advantages. Firstly, each tran-
sition experience can be potentially utilized multiple
times in the updating process and thereby the data effi-
ciency is improved. Secondly, the time correlations
among samples are removed which further improves the
stability. Thirdly, the behavior distribution is averaged
over many historical states, so the updating process is
smoothed out.

The actor parameters g, are updated toward the gradi-
ent calculated with regard to the same mini-batch of tran-
sitions:

Target
network 0

Target
network 1

Critic

———— 2
———

TD-error to TD-error
main network 7—1
— _,/_\ - ___._/_\\
Main Main
network 0 network &

——— e~
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:
|
|
|
|
|
|
|
|
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|
\
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O
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S, k=mod (¢, T) | |
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Vllk Jk (/'lk) =
1 v . .
X Z VA (Sj;/lk)va Ok (Sj, aj; 91<) |a,-=Ak(E,-:uk)’ (27)
=1
i — e+, Vo T (), (28)

where «, is the learning rate.

The multiple critic and actor networks are updated iter-
atively by calculating (25) and (27). We develop a two-
stage learning protocol composed of the offline training
stage and the online real-time scheduling stage. The
offline training stage with an episodic style is presented
by Algorithm 1. Fig. 2 shows the schematic diagram of
developed offline algorithm architecture. The online net-
works have the same structures as the offline networks.
After Algorithm 1 converges, we load trained parameters
0 to online networks. The initial state can be arbitrarily
decided within the safe zone. At each step ¢, the system
input s, is composed of the battery energy level, the elec-
tricity price, and the residential load. Then, the

charging/discharging action is selected as a, = A; (E,; ,uk).
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Fig.2 Schematic diagram of the proposed PDPG architecture
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Note that the above updating process is model-free,
which does not need the system model because the transi-
tion experience can be directly sampled from the emula-
tor and real-world data. It is also off-policy. The behav-
ior policy is selected based on the e-greedy method that
ensures adequate exploration of the state space. The tar-
get policy is evaluated based on the greedy method and
independent of the behavior policy.

4. Numerical results

In this section, the implementation details of the PDPG
algorithm are elaborated for the MBESS charging/dis-
charging problem. We evaluate the proposed approach by
numerical case studies and demonstrate its superiority via
comparisons.

4.1 Case 1: fixed periodic data

In this case study, we build the simulated MBESS based
on the dynamics given in Table 1. The system is com-
posed of four batteries with different charging efficiency
parameters and bounds of the battery capacity. Our pro-
posed data-driven approach does not depend on any
information of battery parameters and hence could apply
to other modeling mechanisms. The electricity prices and
the residential load are fixed periodic profiles given in
Fig. 1. The charger provides continuous power output for
battery charging and discharging. The negative outputs
represent the charging process, and the positive values
refer to the discharging process.

Table 1 Parameters of the energy storage system
Parameter Battery 1 Battery 2 Battery 3 Battery 4
10 0.958 0.898 0.858 0.798
& 0.073 0.073 0.073 0.073
Emin/kWh 1.8 1.6 1.0 0.3
Emax/kWh 11 9 7 5
Amin /KW -0.9 -0.8 -0.7 —0.6
amin/ kW 0.9 0.8 0.7 0.6

In the offline training process, we use three-layer neu-
ral networks with random initial parameters to approxi-
mate the main and target networks. The training parame-
ters are shown in Table 2. The hidden layer is composed
of 64 nodes and fully connected with the input layer. The
output layer is fully connected with the hiddenlayer. The
training process proceeds with the Adam optimizer. Dur-
ing the first 1000 training steps, the charging/discharg-
ing actions are randomly selected from the action space.
After that, the action is selected based on the e-greedy

policy. In the training process, € is reduced from 0.9 to
0.01 during the first 20000 training steps and remains
0.01 afterward. The average accumulated rewards and the
standard deviation over 20000 episodes learned by PDPG
and the classic DPG algorithm are shown in Fig. 3 where
the red lines represent the electricity price and the gray
stems indicate the residential load. The blue and orange
stems indicate the charging/discharging action. The
results are based on ten independent trials, and the
weights of neural networks are randomly initialized for
each trial. The system state of DPG is defined as
s, =(E\nEysy-+ s Enys Prs Ly t). Tt can be seen that the
average reward of PDPG begins to increase gradually
from 5000 episodes. Then, it converges around 45 with
slight oscillations after 15000 episodes. The results show
that the developed algorithm succeeds in learning a stra-
tegy to achieve high accumulative rewards. Under the
same initialization condition and structure of neural net-
works, the proposed PDPG algorithm converges more
quickly and stably, but the convergence process of the
DPG algorithm is prone to diverge.

Table 2 Offline training parameters

Parameter Value
Discount factor y 0.85
Learning rate « 0.001
Soft update rate 7 0.01
Replay buffer size M 100 000
Minibatch size K 32
MaxStep 168
Weighted coefficients my,my 0.2,-0.4
Penalty item ry -200

100

Average reward

-200 "'“—M\{.T‘QMN

0 2500 5000 7500 1000012 5001500017 50020 000
Episode
— : PDPG; : DPG.

Fig.3 Average accumulated rewards during the training process
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Algorithm 1 Offline training of PDPG

: for £=0:7-1 do

: Initialize replay buffer D, with size M

: Randomly initialize critic function Q, with weights 6,
: Randomly initialize actor function A; with weights
: Initialize target critic function Qk with weights @:9;(
: Initialize target actor function /Tk with weights 1, =
: end for

: for Episode=1:MaxEpisode do

: Obtain the initial state s,

10: for Time step =0:MaxStep do

11: Obtain the time index k = mod (¢,T)

12: With probability € randomly select action «, other-

O 0 1 Ut AW

wise select a, = A, (E,;pk)
13: Execute action a,, collect reward r,, and move to the
next state 5,4

14: Store transition (E,,a,,:v,+.,r,) in D,

15: Randomly sample a mini-batch with size K of transi-
K

tions {(Ej,aj,fjﬂ,rj)} from D,

j=1
16: Update critic network by (25) and (26)
17: Update actor network by (27) and (28)
18: Update target networks by (22) and (23)
19: end for

20: end for

After the offline training, the converged algorithm can
be used in real-time charging/discharging scheduling as
shown in Fig. 4. The battery energy levels start from
[2.7,2.4,2.1,0.9] kWh. In every time step, the total
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(a) Battery 1
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=
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&
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8
=
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96 120 144 168

0 24 48 72
Time/h
(c) Battery 3

4
charging/discharging action is calculated as Za;,, and

each day shows similar patterns. When electricﬁgl price is
low, the battery system is charging, and the residential
load is satisfied by purchasing more power from utility
companies. During peak hours, the battery system tends
to discharge, and hence the amount of power bought from
utility companies is reduced as much as possible. The
gray stems indicate the residential load demand, and one
can observe that each battery manages not to over-dis-
charge when the demand is on-peak. In comparison, the
policy learned by DPG does not fully discharge or charge
when electricity prices fluctuate, resulting in underuti-
lized battery systems. The battery energy levels are
shown in Fig. 5 where the dashed lines indicate the safe
zones for each battery energy level. The results indicate
that each battery is controlled in its safe zone.
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Fig. 4 Comparison of charging/discharging action of the battery
system learned by PDPG and DPG over a week
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Fig. 5 Battery energy levels over a week
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4.2 Case 2: real-world data

In this case study, the real-world electricity price and res-
idential load are considered in simulated energy systems.
The real-world data contains 180 days starting from the
Ist of March in 2016 collected from California Indepen-
dent System Operator (CAISO). To avoid overfitting, col-
lected data are divided into the training set and the test-
ing set. Specifically, the first three weeks are used as a
training set and the remaining week is selected as a test
set for every four consecutive weeks.

To start the training, we first introduce a price predic-
tor model based on prior knowledge. For V¢=0,1,---,
there exist p=0,1,---,and k=0,1,---,23, that satisfies
t = pT + k. Then the predictor is presented by a weighted
average predictive filter as F, =k Py, +ky Py, 6, Where
P, and P, ¢ denote actual data in the previous day and
the same day last week at time step k, respectively. Let
coefficients k; and k, be 0.838 and 0.156. The load pre-
dictoris computed asZ, =b, (LH - I:k,l) +b, (L,,z - i,H) +
i,k, where L,_; and L,_, represent actual residential load at
time step t—1 and -2, respectively. ik_l, I:k_z and [:k
are historic averages at time step k—1, k—2 and &,
respectively. Let coefficients b; and b, be 0.9 and 0.1.
The real electricity price and residential load from the
28th of August to the 3rd of September in 2016 are
shown in Fig. 6. Both curves show a degree of periodi-
city and slight fluctuation from day to day. The predicted
price and load based on the above models are also
depicted. The root mean squared error (RMSE) of the
prediction models are 0.4755 and 0.046 5. Hence, the pre-
diction models are verified practical to the real world.
The simulated battery system is also built based on four
batteries in case 1.
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—— : Actual; — — : Predict.

Fig. 6 Real-time data and predictive values over a week

Similar to case 1, we also use three-layer neural net-
works to approximate the main and target networks. The

hidden layer is composed of 64 nodes. The average accu-
mulated rewards and the standard deviation over 30000
episodes based on ten independent trials are shown in
Fig. 7. The convergence process is slower than case 1
because of the complexity of the system dynamics and
the consideration of fluctuant price and load demand.
After 20000 episodes, the accumulated rewards con-
verge around 75 and stay steady. Compare with ordinary
DPG algorithm, the convergence process of PDPG algo-
rithm is faster and the accumulated rewards are higher.
Additionally, PDPG algorithm shows a higher success
rate of convergence than DPG algorithm over the ten tri-
als under the same initialization condition and structures
of neural networks as in Table 3. Hence, the superiority
of the proposed approach is proved.
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Fig.7 Average accumulated rewards during the training process

Table 3 Total cost comparison

Evaluation metric Original PDPG DPG
Total cost/cents 2286.51  2085.53 2169.63
Saving/% - 8.79 5.12
Success rate of convergence/% - 100 70

The comparison of the total cost over 168 h which is

168 4
calculated as Z [L, - Z a,—_,]P, is shown in Table 3. The
=1 i=1

term “original” denotes “no multi-battery system”. The
proposed PDPG algorithm can save much more costs
than the ordinary PDG algorithm. To further illustrate the
effectiveness of our approach, the real-time grid power of

the battery system over one week which is calculated as

4

L, —Za,,, is shown in Fig. 8 where the red lines repre-
i=1

sent the electricity price and the gray stems indicate the

residential load. The blue and orange stems are power

purchased from grids. The profile of the original con-
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sumption is changed. Between each day [1 h, 11 h], the
system purchases more electricity than the residential
load demand with the additional energy stored in the bat-
tery system. Between each day 12 h and the next day 1 h,
the purchased energy is significantly decreased because
the previously stored power is released. By comparison,
the learned grid power by the DPG algorithm does not
take full advantage of the difference in electricity prices.
The system consumes more electricity than the proposed
algorithm when the price is high. Fig. 9 shows the bat-
tery energy levels which are all operated in their safe
zones. The dashed lines indicate the safe zones for each
battery energy level. Similar to the first case, the battery
system tends to discharge when the price is high and
charge when the price is low.
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Fig. 8 Comparison of grid power of the battery system learned by
PDPG and DPG in real-world
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Fig. 9 Battery energy levels over a week

5. Conclusions

In this paper, the MBESS charging/discharging schedul-
ing problem is formulated as an MDP with unknown
transition probability. Because both the daily price and
load demand exhibit a degree of periodicity, the time-
dependent action-value function is replaced by a
sequence of periodic time-independent functions. We
propose the PDPG algorithm, the DPG with periodic
action-value functions, to learn the optimal policy for this
problem. A two-stage learning protocol is developed to
save consumers’ costs in real-time management. The pro-
posed approach has successfully saved costs for con-
sumers as shown in the experimental results of two cases.
Additionally, the success rate of convergence of the
PDPG algorithm is verified to be higher than the general
DPG algorithm.
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