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Classification of birds and drones by exploiting periodical
motions in Doppler spectrum series
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Abstract: With the rapidly growing abuse of drones, monitoring
and classification of birds and drones have become a crucial
safety issue. With similar low radar cross sections (RCSs), veloci-
ties, and heights, drones are usually difficult to be distinguished
from birds in radar measurements. In this paper, we propose to
exploit different periodical motions of birds and drones from high-
resolution Doppler spectrum sequences (DSSs) for classification.
This paper presents an elaborate feature vector representing the
periodic fluctuations of RCS and micro kinematics. Fed by the
Doppler spectrum and feature sequence, the long to short-time
memory (LSTM) is used to solve the time series classification.
Different classification schemes to exploit the Doppler spectrum
series are validated and compared by extensive real-data experi-
ments, which confirms the effectiveness and superiorities of the
proposed algorithm.
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1. Introduction

The monitoring and recognition of drones have been a
crucial safety issue nowadays, with the rapidly growing
abuse of drones in criminal and antisocial activities [1—4].
Among the effective sensors for detecting small and slow-
moving targets, radar is outstanding for all-weather day
and night working conditions. However, the radar detec-
tion of drones inevitably introduces unwanted low-energy
bird signals because of their similar radar cross sections
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(RCSs). Therefore, the classification problem of birds by
radar and drones is crucial surveillance against drones.
However, the discrimination of drones from birds by
radar is difficult, as they share similar characteristics in
radar measurements, such as low RCSs, similar veloci-
ties, and similar heights. Traditional classification methods
degrade in recognizing these small targets since they
require high resolutions to obtain scattering features and
contour information for classification.

The three main feature classes are the micro-Doppler
related features, the polarized related features, and the
track related features. Available techniques for radar clas-
sification of birds and drones mainly consist of three
main categories, depending on the target properties
exploited. (i) Most available publications prefer to extract
the micro-Doppler features to distinguish drones from
birds. The repetitive wing beating pattern and rotor blade
rotation introduce different modulation modes to the
Doppler spectrum. These micro-Doppler features are
robust features for classification [5—9]. However, it is
challenging to capture the micro-Doppler signals of small
targets for practical applications due to their low RCSs
[10,11]. (ii) Researchers showed the potential of utilizing
polarimetric scattering effects to classify birds and drones
[12,13]. However, polarimetry increases the complexity
of radar systems. (iii) Besides these features, track-related
features contribute to the separation of birds and drones
[14,15]. By constructing the kinematic features, the RCS-
related features, and the track morphology features of the
original track information, researchers validate the effec-
tiveness of track feature-based classification of birds and
drones. However, the errors of track-related features are
different for different radar systems. Therefore, the subse-
quent sorting may degrade with varying radar systems.
To conclude, the classification problem of birds and
drones is a relatively novel and challenging topic for
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radars [16]. Theoretical and experimental research are
insufficient, especially for the latter two kinds of classifi-
cation methods.

In this paper, we use the high-resolution Doppler spec-
trum sequences (DSSs) to exploit both the periodic fluc-
tuations of RCS and micro kinematics to classify birds
and drones. It provides a more convenient means for clas-
sifying birds and drones with minor restrictions on radar
systems. Firstly, it is independent of the detection of
micro-Doppler signals. The micro kinematics of targets is
defined by constructing an RCS centralized parameter
whether micro-Doppler exhibits or not. Secondly, unlike
the track feature-based method in [14], features are
extracted from the DSS, which can be normalized to
eliminate errors among different systems. Finally, by
introducing long-short-time memory (LSTM), we explore
different underlying periodical behaviors of birds and
drones.

The main contributions of our proposal lie in exploit-
ing the DSS to classify birds and drones for the first time
by revealing their different periodical motions.

The remaining parts of our paper are organized as fol-
lows. Section 2 presents the handcrafted features con-
structed from DSS. Section 3 introduces the LSTM to
classify birds and small drones. By illustrating the basis
of LSTM, we propose the LSTM architectures for radar
small target classification in detail. Experimental results
and analysis round off real-measured data in Section 4.
Section 4 also gives a detailed analysis of the effects of
frame numbers, data varieties, and signal to noise ratios
(SNRs) on proposals. Conclusions are presented in Sec-
tion 5.

2. Feature vector construction of DSS

Unlike the track information in [14,15], only use relative
Doppler and amplitude sequences are used for classifica-
tion in this paper, namely, the DSS data, as Fig. 1 shows.
It is a typical DSS image of a bird and a drone. The bright
center line in Fig. 1 stands for ground clutter.

Table 1 summarizes the essential information in the
Doppler spectrum at each frame. As Table 1 shows, rela-
tive speed, amplitude, and acceleration are typical physi-
cal features. The relative velocity v; is defined as the ratio
of the targets’ velocity to the velocity resolution by find-
ing the peak position in the ith DSS. The amplitude A; is
defined as the maximum value in thei th DSS. The
acceleration means the speed difference. For example,
a; =v;; —v; with a; =0. Since the micro-Doppler phe-
nomenon introduces diffusions in the Doppler spectrum,
we define N; and §; to depict the micromotion degree of

the target, as shown in the zoomed picture in Fig. 1. N; is
the number of points of marks in the Doppler spectrum.
Moreover, S; is the sum of the amplitudes of these points.
These parameters can be easily obtained by constant false
alarm rate (CFAR) detection [17].
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Fig. 1 Typical DSS images illustration

Table 1 Essential information for each Dopper signal

Symbol Meaning Extraction method
Vi Relative velocity Position of maximum value
A; Amplitude Maximum value

N;  Number of distributed points CFAR

S; Sum of amplitudes Sum of amplitudes of N; points

a; Relative acceleration Difference of relative velocity

Parameters in Table 1 are written in vector form to rep-
resent the behavior of the target in the ith frame. Suppose
there are M frames. The time-related features can be writ-
ten in a matrix for each DSS data as follows:
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To exploit the underlying periodical motions in the
Doppler spectrum series, we manage to construct com-
prehensive and discriminative features using the informa-
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tion in Table 1. The constructed features can be divided
into two main classes.

2.1 Target kinematic features

The proposed feature-based classification method uti-
lizes kinematic features for classification since different
targets possess different motion types. Human beings
control drones for various tasks, whereas birds fly natu-
rally by wing-beating [18]. These inherent features intro-
duce different motion modulations to the recorded radar
signals. Hence, several physical features are defined to
describe their different motion patterns during observa-
tion. They are the mean velocity, the velocity variance,
the mean acceleration, and the acceleration variance,
which are respectively symbolized as u,, o, ., and .
Denote f; as the mean of the speed:

t—1

Denote f, as the variance of the velocity:

h=o :—Z(V

Denote f; and f, as the mean and the variance of the
acceleration respectively:
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2.2 Target RCS related features

Target RCS-related features are designed based on the
underlying relationship between the RCS and the shape,
size, and materials of targets. As stated in [18], in track-
ing individual released birds, the dominant RCS feature
exhibits high repetitiveness which is almost sinusoidal
with short breaks. Given this property, we design the
periodic amplitude features to catch the character.

Firstly, the target energy ratio is the ratio of the maxi-
mum amplitude to the sum of total amplitudes of the tar-
get, namely R, = A;/S;. This feature describes the centra-
lization of target energy, which represents the micro-
Doppler degree of the target. The proposed feature-based
classification method uses its mean and variance for clas-
sification.

Denote f5 and f; as the mean and the variance of the

changing micro-Doppler degree with time respectively:

fs=pr = %Z:Ri,
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Since RCS exhibits a sinusoidal curve, discrete cosine
transform (DCT) is applied to R; (i=1,2,---,n). The
DCT of the energy ratio sequences is defined in [19,20]

as follows:
\/E n
G,(0)= — ) R,
.(0) n}],
2
G.(k) = ZR (2n+1)kn 2)
k=12, ,n—1

where Gg(k) is the kth DCT coefficient. Based on the
coefficients, the period of the sinusoidal and its ratio are
defined.

The rearranged coefficients sequence Gy(k) is
extracted after sorting the DCT coefficients in descend-
ing range. The period and its energy ratio feature are
expressed as follows.

Denote f; as the relative period of Doppler variances:

T (Gx(D)
n

f7:TR:

where T (G%(1)) means the period of the corresponding
component.

Denote f; as the ratio of the amplitude of the central
periodic part of the target:

Gr(1)

K=Ee= G0y

The feature vector is constructed to represent the time-
variant of the DSS image by writing the above features
into vector forms. Given the extracted features, the poste-
rior probability of each class is calculated. The classifica-
tion is assigned to the possibility with the highest chance.
For clarity, Fig. 2(a) shows the flowchart of the naive
Bayes (NB) classifier with the extracted feature.

3. LSTM classifier construction

In this section, we construct LSTM architectures to rea-
lize classification. In recent years, it has been one of the
state-of-the-art models for sequential data learning prob-
lems [21-25].
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Unlike traditional speech and image signals, radar sig-
nals always suffer from high noise, clutter, and interfer-
ence. As shown in Fig. 1, the ground clutter is several
times stronger than the signal of targets. Therefore,
preprocessing is recommended before feeding data into
the network. The preprocessing progress is listed as fol-
lows.

Firstly, the ground clutter is removed by setting units
around zero Doppler to zero as the ground clutter is static.

Afterward, the target Doppler units can be extracted by
finding Doppler units around the peak position of the
Doppler spectrum. In our experiment, the total number of
units is 100, according to its resolution.

After preprocessing, the extracted Doppler units at

each moment are fed into the LSTM classification net-
work to train and test them. We build the LSTM network
as shown in Fig. 2(b). Firstly, this network uses the bi-
directional LSTM (Bi-LSTM). Afterward, 100 hidden
units in the forward and backward sequence LSTMs are
created, followed by a fully-connected layer with two
outputs. Finally, the Softmax layer solves the classifica-
tion problem. The loss function is

1
LO)= -5 D yIn () (3)

where C is the number of the target classes, y is the one-
hot representation of the ground truth, and y is the esti-
mated probability.

Preprocessing Feature Time variations
o extraction Energy feature %I
Original | )| Clutter L »  ofone | . L3 NB
DSS removing Doppler elzssiier
signal
(a) NB classifier with feature extraction
Preprocessing
Original
Doppler LSTM UAV
DSS [ Cluttér ' units classifier [—Jp
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(c) Feature based LSTM classifier

Fig. 2 Basic flowcharts of three classifiers with Doppler spectrum series

The LSTM is expected to work well in predefined cir-
cumstances, as LSTM is not good at extracting represen-
tative features of the signal, despite its superiority at
learning complex dependencies across time. Therefore,
its performance is highly related to the quality of the
input signal.

To overcome this problem, we propose another scheme
that feeds the extracted features of each Doppler spec-
trum as inputs instead of the extracted Doppler units. We
use the feature vector in (1) as input. In this way, the size

of the network decreases and the robustness is improved.
Fig. 2(c) illustrates the architecture for classifying birds
and drones based on the Doppler feature series. Com-
pared with the LSTM classifier, it compresses each
Doppler spectrum into five features.

As discussed above, we try to exploit the time-depen-
dent property of the Doppler spectrum to discriminate
drones from birds. We propose three typical structures
which represent most mainstream time-variant property-
based classification methods. For clarity, they are named
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the handcrafted feature classifier, the LSTM classifier,
and the feature-based LSTM classifier.

4. Experiments and analysis

This section provides validation for utilizing the Doppler
spectrum sequences for small radar target classification
through measured data experiments. We explore the sig-
nificant factors affecting the classification performances
of three proposals based on the defined criteria.

4.1 Dataset and preprocessing

The measured data in this paper is collected with radar
operating in the L band with 1.36 GHz central frequency.

The drones considered for classification are the DJI
Drone Phantoms. With heights varying from 20 m to
50 m, distances ranging from 1 km to 4 km, and veloci-
ties from 2 m/s to 10 m/s, 23 tracks are recorded, with 15
tracks for birds and eight for drones. As we exploit the
different periodical motions of targets for classification, it
is essential to find sufficient observed frames for correct
sorting. Therefore, we cut the above tracks into eight sets,
with a minimum of four frames to a maximum of 32
frames. The interval is set as 4. The training data set is
constructed by randomly selecting eight tracks for birds
and four for drones. When the number of frames is more
than 16, tracks are departed with half overlap to promise
the dimension. The dimensions of the training tracks and
the testing tracks are listed as follows.

(1) Four frames per track: 1118 training tracks and 444
testing tracks.

(i1) Eight frames per track: 834 training tracks and 231
testing tracks.

(iii) 12 frames per track: 564 training tracks and 156
testing tracks.

(iv) 16 frames per track: 828 training tracks and 228
testing tracks.

(v) 20 frames per track: 675 training tracks and 186
testing tracks.

(vi) 24 frames per track: 546 training tracks and 141
testing tracks.

(vii) 28 frames per track: 474 training tracks and 123
testing tracks.

(viii) 32 frames per track: 405 training tracks and 102
testing tracks.

We use traditional evaluation criteria, such as the con-
fusion matrix, accuracy, precision, and recall rates. The
confusion matrix gives an overall classification result. In
the confusion matrix, the number of each type of predic-
tion is given. The accuracy is defined as (TP+TN)/
(TP+FN+FP+TN) to assess the classification of the

whole class, where, TP means the drone sample pre-
dicted as a drone, FN means the drone sample predicted
as a bird, FP means a bird predicted as a drone, and TN is
a bird prediction as a bird. The precision is defined as
TP/(TP+FP). The recall rate is defined as TP/
(TP+FN). The precision and recall criteria are used to
evaluate the performance of the classifier on drone identi-
fication.

4.2 Performance versus frame number

This subsection presents experiments to validate the
effectiveness of exploiting the DSS data for classifica-
tion. Furthermore, the dependency of frame numbers is
discussed through experimental results.

Firstly, experiments are conducted with the above
dataset and their criteria with the frame number shown in
Fig. 3. As Fig. 3 shows, the handcrafted feature classifier
is independent of the frame number. At the same time,
LSTM-based methods perform better with more frames.
When the frame number is more than 16, the LSTM clas-
sifier outperforms the handcrafted classifier. However,
for the feature-based LSTM classifier, the number is 20
to outperform the handcrafted classifier. This phe-
nomenon is beneficial to the high quality of long-time
dependence extraction of LSTM architectures. With dif-
ferent performances, all proposed methods can discrimi-
nate drones from birds at a high rate, proving the effec-
tiveness of utilizing DSS data for classification.
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Fig.3 Comparison of accuracy curves

For clarity, Fig. 4 illustrates the computed confu-
sion matrix. As Fig. 4 shows, the proposed feature-
based LSTM classifier has a better precision rate than
the other two methods, even with lower accuracy at
short-time observations. Moreover, the LSTM classif-
ier performs better than the handcrafted feature me-
thod when the observation time is not shorter than 16
frames.
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Fig. 4 Comparison of confusion matrix

4.3 Performance under different circumstances

In this subsection, we try to explore the factors affecting
the performance of our proposals. Firstly, we add diffe-
rent Gaussian distributed noise to the original dataset to
simulate diverse SNR circumstances. Under each SNR,
Monte Carlo experiments are carried out 50 times to
assess their performance solidly. Afterward, to give an
overall assessment, we augment the dataset. Half of the
data is augmented with random Doppler shifting ranging
from —50 to 50 units, and the remaining half with noise
addition.

(1) Performance in different SNR circumstances

Different Gaussian distributed noise signals are added
to the original dataset to generate datasets with different
SNRs ranging from —10 dB to 10 dB with a 5 dB interval.
The Monte Carlo experiments are repeated 50 times for
each SNR, considering the randomly changed noise.

The testing accuracy curves under different SNRs are
plotted in Fig. 5. As we can see from the plots, the perfor-
mances degrade with decreasing SNRs, especially for the
LSTM classifier compared with the other two methods.

Under low SNRs, the performance of the handcrafted fea-
ture classifier and the feature-based LSTM classifier are
similar. With increasing SNRs, the feature-LSTM classi-
fier outperforms the handcrafted feature one.
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Moreover, the superiority becomes more evident with
increasing SNRs. When SNR is higher than 0 dB, the fea-
ture-based LSTM classifier outperforms the other two
methods, with a more significant frame than 12. The fea-
ture-based LSTM classifier tends to perform better with
longer frames. At the same time, this tendency of the
LSTM classifier begins to make a difference when the

Feature+NB classifier

SNR is as high as 10 dB.

(i1) Data augmentation

In this experiment, we augment our dataset. First, we
randomly select half of the data and add random Doppler
shifts ranging from —50 to 50 units. Afterward, remained
half of the dataset is added with random Gaussian dis-
tributed noise ranging from 0 dB to 20 dB. The confu-
sion matrix is illustrated in Fig. 6. For clarity, the accu-
racy rate, precision rate, and recall rate are also plotted in
Fig. 7. As we can see from Fig. 7, the feature-based
LSTM classifier outperforms the other two methods,
under the circumstances with Doppler shifts and serious
noise, due to its robustness to environments. Even when
the frame number is small, its performance is ideal. The
performance is improved with increasing frame number
as well. Moreover, it owns the highest precision rate
among the three methods, which may benefit from the
captured law of feature changing with the time of drones.

LSTM classifier
|
Bird !

Feature+LSTMclassifier

Drone Bird Drone | Drone Bird 71

Drone|389/92.6% 20/4.3% 397/94.5% 14/3%
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Pulse number=28 !
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Pulse number=32

Bird| 3/2.9%

0

Fig. 6 Confusion matrix comparison

The handcrafted feature classifier and the LSTM clas-
sifier share similar performance. Although their perfor-
mances are not as good as the feature-based LSTM classi-

fier, they are acceptable. These results validate the effec-
tiveness of exploiting the DSS data to classify drones and
birds.
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Although experimental results can validate the effective-
ness of the proposed method. We believe a dataset with
more abundant classes and track numbers will improve
our research and bring about more interesting work.
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Through the above experiments, the following conclu-
sions can be drawn.

(1) It is feasible to exploit DSS data to classify birds
and drones, even with short observations.

(ii) The handcrafted feature classifier is suitable for
shorter observed frames and low SNR. We recommend
the LSTM classifier with increasing observed frames in
high SNR cases. The feature-based LSTM classifier best
suits low SNR circumstances.

(iii)) Regarding the varieties such as Doppler shifts
introduced in the testing data, both the handcrafted fea-
ture-based classifier and the feature-based LSTM classi-
fier are better choices. With increasing SNR and frame
number, the feature-based LSTM classifier is the most
suitable method.

(iv) The feature-based LSTM classification is best
suited for drone discrimination and detection tasks.

5. Conclusions

This paper proves the effectiveness of utilizing DSS data
to discriminate drones from birds. We propose three
schemes according to the existing mainstream classifica-
tion methods. The handcrafted feature-based classifica-
tion is most stable by extracting micromotion features
and tracking features jointly without micro-Doppler
detecting progress. By feeding the LSTM with prepro-
cessed data and feature vector sequences, we propose the
LSTM classification method and the feature-based LSTM
classification method to exploit the underlying differ-
ences in periodic motions of birds and drones. Through
experiments, we prove the effectiveness of three pro-
posed methods. The proposed method requires a high
Doppler resolution to catch the Doppler diffusions.
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