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Abstract: Synthetic aperture radar (SAR) is usually sensitive to
trajectory deviations that cause serious motion error in the
recorded data. In this paper, a coherent range-dependent map-
drift (CRDMD) algorithm is developed to accommodate the
range-variant motion errors. By utilizing the algorithm as an esti-
mate core, robust motion compensation strategy is proposed for
unmanned aerial vehicle (UAV) SAR imagery. CRDMD outper-
forms the conventional map-drift algorithms in both accuracy
and efficiency. Real data experiments show that the proposed
approach is appropriate for precise motion compensation for
UAV SAR.
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1. Introduction

Motion error is a main problematic component that needs
to be compensated in airborne synthetic aperture radar
(SAR) [1,2] imagery. Motion compensation (MOCO)
[3—5] based on high-precision inertial navigation system
(INS) measurements is a robust approach to the optimal
focal performance. Due to the accuracy limitation of air-
borne INS, the motion error cannot be measured accu-
rately for unmanned aerial vehicle (UAV) SAR systems
[6—9]. Therefore, how to compensate the unknown resi-
dual motion error is an inevitable problem for UAV SAR
imaging. The autofocus technique [10—13] can effec-
tively estimate the phase error in the data, which is
widely used in practical applications. In this paper, an auto-
focus method is studied to compensate the motion error
with higher accuracy and robustness.
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For UAV SAR imaging, a series of autofocus methods
based on phase gradient autofocus (PGA) [14] and map-
drift (MD) [15] have been proposed to estimate the resi-
dual phase error after conventional MOCO [16]. The
advantage of PGA based algorithm is recognized. It can
compensate the phase error with relatively high fre-
quency. However, it has a great demand for strong scatte-
ring points in the image, which inevitably reduces the
robustness for application. MD estimates the quadratic
phase error by the sub-aperture correction, which is more
recommended for the advantage of its robustness with the
presence of strong noise. For SAR imaging with a wide
range and swath [17], the residual range and azimuth-
variant phase errors [18—22] affect the imaging quality.
These errors are needed to be preciously compensated. A
series of space-variant MOCO methods have been deve-
loped in recent years to further improve high-resolution
airborne SAR imaging [23—27]. In existing work, a range-
dependent MD (RDMD) algorithm was proposed [28] for
range-variant phase error estimation, and it worked well
in real measured data experiment. For RDMD algorithm,
the critical principle is similar with the classical MD, that
is, it also calculates the correlation function using only
the amplitude of sub-aperture data, and then the Doppler
rate bias can be theoretically estimated by searching for
the peak position of correlation function. However, the
amplitude correlation performance between the sub-aper-
tures is usually unspecified or limited in precision. In
order to solve this problem, one needs to set long sub-
apertures and takes many iteration times to refine the
Doppler rate bias estimation in the previous MD works,
which inevitably induces great computing and processing
complexity. To further improve the estimation accuracy
and reduce operational complexity is the motivation of
this paper.

In this paper, a coherent RDMD (CRDMD) algorithm
is developed. Following existing RDMD algorithm in



48 Journal of Systems Engineering and Electronics Vol. 34, No. 1, February 2023

[28], CRDMD adapts the coherent correlation [29,30]
between sub-apertures to estimate both the constant and
linear quadratic phase coefficients with a straight-line
integral. The main contribution of the proposed algo-
rithm is given as follows. (i) The sensitivity of phase
coherence effectively reduces the convergence times of
iterative estimation of phase error, making the algorithm
more adaptable to the limited resources of real-time pro-
cessing. (ii) As the complex-valued coherent correlation
function replaces the real-valued amplitude correlation in
RDMD, CRDMD provides high accuracy even in the
cases of short sub-apertures. CRDMD can accommodate
smaller azimuth blocks in the processing, so that higher
order phase errors can be estimated compared with
RDMD. In addition, RDMD has little restriction on the
scene and does not require any special explicit point in
the scene, which has higher robustness. In extensive
experiments, real UAV SAR data results confirm the
accuracy and efficiency improvement by the proposed
CRDMD algorithm without robustness loss in dealing
with different SAR scenes.

The rest of this paper is organized as follows: Section 2
overviews the RDMD algorithm as was proposed in for-
mer studies. Section 3 introduces the proposed CRDMD
algorithm in detail. Section 4 presents experimental
results with two real measured data sets. Section 5 con-
cludes the paper.

2. Overview of RDMD algorithm
2.1 Signal model

The geometric model of SAR observations is shown in
Fig. 1, which is defined in an O—XYZ coordinate. For
ideal conditions, the SAR platform moves in a uniform
and straight line along the X axis, whose track is shown
as the dotted line. In practice, the SAR platform is
affected by the unstable air flow, therefore the real flight
path has turbulence, which is shown as the solid line.

Fig.1 Geometric model of SAR

In Fig. 1, P and P’ are two point targets on the ground,
which are located at different cross-track positions. In a
synthetic aperture time, the radar echoes reach these two
points with different range histories, the echo expression
can be uniformly given by

so (1) = W( T

P

exp [jZn(— Fare YA ;At ) )} )

where W () denotes the window function, 7 represents
the range time, 7, represents the pulse width, A =2R,/c
represents the two-way delay from radar to the point tar-
gets, and ¢ is the speed of light. f. denotes the radar
working frequency, and y represents the signal modula-
tion rate.

After range pulse compression, two-step MOCO [3],
and range cell migration correction [31] to (1), the cou-
pling between range and azimuth directions is removed,

the signal is expressed as
t— 4
s(t;r) = W(v x)~exp (—j TRRS) 2)

R, = \J(vt—x)" + 2. 3)

In (2) and (3), ¢ denotes the azimuth time, 7, denotes
the aperture duration time, v is the velocity of platform, x
denotes the horizontal axis of the point targets, r is the
slant range projection, A denotes the wavelength, and R,
is the instantaneous range between radar and point target
PorP.

Due to the influence of inertial navigation accuracy,
residual phase error usually occurs after motion compen-
sation. The echo signal after imaging pre-processing,
which contains residual quadratic phase error, is
expressed as

T—At)

where

§(tr) = s(t:r)-expja, ) 4)

where a, represents the residual quadratic phase error
coefficient. In this case, autofocus algorithms are neces-
sary for the compensation of the residual phase error. It
needs to be emphasized that a, relies on the slant range
projection r. Hence, for point targets P and P’, the resi-
dual quadratic phase errors are different.

To facilitate the estimation of residual phase error, auto-
focus algorithms like MD is essential. The standard MD
has drawback in real applications on focusing UAV SAR
data. For standard MD, the Doppler rate is assumed to be
identical at all range bins. It assumes that the quadratic
phase error function does not rely on the range bin, and
the quadratic phase error is assumed spatial-invariant.
However, in real situations involving severe trajectory
derivations and wide swath UAV SAR imagery, the range-
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dependence of motion errors is never nominal.
2.2 Brief review on RDMD

In order to deal with the problem above, we need to
extend the conventional MD to the range-variant model.
In this subsection, the principle of RDMD is briefly
reviewed based on the previous work in [28]. For a linear
range-variant model, the range-variant Doppler rate coef-
ficient a, in (4) is modeled into a linear function of r as

a,=a+b-r (5)
where a is the constant term, and b is the coefficient of
one-order term. Following the idea of the standard

RDMD, the signal is divided into two sub-apertures,
which are given by

S (t;r) = s(t— %, )

T2
exp [Ja,.( E) exp ) (6)
T,
Sr)=st+ Z”;r)~
T? T,t
exp [ja, (tz + é) -exp (ja,T"). @)

And the sub-aperture images can be achieved by using
an azimuth Fourier transform (FT) to the sub-apertures:

5 (w; r)—[ ,m(w+ arzj;r)-exp(jw%)]@h(w), ®)

a’TT“;r)-exp(—jw%)] ®h(w), (9)

where ® represents the convolution operation, and w rep-
resents the azimuth spectrum of sub-aperture data. Func-

tions 5§, (w;r) and h(w) are given by
T,

Suwin) = [ 3 s@rexp(—jwids,  (10)

4
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4
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exp (—jwr)dt. (11)

For the range bin at r, from the frequency shift
between §,(w;r) and §,(w;r), the Doppler rate can be
determined by the following equation:
=(a+b-nNT, (12)
where Aw, denotes the Doppler frequency shift corre-
sponding to the range bin at r. Aw, is estimated from the
cross-correlation function of |§; (w;r)| and |5, (w;7)|.

The cross-correlation function can be expressed by the
following equation:

Aw, =a,T,

T,
Run (1) = [ 115 w0l [ w4 mnldw— (13)
4

where 7 represents the horizontal axis of the cross-corre-
lation function. The estimation of Doppler frequency shift
Aw, corresponds to the peak location of the cross-correla-
tion function.

By straightforwardly non-coherent summation of the
cross-correlation functions of some prominent range bins,
the Doppler rate is ready to estimate accurately. In real
data application of the MD algorithm, this non-coherent
summation is promisingly significant to ensure the relia-
bility and robustness. It suppresses the interference from
some potential range bins, which would provide improper
correlation functions with wrong peaks. Hence, direct
summation in conventional MD algorithm is not suitable
for the range-dependent cases.

3. Coherent RDMD algorithm
3.1 Principle of CRDMD algorithm

It is notable that, considering the range-dependence of the
Doppler rate, the frequency shift linearly changes along
the range bin. From (12), one can find that, frequency
shift Aw, corresponds to the peak location of the cross-
correlation function at range r. According to the relation-
ship mentioned above, the principle of CRDMD is
derived in this subsection.

The coherent cross-correlation peaks of different range
bins distribute along a slant line, whose slope corre-
sponds to the range-dependence coefficient b similar to
that in (5). The most significant difference between cohe-
rent and and non-coherent RDMD is the cross-correla-
tion function. Compared with (13), the coherent cross-
correlation function is modified by [19] as follows:

Rewp (57) =
5 T,

f_& 5 (w;r)exp(—jw;“)]-5;(w+17;r)dw (14)

2
where PRF is the pulse repeating frequency. Substituting
(8) and (9) into (14), and ignoring the same convolution
phase term h(w), we can get an approximate equation
given by

Rewp (7;7) =

ol o)

(J(W+TI)—) =

f% 5 w+arTa‘r W _aT,, -
R ’"( 2 ) ( L) ’r) v
expin). (15)
According to (15), it can reach a correlation peak at
a,T,, the phase of correlated function is exp(ja,T?/4).
Hence, we can estimate the quadratic phase error parame-
ter a, by calculating the peak position of coherent corre-
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lation function Rcyp. It can be found in (15) that cohe-
rent correlation function Reyp is related to range r, thus
the peak position 7 is given by

nr)y=(@+b-nT,+¢ (16)
where & denotes the error. According to the two-parame-

ter linear regression theory, estimation of range-variant
phase error parameters a and b are given by

Y =) (=)
i=1

K
T,) (=P
i=1

D= =)
=" (18)

K
T, (=7
i=1

where K represents the number of samples, i represents
the serial number of samples, 77 represents the mean value
of 1, and 7 represents the mean value of r. The residual
range-variant phase error estimation can be obtained by
the method illustrated above, and then the implementa-
tion process of the method is explained in detail as fol-
lows.

IS
Il

, (17

;‘]ldl

3.2 Flowchart of the proposed algorithm

In this subsection, a detailed description of the proposed
range-variant quadratic phase error estimation algorithm
is provided. At the beginning, a flowchart as shown in
Fig. 2 is given to illustrate an example of complete pro-
cess of SAR imaging, in which the proposed CRDMD
algorithm is embedded. The flowchart is based on classi-
cal chirp scaling algorithm (CSA), which is shown on the
left side. Range-variant phase correction is achieved by
iteratively using the proposed CRDMD algorithm.

( Full-aperture raw data >

CSA |
Proposed CRDMD algorithm
MOCO
’ Azimuth FT } G’hase error coefﬁcients}
Rangve cell —
‘ migration correction ’ Range-variant ‘
' phase correction
‘ Range compression ‘ No £ 8 ~
inish?

FT

‘ Azimuth inverse ‘ | Yes

‘ Azimuth compression ‘

( Range-compressed data )

after RCMC ( Well-focused SAR Image )

Fig.2 An example of complete SAR imaging process

The left part of Fig. 2 is the conventional CSA process-
ing, and the range and azimuth decoupling data result is
finally obtained by MOCO, range cell migration correc-
tion (RCMC) and range compression. A “two-step ”
method can be used for MOCO to compensate the range
variant and invariant parts of the motion errors. Due to
the limitation of inertial navigation accuracy, the residual
range variant phase error is still existing. The right part of
Fig. 2 is the residual motion error estimation step. Coeffi-
cients of residual phase error can be estimated by
CRDMD processing, then the range variant phase error is
corrected by phase compensation. It should be noted that
iterative processing is necessary, in order to ensure the
convergence of the estimated phase error. The implemen-
tation of CRDMD is described in detail as follows.

The flowchart of the proposed CRDMD algorithm is
given in Fig. 3. The main process can be divided into two
stages: pre-processing stage and CRDMD core stage. In
pre-processing stage, it mainly completes the input data
sampling, initialization of the estimated parameter, and
azimuth deramping. The CRDMD core stage is the criti-
cal part of the entire process, which contains the signal
partition, coherent cross-correlation calculation, and
parameter estimation.

< Input: range-compressed data after RCMC )

‘ Sample slection ‘

Y

i

1
| |
! |
| 1
| |
! |
| 1
| |

1
i ‘ Initialization ‘ ]
'

1
| 1
| |
! |
1 1

1
1 |
| |

v
’ Azimuth deramping ‘

Signal partition
Y

Coherent cross-correlation calculation

Parameter estimation

( Output: range-variant quadratic phase error \i

Fig.3 Flowchart of the proposed CRDMD algorithm

Each of these steps above involves extensions, neces-
sary step-by-step explanations are given below for better
understanding.

(1) Input. The input of algorithm module is the signal
after range cell migration correction. MOCO is carried
out in the previous steps to compensate envelope and
major phase errors caused by the non-stationary motion
of the platform.
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(i1) Sample selection. Strong scattering range bins for
parameter estimation is selected due to the signal inten-
sity. The selection of range bins needs to be relatively
uniform in the range direction. Generally, we can first
divide the whole range bins into N blocks, and then M
range bins with strong reflection are selected in each
range block. Therefore, the number of range bin samples
used for estimation is M X N.

(iii) Initialization. Range-variant Doppler rate coeffi-
cients @ and b should be initialized. In the general case,
the initial values of a and b are set to zero.

(iv) Azimuth deramping. Before the quadratic phase
error estimation, it is necessary to compensate the known
quadratic phase term by azimuth deramping; otherwise,
the estimation of phase error will be affected. The
quadratic phase term of (4) can be removed by multiply-
ing an azimuth deramping function & related to azimuth
time ¢ and range r shown as follows:

h(t;r) = exp["%ﬂ N xX)* +r?

exp [—j (&0+l;0-r)t2] (19)

where a, and Bo are estimated or initialized parameters
during the previous operation.

(v) Signal partition. Echo signal is divided into two
parts in azimuth so that sub-aperture signals §, (#;r) and
S, (¢;r) are obtained.

(vi) Coherent cross-correction calculation. The main
purpose of coherent cross-correction calculation is to cal-
culate the coherent correlation function Rcyp. Perform
azimuth FT to §,(¢;r) and $,(¢;r), and the sub-aperture
signals are transformed to the azimuth frequency domain,
which is shown as §, (w;r) and 5, (w;r). Then the cohe-
rent correlation function Reyp can be calculated by (14).

(vil) Parameter estimation. For each signal sample
§(#;r) at range r, we can find the position n(r) at peak
value of Reyp (77; 1), and then parameters a and b are esti-
mated by a linear regression shown in (17) and (18).

(viii) Output. With fewer iterations, the estimated
range-variant phase error is finally obtained.

3.3 Limitation discussion

Compared with RDMD, the proposed method provides a
coherent integration for cross-coherent function calcula-
tion, which improves the estimation accuracy and also
reduces the number of iterations required. As a negative
price, the response curve of correlation function is more
sensitive to signal phase error because of the coherent
integration.

The main limitation of the proposed method is signal
decoherence, which can be expressed as an error phase in

the coherence integral in (14). The modified coherent
cross-correlation function Ry, is given by

R,CMD (77, r=

PRF

L%F [§1 (wir)exp (—jw%)] S wnr)-
exXp [Jf (w)] dw (20)

where £(w) represents the decoherence phase error ge-
nerally induced by higher order terms of residual phase
errors. When there are prominent third-order or higher-
order phase error components in the echo data, the peak
performance of coherent cross-correlation function will
decline due to the unexpected decoherence phase error.

4. Real measured data experiments
4.1 X-band data experiment

The first real measured data experiment set is given in
this subsection. The experimental radar system operates
in X-band, which is equipped on an experimental UAV
platform. The main system parameters are shown in
Table 1.

Table 1 System parameters for Experiment 1

Parameter Value
Working band X-band
Resolution/m 0.75

Height/km 3
Speed/(m's ) 60
Slant range/km 13

A middle accuracy inertial measurement unit (IMU)
with the Global Positioning System (GPS) is equipped on
the radar system to measure the position and attitude
information of radar platform. Due to the limited accu-
racy of the motion information, MOCO with IMU mea-
surements is insufficient to generate the high quality im-
agery and therefore autofocus MOCO is necessary to over-
come the residue motion error. Fig. 4 shows the the imag-
ing results of a scene with various MOCO methods inclu-
ding the INS-only MOCO, conventional MD, RDMD,
and the proposed CRDMD. In Fig. 4, the horizontal is the
range direction, and the vertical is the azimuth direction.
It can be found in Fig. 4(a) that the INS-only MOCO
based imaging result is conspicuously blurred by residual
phase errors due to the low accuracy of inertial naviga-
tion, which include the variant and invariant parts.
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Scene 3

(d) MOCO with CRDMD (X-band)
Fig. 4 X-band UAV SAR images

In order to compare the performance of three autofo-
cus methods in detail, reflector images in the scene are

extrated and shown in Fig. 5. It is shown in Fig. 5(a) that
conventional MD cannot focus the reflectors well,
because the space-variant phase error is non-negligible.
Since the residual range-variant motion error is compen-
sated, the imaging performance of the reflectors in Fig. 5(b)
and Fig. 5(c) is significantly improved.

(c) MOCO with CRDMD (X-band)
Fig. 5 Magnified sub-scene images (X-band)

Two point-like targets are selected from Fig. 5(c), and
their azimuth impulse response curves under the three
autofocusing methods are analyzed respectively, which
are shown in Fig. 6. Fig. 6 shows that the focusing perfor-
mance of the target point under CRDMD is slightly bet-
ter than RDMD, and significantly better than that under
conventional MD. In this experiment, conventional MD
and RDMD both use more than three iterations to realize
convergence, while CRDMD only uses one iteration due
to the phase coherent. In the case of the same focusing
quality, the computing efficiency of CRDMD is signifi-
cantly better than RDMD.
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(a) Azimuth response of Point A
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4.2 Ka-band data experiment

In order to verify the performance of the proposed
method for imaging focusing in different working bands,
a set of Ka-band image focusing experiments are pre-
sented in this subsection. The key system parameters of
this experiment are shown in Table 2.

Table2 System parameters for Experiment 2

Parameter Value
Working band Ka-band
Resolution/m 0.3

Height/km 3
Speed/(m's ) 70
Slant range/km 10

Experiment is conducted in a desert area, and the
experimental system is a Ka-band SAR loaded on
UAV platform. Due to the high working frequency,
the imaging quality is easily affected by residual phase
error.

Therefore, indispensable

MOCO method commonly used for real measured SAR

autofocusing is an

data processing. Due to the lack of strong scattering
points in the desert scene for PGA strategy, MD based
autofocusing method is more applicable. Fig. 7 shows the
imaging results of the experimental scene using conven-
tional MD, RDMD and CRDMD methods respectively,
where the horizontal is the range direction and the verti-
cal is the azimuth direction.

(a) MOCO with conventional MD (Ka-band)

(b) MOCO with RDMD (Ka-band)

Scene 1

(c) MOCO with CRDMD (Ka-band)
Fig. 7 Ka-band UAV SAR images

Three sub-scenes are selected in Fig. 7, and the com-
parison results under the three autofocusing algorithms
are shown in Fig. 8. In order to compare the focusing per-
formance, two point like targets C and D are selected
from Fig. 8, and the azimuth impulse response curves of
the target points under the three autofocusing methods are
respectively given in Fig. 9. Due to the relatively high
phase sensitivity for Ka-band SAR imaging, the residual
range-variant phase error of conventional MD algorithm
has a significant influence on the focusing performance
of the point-like targets. Due to the compensation of
residual range-variant phase error, CRDMD and RDMD
are both significantly better than conventional MD algo-
rithms. Because of the sensitivity of phase coherent, the
iteration time for CRDMD is only one, comparing with
RDMD of three for convergence. As the result shown in
Fig. 9, CRDMD has slightly better focusing performance
than RDMD with fewer iterations.
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(a) MOCO with conventional MD (Ka-band)

(b) MOCO with RDMD (Ka-band)

(¢) MOCO with CRDMD (Ka-band)
Fig. 8 Magnified sub-scene images (Ka-band)
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In addition, azimuth blocking strategy is adopted in the
autofocusing processing of the X-band and Ka-band
experiments, in which the azimuth block size is set to
256. Due to the fact that the proposed method is based on
phase coherent MD, the correlation is superior to the
amplitude correlation method under short apertures. It is
suitable for sub-aperture autofocusing and has better per-
formance to estimate the high-order phase error. Above
experiments verify that the proposed CRDMD is more
effective for residual range-variant motion error compen-
sation in complex scenarios.

5. Conclusions

In this paper, a CRDMD algorithm is developed for air-
borne SAR image focusing. The sensitivity of the cohe-
rent correlation function provides a more accurate and
efficient estimation for the residual range-variant phase
errors. Real measured data experiments illustrate that the
proposed CRDMD algorithm can achieve a more accu-
rate and efficient range-variant phase error estimation
comparing with conventional MD and RDMD algo-
rithms. The limitation of this method is that it can only be
used to estimate the variant motion error in range direc-
tion. In future work, we will study the coherent compen-
sation method of two-dimensional variant motion error.
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