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Abstract: The existing software bug localization models treat
the source file as natural language, which leads to the loss of
syntactical and structure information of the source file. A bug
localization model based on syntactical and semantic informa-
tion of source code is proposed. Firstly, abstract syntax tree
(AST) is divided based on node category to obtain statement
sequence. The statement tree is encoded into vectors to cap-
ture lexical and syntactical knowledge at the statement level.
Secondly, the source code is transformed into vector represen-
tation by the sequence naturalness of the statement. Therefore,
the problem of gradient vanishing and explosion caused by a
large AST size is obviated when using AST to the represent
source code. Finally, the correlation between bug reports and
source files are comprehensively analyzed from three aspects of
syntax, semantics and text to locate the buggy code. Experi-
ments show that compared with other standard models, the pro-
posed model improves the performance of bug localization, and
it has good advantages in mean reciprocal rank (MRR), mean
average precision (MAP) and Top N Rank.
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1. Introduction

Quality and performance are important to the software
system [1]. The defect tracking systems such as Bugzilla
are used to store bug reports that can be modified by rele-
vant maintenance team. Bug localization is a technique
for locating codes that may contain defects, thus alleviat-
ing the working pressure of the developer [2]. However,
there are a variety of operating modes in the practical
equipment [3], and the problem number is large and
growing for complex software [4]. Thus, the software
dependability and usability can be impacted by the avai-
lability and promptness of bug localization.
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The focus of bug localization is to analyze the correla-
tion among the exception described in bug report and the
source code that realizes the relevant functionality [2].
Majority of the existing software bug localization tech-
niques are based on popular machine learning or informa-
tion retrieval (IR), which ignore the program structure
and regard the code as natural language. The bug report
and the source code are represented by using the bag-of-
words approach, and the similarity is calculated in the
uniform lexical feature vector space [2]. BugLocator [1]
improves the vector space model (VSM) by using the file
length and adjusts the corresponding source file weight
by utilizing the fixed bug reports to detect the defect.
Youm et al. [5] presented method of the bug location
information analysis that analyzed the keywords and
stack information of the bug report, the structure and the
composition of the source code, version information,
comments, and other text information to realize bug loca-
lization synthetically. Ye et al. [6] used reference docu-
ments, application programming interface (API) docu-
ments and tutorials as corpus to train the word2vec model
to calculate the semantic similarity. For the past few
years, deep learning is widely capitalized on bug localiza-
tion [2,7,8]. Yan et al. [7] greatly improved the perfor-
mance of bug localization by taking advantage of convo-
lution neural network (CNN). Huo et al. [2] proposed a
uniform modeling which used diverse CNNs to obtain
information from source codes and bug reports. They fur-
ther analyzed the sequence of source codes by combining
it with long short-term memory (LSTM), so that the
semantic information can be extracted from the source
code, which is used to reflect the sequence naturalness of
codes. And the long-distance call relationships bet-
ween codes are analyzed [8].

However, programming languages usually follow strict
syntax structure. It also has complicated information and
control flow. And there may be call relationship between
code elements. Therefore, regarding source codes as a
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natural language will result in the miss of significant
grammatical information. Recent studies have shown that
the neural model based on the abstract syntax tree (AST)
represents source codes more accurately, and program-
ming languages can benefit from the syntax and struc-
tured representation. Mou et al. [9] proposed tree-based
CNNs (TBCNN ), which is of great significance to repre-
sent the programming language. TBCNNs convert the
source file into an AST and acquire the relationship
between the code statements, which show good effect in
programming language processing. Wei et al. [10] intro-
duced clone detection with learning to hash (CDLH)
which parsed the code fragment into AST, considered the
lexical and syntactic information of the source file, and
used tree-based LSTM (Tree-LSTM) [11] to obtain the
code fragment representation for clone detection. Some
studies have shown that tree-based source file representa-
tion methods have the problems of gradient vanishing and
gradient explosion.

To enhance the efficiency of software bug localization,
we analyze the syntactical and semantic feature of source
codes, and solve the limitation of using AST to represent
source codes mentioned above, a newfangled software
bug localization model based syntactical and semantic
information of source code is proposed. For our pro-
posed model, an integrated AST of the source file is
divided into statement trees based on the statement granu-
larity. The statement tree is encoded into vectors by using
the recursive autoencoder to capture the lexical and syn-
tactic knowledge of the statement. And then, LSTM is
utilized to express the naturalness of the statement to ge-
nerate the embedding of the source code. At the same time,
VSM, token matching and stack trace are employed to
analyze the textual relevance among source file and bug
report. Finally, the differential evolution (DE) algorithm
is used to integrate the similarity, and then the source fi-
les are sorted by similarity. Experiments illustrate that our
model has significant enhancement for bug localization.

The contributions of our research are mainly shown as
below:

(1) The code representation based on syntactical and
semantic information of source codes (CRSS) is pro-
posed. And the lexical syntactic information at the sen-
tence level and the naturalness of code are obtained.

(ii) A software bug localization model based on syntac-
tical and semantic information of source codes is propo-
sed. The relevance among source codes and bug report is
analyzed from three aspects: syntax, semantics and text.

(ii1) Experiments illustrate that compared with other
standard models, our model improves the performance
and accuracy of bug localization.

The remaining content of our research is arranged as
follows: Section 2 introduces the research motivation.
Section 3 presents the code representation based on syn-

tactical and semantic information of source codes in
detail. Next, a software bug localization model based syn-
tactical and semantics of source codes is introduced in
Section 4. In Section 5, our model and standard approa-
ches are exhibited and contrasted by experiments. In the
end, the conclusions and following research content are
presented in Section 6.

2. Motivation

2.1 Difference between natural language and
programming language

Complexity, diversity as well as flexibility are the charac-
teristics of programming languages, but most of the codes
written by developers are concise and short. Program-
ming languages distinguish from natural languages
chiefly in the following two ways [2].

Firstly, words or terms are the basic linguistic compo-
nents of natural language, and the simple bag model is
used to acquire the relationship between them. However,
for programming languages, the statement is the smallest
semantic unit. The functionalities of programming lan-
guage are concluded from the semantics of multi-state-
ments and the interaction of them along the execution
path. Secondly, natural languages organize words in a
“flat” way, which are always written or used in one
dimension. However, programming languages organize
statements in a “structured” way, programmers always
write their source codes with proper indentations, indicat-
ing branches, loops, and even nested structures [12].
Because of the structural distinctions among natural lan-
guage and programming language, the existing natural
language processing (NLP) representation learning algo-
rithm, such as skip-gram and continuous bag of words,
are unsuitable for programming language directly.

At the same time, the complicated information interac-
tions exist between code symbols, which can influence
the functionality expressed by the source code [13]. The
syntax and semantics of different levels in source files are
often expressed in a tree structure. The compiled source
code abides by strict syntax structure and is explicitly
analyzed into syntax tree. Therefore, according to the
above description, AST is utilized to analyze program-
ming language and explore its syntactical and semantic
information for representation.

2.2 Limitations of the existing code
representation work

For TBCNNSs [9], Tree-LSTM [11] and CDLH [10], tree-
based source file representation has two major limita-
tions. Firstly, if the gradient is calculated by back propa-
gation in the training based on deep neural network, then
there will be problems of gradient disappearance and
deep structure explosion [12], specifically when the scale
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of source codes is large and the nested structure is com-
plex. Secondly, for TBCNNs and CDLH, the number of
sub-nodes is different in different AST nodes, which may
lead to different number of parameters and parameter
sharing problems. To solve these problems, AST is con-
verted into binary tree, which will not only impact the
original syntax structure, but also lead to a deeper AST
structure.

In addition, Huo et al. [14] used the structure and
sequence characteristics of control flow graph (CFG) to
enhance the unified feature of bug localization, and fur-
ther captured the structure and functional properties of
source files. However, a majority of CFGs merely con-
tain control flows in the codes and cannot represent com-
plete data information. And the CFG is more difficult to
obtain than the AST [15,16].

Therefore, for obtaining the syntactical and semantic
information of source codes, recursive autoencoders
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(RAE) and AST are used to encode each node recur-
sively in AST, and the vector representation of each node
can be gained for each statement tree.

3. CRSS
3.1 Preprocessing method for source code

First, the source code is transformed into an integrated
AST through the existing parsing library (for example,
javalang and pycparser), as is shown in Fig. 1 and Fig. 2 .
Then, the AST is split based on the statement granularity
to form a group of statement sequences, as is shown in
Fig. 3. In this paper, source files are converted to ASTs.
Some content will be filtered out, such as comments,
blank lines, and punctuation. Code elements are repre-
sented by nodes in the AST. For example, a complete
source file is represented by the first node, and its child
nodes may be method, variable declaration and so on.

public class BindingScope extends SimpleScope {

public Unresolved Type lookup Type(String name, IHas Position location) {

if (m_enclosingType !'= null) {

String pkgName = m_enclosingType.getPackageName();

String[] currentImports = getImported Prefixes();

String[] newImports = new. String[currentImports.length + 1];

for (int i=.0;.i< currentImports.length; i++).{

1.
2
3
4.
S. _.if (pkgName != null & & !pkgName.equals("")). {
6
7
8
9

newImports[i] = currentimports|[i];

10. }

11. newImports[ currentImports.length] = pkgName.concat(".");
12. setImportedPrefixes(newlmports);

13. }

14. }

15. retum super.lookup Type(name, location);

16. }

17.}

Fig. 1 A piece of source code in AspectJ dataset
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Fig.2 Conversion of code in Fig. 1 to AST



YAN Xuefeng et al.: Bug localization based on syntactical and semantic information of source code

[ ClassDeclaration |——o ... ]
[ MethodDeclaration f—— =]
| IfStatement —f ]
[ VariableDeclaration ————] . |
| IfStatement —— ]
v
ReturnStatement __|———— e

Fig.3 Statement sequence of code in Fig. 1

For complete AST of source code T and the statement
tree ST, every statement node ST in T is relevant to a
statement in codes. Class declaration, condition state-
ment, switch statement and loop statement are added to
the statement sequence as special statements. According
to the node type of AST, the specific splitting rule is
shown in Table 1.

Table 1 Splitting rule of the statement tree

Definition
Typel={head, body}
Type2={control, block}
Type3={block, catches}

Type
Class declaration
Condition statement
Try catch statement

For Typel, the “head” represents the statement of class
declaration, and the “body” part is the content in brackets.
As shown in Fig. 2, the head part of class declaration is
{Modifier, BindingScope, ReferenceType}. For Type2,
“control” is the judgment condition part, and “block” rep-
resents the statement executed after the judgment condi-
tion is met. In Fig. 2, the control of IfStatement is a
binary operation statement, and the block part is Vari-
ableDeclaration and IfStatement. In the try-catch-finally,
“block” is the statement in try, “catches” is the statement
in catch.

ClassDeclaration

readText | | ReferenceType Body

SimpleScope

Modifier

(a) Statement tree

239

For ReturnStatement, VariableDeclaration, BreakState-
ment and other statements, they are converted into the
statement tree directly. Similar syntax structures can also
be expressed as above. For example, the method declara-
tion can be expressed as Typel, and the switch statement
and loop statement can be expressed as Type2.

The AST of a source file is analyzed by breadth first
traversal, and the AST is split according to the above me-
thod to attain the statement sequence, as shown in Fig. 3.

In the same position of the same batch, each parent
may have a different number of children, which may
cause problem in parameter-sharing [10]. Since the struc-
ture of the statement tree will not be too large or deep, the
statement tree is converted into a binary tree. The conver-
sion approach is akin to the method described in [10],
which is adopted to refashion statement tree into com-
plete binary tree (CBT). For details, see the following
steps of converting statement tree into CBT and the
ST2CBT is proposed as follows in Algorithm 1:

(1) More than two child nodes are separated to produce
a new neo-sub-node. The previous left node and the new
right child node are reorganized as the child nodes of the
original parent node, and then all the child nodes except
the original left most are the child nodes of the new child
node.

(i1) Repeat this operation from top to bottom until the
nodes degree either zero, one or two.

(iii) In order not to further deepen the statement tree, a
node will be added to the node with only one child node,
such as {New3, New4} in Fig. 4(b). Taking the Class-
Declaration node in Fig. 4(a) as an example, the state-
ment tree is transformed into a binary tree. As shown in
Fig. 4(b), four new nodes {Newl, New2, New3, New4}
are added to convert the statement ClassDeclaration into
a CBT.

Statement vector

“ie

Max pooling

hl ‘:‘ hz [ ; i | hN

‘ @ @ ClassDeclaration

1@ ® @ Modifier ?ﬁmewl
XX R XX D ® OnNew2

Public New3  readText !
ReferenceType @ @ m
Body

XXRXX

SimpleScope New4

(b) Statement encoder

Fig. 4 An example of transforming a statement tree into a CBT
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3.2 Encoder with lexical and syntactical information

Given a statement tree, we use the idea of RVNN [17] to
encode recursively the leaf nodes in ST from bottom to
top, and then every node in ST can be converted into vec-
tor.

Algorithm 1 ST2CBT

Input The node array of statement tree: ST
Output The node array of complete binary tree: CBT
Initialize Node = {n,,n,,---,ny} is the node of ST,
N is the number of nodes
For each node n, € Node
Initialize C; = {¢,,¢,, - ,c,} is the child node of n;
Ifr>2r==1
Generate a node ¢y,
Let C; = {c/, Cpew}
Insert c,, in the position i+ 1 of Node, Node =
{n1, e Ry ey, -+ Ay}
Ifk>2
Crew={C2,C3,7++,C1}
End if
End if
End for
CBT=ST
Return CBT

Since leaf nodes (such as identifiers) of AST contain
lexical information of source code, non-leaf nodes of
AST contain syntax information similar to syntax struc-
ture such as whileStatement. Thus, the preorder traversal
is used to get the symbols of each node to form the cor-
pus. The skip-gram of word2vec is used to train the cor-
pus, which is expressed as a real value vector, so as to
capture the features of symbols and use them as the ini-
tial value of statement tree coding. The initial value of the
vector is O for the nodes added after being transformed
into a CBT.

Given a statement tree ST, n represents a non-leaf
node. The vector matrix L € R d is the vector dimen-
sion after using word2vec training, and |V| is the code
elements number in the training set. According to the
position p, of node n, the word n vector representation of
x, = Lp, € RY can be acquired. Then the vector represen-
tation of n can be calculated by the following formula:

V,=c(W'x,+V, +V,,+b,) (1)

where W, € V** represents the weight matrix, k repre-
sents the vector dimension of code and b, is the offset
term, V,; and V,, are the vector representation of two sub
nodes of node n, and o is the activation function.

The encoder traverses the statement tree which is trans-
formed into a CBT, and then constantly calculates the

code element information of the node and the vector rep-
resentation of its child nodes as the new input to obtain
the vector representation of the current node. Through the
traversal of the hierarchical structure of the statement
tree, the vector representations of the nodes in ST are
obtained. Ultimately, the important features of each node
are extracted by max pooling. Then the peek value of
each dimension (k dimensions in total) is obtained in all
nodes and then ST is transformed into vector representa-
tion.

3.3 Code representation based on sequence
naturalness

Hindle et al. [18] have proved that most codes written by
developers are concise and short, which can extract the
corresponding features to be learned by the language
model.

The source code is not only natural, but also better than
natural language. Hu et al. [15] proposed that the bug
characteristic in the source code can be depicted based on
the perspectives of lexical, semantic, and syntax accu-
rately. Therefore, based on the sequence naturalness and
feature of the source code, we input each coding state-
ment into LSTM to procure the whole source code for
code embedding.

Based on the above-mentioned statement tree vector
sequence, LSTM is used to effectively obtain the depen-
dency and sequence naturalness of source codes. LSTM
is a recurrent neural network (RNN). At time ¢, V, € R* is
taken as input, V, is the ¢ statement in the statement
sequence.

il = O—(Wxivl + Wh[hl—l + bl)

fi=oW,V,+W, h,_ +b)

0; = O-(onVt + Whaht—l + bo) (2)
¢, = fioc,_, +i,otanh(W. .V, + W, .h,_, +b,)

h, = 0,0tanhc,

where h, is the output vector of time ¢, o indicates the
sigmoid function, and o represents the point multiplica-
tion by element. Mean pooling is associated with the
LSTM to extract the output ki, of each time step. LSTM
remembers long-term states by adding a memory unit c,
which makes the network learn to update the hidden state
of a given data at the right time. Consequently, the
sequence characteristics of source codes can be used to
enrich high-level semantic features [8].

4. Bug localization based CRSS

4.1 Framework of the proposed bug localization
model

In this paper, software bug localization is regarded as a
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learning task [2,8,14]. For source files S; € {5y, 55, , Sy, }
and bug reports b; € {b,b,,---,by,}, N; and N, represent
the quantity of source files and bug reports, respectively.
The constant label y;; indicates the correlation of the sam-
ple pair (s;,b;). For some sample pairs with known corre-
lation, a training set D = {(s;,b;,y;;)} is constructed. The
goal of this paper is to train a deep learning model and
study a method f which is used to map the source code to
the eigenvector v. For any sample pairs (s;,b;), their simi-
larity score;; = f(s;,b;) is close to the corresponding label
Yij-

The integrated framework of our model is demon-
strated in Fig. 5. Firstly, three kinds of text features of
bug report and source code are analyzed, including VSM,
token matching and stack trace. Then, according to the
CRSS proposed in Section 3, the source file is trans-
formed into vector. The syntactical and semantic feature
of the source code is analyzed. And the semantic and syn-
tactical similarity among source file and bug report will
be computed. Finally, the similarity integration will be
performed by using the DE method and the LSTM is
trained.

1 .
|Semantic and,

| syntactical |

similarity }

|
|
| [1.rVSM

} 2.Token matching
|

|

3.Stack trace

Semantic and | !

syntactical
\
\
: Ranked files
\

similarity
I Similarity integration }

Fig.5 Framework of bug localization model

4.2 Similarity integration oriented by syntax,
semantics and text

In our research, the source file is converted into an AST,
we can excerpt some code elements, such as class name,
grammatical structure, variable, comment and so on.
Some important information can be extracted from the
bug report, such as summary, detailed description, stack
trace and pervious fixed file. The compositional words
are divided by the method of Camel Case splitting. For
instance, “packageName” can be divided to “package”
and ‘“Name”. The stop words, such as “public”, “pro-
tected”, “are” and “of” are evacuated in bug report and
source file. The derivation of each word is brought back

to the root formalization by employing the typical Porter
Stemmer.

According to the CRSS introduced in Section 3, the
source file is transformed into vector: Vs ={V,,V,---,
V,,, . After preprocessing, the bug report is trained by
skip-gram and represented by vector: Viy={V,,V,,- -,
V,.}. The cosine distance cos(r;,s;) = &(rievR,

i |7l % |s j|
§; € V) denotes the syntactical and semantic similarity
between them.

Based on the existing IR-based bug localization mo-
dels, the surface similarity is evaluated by adopting VSM,
token matching and stack trace in this paper. The lexical
correlation is calculated based on the rVSM method
which is introduced in [1]. The code elements of source
files (variable, method name, comments) are employed to
severally map the content of the bug reports. The amount
of exactly word matches is used to express the token
matching similarity. A study [19] about the stack trace
displays that only ten percent of defected files are not
existed in the topped stack list. And it can be extracted
from the bug reports by utilizing the regular equation
(#=D\((.*M\). The stack trace similarity is measured by
the inverse of the source files ranking in the stack list [20].

According to the above description, the four kinds of
similarity (syntactical and semantic similarity, VSM,
token matching, and stack trace) can be obtained. They
are linearly built-up to procure the eventual similarity that
is the fundament to sort the source file. The objective of
linear combination is to maximize the objective function:
obj = MAP+MRR where MAP and MRR represent
mean average precision and mean reciprocal rank respec-
tively [21]. The objective function can be maximized and
the value of parameters can be assessed by the DE algo-
rithm.

Therefore, according to the DE algorithm, the linear
combination weight of four groups of correlation is
obtained and the correlation y° is measured by the follow-
ing equation:

4
Y= ZwiSimi (3)

where Sim; and w; represent the weight corresponding to
the ith similarity respectively. Use y*=sig mod (y°) €
[0,1] to make the similarity range between 0 and 1.
Accordingly, the correlation y* between source file and
bug report is obtained. The loss function is defined as the
binary cross entropy, and the goal is to minimize the loss.
The formula is shown as follows:

JO,y",3) = ) (=(r-Togy(3) + (1 =) -logy(1 = y))).
@)
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The loss can be minimized when the bug localization
model is trained. Because AdaMax is computationally
efficient, AdaMax is used as the optimizer of model train-
ing in this paper.

The model will be saved when the whole parameters
reach the best state. For a new bug report, source files are
preprocessed with the statement tree sequence, and the
surface text similarity is calculated by using VSM, and
the token matching and stack trace between them are cal-
culated as well. And then the above data are input into the
trained model for prediction. The output is the probabi-
lity that the source file may contain defects, and a sorting
list of source files can be obtained.

5. Experiment
5.1 Experimental setting

The proposed model is evaluated by empirically assess-
ing its performance based on the four datasets in compari-
son to the existing advanced bug localization techniques.

Benchmark dataset: The dataset is shown in Table 2,
which has been adopted to evaluate different bug loca-
lization models (such as learning rank and word embed-
dings LR+WR [6] and DeepLocator [7]).

Table 2 Statistics of the benchmark dataset

Project Time #Bug report #Source file

Aspect] 03/02-01/14 593 4439

Tomcat 07/02-01/14 1056 1552
SWT 02/02-01/14 4151 2056
IDT 10/01-01/14 6274 8184

Actually, it is difficult to train whole sample pairs due
to the largely source files quantity. For this reason, some
sample pairs are chosen for experiments, which are
ranked among the top three hundred in the similarity
score list based on the information retrieval [22]. The bug
reports will be arranged in chronological order by the
data they are committed. The bug reports are spited into
three parts, with training set accounting for 60%, valida-
tion set for 20%, and test set for 20%.

In this paper, javalang is used to convert the source file
into AST. Using the skip-gram algorithm in word2vec,
the term in bug report (embedding size is set to 300), and
terminal node and non-terminal in AST are embedded
(embedding sizes are set to 200). The hidden layer
dimensions of the statement encoder and LSTM are set to
300. AdaMax is used for training with the optimizer and
the learn ratio is 0.001.

5.2 Evaluation metrics

Three metrics are employed to evaluate the achievement

of our introduced bug localization model.

(1) Top N Rank

The Top N Rank indicates the bug report quantity in
which the actual error source file appears at the first N
files in the acquired ranking list.

(i) MAP

Because of many relevant documents in a single query,
its mean accuracy can be calculated as follows:

M . -

P(i) X pos(i)
AvgP, = -
& ; number of positive instances

®)

where i indicates the ranking, M represents the search-
ing elements quantity, pos(i) represents whether i is
related to the query. P(i) is calculated as below:

number of positive instances in top i position

P() = l ®)
The MAP is the average value for the mean accuracy
of each query.
(iii) MRR

MRR is adopted to measure the overall accuracy of
bug localization for all bug reports in the dataset. The
query’s reciprocal rank represents the reciprocal of the
first correctly located source file, which is calculated as

1w 1
MRR = — 7
M;ranki )

where M represents the amount of bug reports, rank; is
the rank of the buggy source file containing the error in
the ranked similarity list returned by the ith bug reports.

The above three metrics are proportional to the accu-
racy of bug localization.

5.3 Results and analysis

To generally assess the effectiveness of our introduced
code representation method CRSS and bug localization
model based syntactical and semantic information of
source code, the following issues should be focused on
research and analysis.

Question 1: How efficient is our introduced model, and
whether it is better in comparison to five existing bug
localization models?

Question 2: Does the code representation method
CRSS can really enhance the effectiveness of bug loca-
lization?

Our introduced model in this research will be exerted
to four dataset (Table 2) to analyze the above two
research questions. The performance of our proposed
model is estimated by three metrics.

(1) Questions 1 (Comparative analysis with five exist-
ing bug localization models)
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In order to substantiate the effectiveness of our model,
five software bug localizations are compared with
BugLocator [1], bug location based on deep neural net-
works (DNNLOC) [23], DeepLocator [7], a novel CNN
to process peogramming lanaguage (NP-CNN) [2] and
customized abstract syntax trees (CAST) [24]. BugLoca-
tor is a bug localization method based on information
retrieval, and the last four are based on deep learning. In
general, our bug localization model has enhanced the
effectiveness on three metrics, as shown in Table 3.
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Compared with BugLocator, Table 3 demonstrates that
our model performance has increased by more than 50%
on three metrics. This is because our model not only uses
the CRSS to analyze the syntactic and semantic informa-
tion of source files, but also considers the textual simila-
rity of stack trace and token matching. Therefore, on the
basis of IR, further analysis of the programming struc-
ture, text attributes can significantly increase the accu-
racy of bug localization.

Table 3 Experimental results for our model, BugLocator, DNNLOC, DeepLocator, NP-CNN and CAST

Project Method Top@1 Top@5 Top@10 MAP MRR
BugLocator 0.216 0.473 0.571 0.276 0.369

DNNLOC 0.478 0.712 0.804 0.320 0.520

DeepLocator 0.400 0.660 0.780 0.340 0.490

Aspect] NP-CNN 0.460 0.730 0.810 0.401 0.531
CAST 0.500 0.766 0.803 0.418 0.536

Our model 0.573 0.808 0.884 0.503 0.578

BugLocator 0.246 0.408 0.533 0.284 0.325

DNNLOC 0.352 0.690 0.803 0.370 0.450

DeepLocator 0.360 0.600 0.750 0.390 0.480

SWI NP-CNN 0.365 0.700 0.812 0.381 0.475
CAST 0.372 0.701 0.825 0.425 0.503

Our model 0.464 0.771 0.898 0.468 0.549

BugLocator 0.183 0.427 0.508 0.307 0.389

DNNLOC 0.403 0.650 0.743 0.340 0.450

DeepLocator 0.400 0.640 0.730 0.390 0.470

Pt NP-CNN 0.420 0.669 0.749 0.383 0.461
CAST 0.432 0.681 0.757 0.388 0.467

Our model 0.515 0.726 0.826 0.434 0.516

BugLocator 0.354 0.645 0.709 0.431 0.485

DNNLOC 0.539 0.729 0.804 0.520 0.600

Tomeat DeepLocator 0.520 0.720 0.800 0.540 0.600
NP-CNN 0.530 0.700 0.792 0.529 0.597

CAST 0.507 0.766 0.825 0.556 0.612

Our model 0.625 0.814 0.877 0.601 0.658

Compared with NP-CNN, Top@1, Top@10, MAP and
MRR are enhanced by 23.1%, 10.2%, 18.5% and 10.7%
respectively. NP-CNN adopts vocabulary and program
structure features to study uniform characteristics from
bug report and source code. Although CNN is used to
extract the features according to the program structure of
the source file, the syntax characteristic of the program-
ming language is unconsidered, and the nesting and
dependency relationship between statements are not well

analyzed. At the same time, the text attributes of source
files and bug reports are not analyzed. Our model can
locate defects in syntax, semantics and text, and analyze
the correlation among source file and bug report more
comprehensively, so as to increase the effectiveness of
our introduced model.

Compared to CAST, MAP and MRR enhanced by
8.1%—-20.3% and 7.8%—10.5% respectively, Top@l,
Top@5 and Top@10 increase by 20.4%, 7.7% and 10.0%
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respectively. The CAST enhances the TBCNNs model by 1.0
customizing AST, but it does not consider that when the 0.9 ¢
source file has complex nested structure, the AST struc- 0.8 f
ture will become very large and deep, which may lead to %07}
. . . . ®
the problems of gradient disappearing and difficulty to §~ 06 |
capture the dependency between statements. In this paper, 0.5
CRSS is proposed. The AST is split based on statement 04t
granularity, which can avoid the above problems and '
obtain the syntactical and semantic information of source 0 T T 4 s e 7 s 9 1o
codes, and make the bug localization more accurate. At K
the same time, compared with CAST, our model takes —— : Our model; —— : Word2Vec; —»— : NoneCRSS.
more into account the text attributes. Fig.7 Top@K comparison on JDT

Therefore, through above experiments, the overall per-
formance of the proposed software bug localization
model is improved. And CRSS, considering the syntacti-
cal and semantic information of the source code, can fur-
ther enhance the comprehensive software bug localiza-
tion effectiveness.

(i1) Question 2 (Analysis of CRSS method in bug locali-
zation)

To validate the influence of the introduced code repre-
sentation approach CRSS, our model is contrasted with 03 .
two methods. The first one is to use VSM, token match- 12 3 4 5 6 7 8 9 10
ing and stack trace to analyze the relevance among the e Ourmodel: = :WI; d2Vec: —— : NoneCRSS.
source file and the bug report to analyze defects Fig.8 Top@K comparison on SWT
(NoneCRSS). The other is to change the CRSS into
Word2Vec, and use skip-gram to convert the source file
into vector representation. 1.0

As shown in Fig. 6—Fig. 11, the proposed model is bet- 0ol
ter than the other two methods in all aspects of evalua- gl
tion metrics. Compared with NoneCRSS, the proposed \ ’
model is increased by 18.8%, 14.2% and 13.1% on ® 077
Top@]1, Top@5 and Top@10. The other two metrics are e 0.6
improved by 9.1%—-39.3% and 9.1%—41.3%, respec- 0.5
tively. Further analysis of NoneCRSS and Word2Vec 0.4+t
shows that Word2Vec in the Top@N, MAP and MRR is 0.3 A S A IR S SN S
better than NoneCRSS. Therefore, this result shows that 12 3 45 X 6 7 8 9 10
the accuracy of software bug localization can be —»— - Our model; —=— : Word2Vec; —— : NoneCRSS.
improved by further considering the semantic correlation Fig.9 Top@K comparison on Tomcat
between source file and bug report text.
W77 717 717 7 77 0.7
09
0.8 F
ég 0.7 |
S 06
0.5 F
04}
o3 L
1 2 3 4 5 6 7 8 9 10 0
K Asepct]  Tomcat SWT IDT
—— : Our model; —=— : Word2Vec; —— : NoneCRSS. B : NoneCRSS; mmm : Word2Vec; Il : Our model.

Fig. 6 Top@K comparison on AspectJ Fig. 10 MAP comparison on four datasets
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0.7
0.6}
05}

~ 041

a4

=03}
02}
0.1}

Tomcat SWT JDT

Asepct]
m : NoneCRSS; mmm : Word2Vec; mmm : Our model.

Fig. 11

MRR comparison on four datasets

Compared with Word2Vec, the MAP and MRR of our
model are improved by 7.5% and 7.0% respectively,
Top@! and Top@5 are enhanced by 3.6%—5.9% and
2.9%—-9.9% respectively. The results show that the CRSS
is better than that of skip-gram in the code representation.
Because the former transforms the source code into AST,
it considers not only the program structure, but also con-
siders the semantic and syntactic information of the
source code, and the CRSS more comprehensively repre-
sents the source code, which plays a good role in soft-
ware bug localization.

Therefore, it is of considerable implication to research
the grammatical information of source codes by using
AST. Generally, CRSS can increase the bug localization
accuracy.

6. Conclusions

The developers and testers of software projects need to
modify relevant buggy codes based on the content of bug
report. However, for complex and large project codes, the
locating process can be time-consuming. Therefore, it is
of great significance to reduce the time and cost of soft-
ware developer to utilize the bug localization model to
locate the defected files automatically.

In this paper, a software bug localization model based
on source file syntactical and semantic information is
proposed. Firstly, source file representation method
CRSS is proposed, which captures lexical, syntactic
knowledge at sentence level, and the naturalness of code.
Then we analyze the correlation between source file and
bug report from three aspects of syntax, semantics and
text. Finally, our experiments show that the capability of
the proposed model is superior to the existing methods
based on IR and deep learning. Experiments also show
that CRSS not only considers the program structure, but
also the semantic and syntactical information of the
source code. Therefore, it is reasonable that the perfor-
mance of bug localization can be enhanced by CRSS sub-
stantially.

The invocation relationship between statements and the

long distance dependency relationship are not reflected in
the AST, so in the future, the data flow diagram and con-
trol flow diagram of the source file can be added to repre-
sent the characteristic of the source code more com-
pletely, and the feature of the source file can be accu-
rately represented. And the generalizability of the pro-
posed model will be verified in other software projects.
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