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Optimal maneuvering strategy of spacecraft evasion based on
angles-only measurement and observability analysis

1 1

1 1,2 1,3,

ZHANG Yijie , WANG Jiongqi , HOU Bowen , WANG Dayi | , and CHEN Yuyun |

1. College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China;
2. Beijing Institute of Spacecraft System Engineering, Beijing 100190, China;
3. School of Mathematics and Big Data, Foshan University, Foshan 528000, China

Abstract: Spacecraft orbit evasion is an effective method to
ensure space safety. In the spacecraft’s orbital plane, the space
non-cooperate target with autonomous approaching to the
spacecraft may have a dangerous rendezvous. To deal with this
problem, an optimal maneuvering strategy based on the relative
navigation observability degree is proposed with angles-only
measurements. A maneuver evasion relative navigation model in
the spacecraft’s orbital plane is constructed and the observabi-
lity measurement criteria with process noise and measurement
noise are defined based on the posterior Cramer-Rao lower
bound. Further, the optimal maneuver evasion strategy in space-
craft’s orbital plane based on the observability is proposed. The
strategy provides a new idea for spacecraft to evade safety
threats autonomously. Compared with the spacecraft evasion
problem based on the absolute navigation, more accurate eva-
sion results can be obtained. The simulation indicates that this
optimal strategy can weaken the system’s observability and re-
duce the state estimation accuracy of the non-cooperative tar-
get, making it impossible for the non-cooperative target to accu-
rately approach the spacecraft.

Keywords: rendezvous evasion, orbit maneuver, angles-only
measurement, observability degree, posterior Cramer-Rao lower
bound.
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1. Introduction

With the development of the space technology, the num-
ber of space targets in orbit continues to increase. Space
debris, dead satellites, and other space non-cooperative
targets [1,2] pose a considerable threat to the spacecraft’s
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safe operation. For example, on December 3, 2021, the
Chinese Ministry of Foreign Affairs announced that the
Starlink 1095 and 2305 satellites launched by the US
SpaceX approached the Chinese space station danger-
ously twice on July 1 and October 21 respectively [3],
which posed a great threat to the space safety. Therefore,
it is essential to study the problem of spacecraft evasion
to ensure the space safety of the spacecraft during the
orbit operation, increase the spacecraft lifespan, and
maintain national space security [4,5].

When faced with the space threats from non-coopera-
tive targets, the spacecraft is required to respond them
timely. However, because of the limited resources in
ground-based measurement and control stations, there are
so many satellites information that ground station cannot
process timely and rapidly. Therefore, spacecraft needs to
have autonomous navigation capabilities. Because of the
limited computing and storage resources on the space-
craft, the spacecraft cannot process the information mea-
sured by multiple high-power sensors at the same time.
The optical sensor has the advantages of simple measure-
ment method, small magnitude, low power consumption,
and low cost, which is the most suitable sensor for per-
forming target observation and safety threats defense
tasks. In addition, optical sensors are equipment carried
by most satellites [5—7] .

Given this demand for high autonomy, single configu-
ration, low computational energy consumption, and the
unique advantages of optical navigation sensor configura-
tion, under the rigid constraints that the current on-board
computing and processing capabilities cannot be greatly
improved, simplifying the on-board navigation sensors
and using only optical navigation sensors may provide an
effective way to achieve autonomous spacecraft naviga-
tion and on-orbit evasion. Therefore, in this paper, theo-
retical analysis and numerical simulation are carried out
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for the specific scenario that both non-cooperative tar-
gets and spacecraft use angles-only measurement for rela-
tive navigation.

According to the different objects of spacecraft eva-
sion, non-cooperative target evasion without subjective
consciousness and non-cooperative target evasion with
autonomous approachability are studied separately as two
types of problems.

Current research methods for non-cooperative targets
without subjective consciousness are mainly based on
satellite collision probability and relative distance. Patera
et al. [8—10] proposed a method to calculate the probabi-
lity of a satellite collision by calculating the respective
state vector and error covariance matrix. And based on
this method, Patera proposed a maneuvering method to
reduce the collision probability. Wang et al. [11] used the
distributed iteration based on the collision probability to
solve the maneuvering direction and maneuver magni-
tude, and obtained the optimal evasive maneuver under
the conditions of fixed and unfixed maneuvering direc-
tions, respectively. Based on the in-plane constraint, Su et
al. [12] used the maneuver direction and maneuver mag-
nitude to solve the optimal impulse maneuver step by step
under the premise of ensuring the maximum rendezvous
distance or minimum collision probability.

For non-cooperative targets with autonomous approach
capabilities, current research methods usually convert the
maneuver evasion into a chase and escape the problem.

(i) The maneuver evasive strategy with maximizing the
interception time: Pontani et al. [13] studied the numeri-
cal solution in the optimal maneuver under the three-
dimensional orbit of the chase and escape problem.

(i1) The optimal strategy of maneuver evasion with the
game gains of spacecraft distance and energy consump-
tion: Jagat et al. [14] introduced the fixed-time nonlinear
quadratic differential problem. Backward integration of
the Tei equation obtains linear feedback optimal control.
Li et al. [15] combined the optimal estimation with opti-
mal control, aiming to calculate the optimal evasion
maneuver by estimating the gain information of the non-
cooperative target at the current moment.

(iii) Optimal maneuvering strategy with observability:
Yu et al. [16,17] considered the spacecraft’s completely
unobservable maneuvering method defined by the spatial
geometric relationship and used the difference between
the measured values before and after the maneuver as the
optimized object, and then proposed an optimal maneu-
ver evasion. Yu et al. [18] considered the influence of re-
lative motion on observability and used observability
degree as an index to optimize the maneuver evasion.

Compared with non-cooperative targets without sub-
jective consciousness, the spacecraft’s evasion of non-

cooperative targets with autonomous approach capabili-
ties requires more complicated considerations. For space-
craft evasion schemes that consider the factors such as the
interception time, the evasion distance, and the fuel con-
sumption, these methods always assume that the states of
the spacecraft evasion system are ideal and completely
observable. However, in practical applications, it is ne-
cessary to consider system observability. Compared with
the above evasion schemes, the evasion scheme based on
system observability provides a new optimization idea for
spacecraft evasion. Especially for the development of
spacecraft autonomous evasion, it is more necessary to
ensure the effectiveness of the autonomous evasion stra-
tegy. Therefore, in this paper, the spacecraft autonomous
evasion strategy based on observability analysis is
adopted.

When a spacecraft performs autonomous evasive navi-
gation, it needs to use the camera to detect the distance
and azimuth information of the non-cooperative target.
Whether the measurement information can accurately cal-
culate the relative state between the spacecraft and the
non-cooperative target mainly depends on the observabi-
lity of the evasion navigation system.

However, since angles-only measurement relative na-
vigation does not directly provide the distance measure-
ment information, the observability of the angles-only
measurement relative navigation system should be ana-
lyzed to ensure the effective estimation for the relative
state.

The system observability analysis method is mainly
composed of two aspects: qualitative judgment and quan-
titative expression. The observability degree is a measure
of the observability of the system. For the analysis of
observable degree, there are several methods in the pub-
lished literatures:

(i) The eigenvalues and eigenvectors of the filtered
estimation error covariance matrix [19]. The method
needs to obtain the mean square error matrix, which can-
not be directly analyzed based on the state equation and
measurement equation.

(i1) Singular value decomposition (SVD) of the observ-
ability matrix of the filter system [20]. With the increase
of time, the dimension of the observability matrix gradu-
ally increases, the calculation amount of the correspond-
ing SVD gradually increases, which contradicts with the
limited resource.

(iii) The spectrum decomposition analysis of a Hermi-
tian matrix [21]. The calculation process does not
increase with time which is beneficial to analyzing the
observability degree of each state component.

(iv) Analysis of the Kalman filter results observability.
The weighted least squares observability degree analysis
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method considers the influence of observation noise of
the filter system [22]. This method adds the observation
noise to the calculation of observability degrees and
improves the filtering accuracy.

(v) The posterior Cramer-Rao lower bound [23] with
the process noise and observation noise together [23].
This method yields a more comprehensive and accurate
estimation result.

The autonomous evasion strategy of the spacecraft
using angles-only measurement information is studied in
this paper. For non-cooperative target with autonomous
approach capability that carry the same observation loads
as one’s spacecraft, the relative state equation of the
spacecraft is decomposed into the orbital plane and out-
side the orbital plane, in the case of not affecting the nor-
mal orbital mission of the spacecraft as much as possible.
For the measurement equation, the pseudo-range informa-
tion generated by the impulse maneuver is considered to
make the evasion method more credible. For the con-
struction of the observability metrics, the posterior
Cramer-Rao lower bound method is used, and the pro-
cess noise and the observation noise in the relative navi-
gation system are considered at the same time. For the
maneuver evasion, the observability degree is consi-
dered as the optimization objective to obtain the optimal
strategy for autonomous evasion of the spacecraft.

The rest of this paper is organized as follows: The
maneuvering evasion navigation model is established in
Section 2. Section 3 defines the observability measure-
ment criteria based on the posterior Cramer-Rao lower
bound, which include both the process noise and the mea-
surement noise. Based on the above-mentioned observ-
ability degree analysis method, Section 4 proposes the
optimal impulse maneuver strategy. Section 5 conducts
the numerical simulation scenario of space rendezvous
evasion. Section 6 gives the conclusions.

2. Model of maneuvering evasion system for
space non-cooperative target

2.1 System model description and model
assumptions

The space non-cooperative target and the own spacecraft
are considered as the tracking spacecraft (hereinafter
referred to as the chaser), and the target spacecraft (here-
inafter referred to as the target), respectively. Assuming
that the chaser can take the initiative to approach the tar-
get.

The target orbital coordinate system and the optical
camera measurement coordinate system are constructed
in Fig. 1 and Fig. 2, respectively. The y-axis points to the
center of the central celestial body, the x-axis points to

the speed direction of the target, and the z-axis can be
determined by the right-hand rule. The optical camera
measurement coordinate system takes the optical camera
as the origin, and the coordinate axis direction is parallel
to the target orbit coordinate system. The optical camera
can only measure two kinds angle information, namely
the elevation angle 7 and the azimuth angle 6. The eleva-
tion angle 7 is the angle between the target and its projec-
tion in the x.-y. plane, and the azimuth angle 6 is the
angle between the target’s projection in the plane x.-y,
and the x_.-axis direction.

Center object

Fig.1 Orbital coordinates system

Chaser

Optical camera

Fig. 2 Optical camera measurement coordinate system

The chaser actively approaches the target through
impulse maneuvers, and the target implements impulse
evasion maneuvers according to a specific strategy to
achieve the purpose of avoiding dangerous rendezvous
with the chaser. In space rendezvous evasion missions,
the target often constrains the maneuvering impulse in the
orbital plane because the in-plane maneuvering control is
simple [12], and changing the direction of the target’s
orbital plane will affect the target’s on-orbit mission.

Due to the current conditions of space collision and
rendezvous, the chaser generally adopts a coplanar model
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[24], using the impulse orbit-change to approach the tar-
get. For two spacecrafts moving in space, the observabi-
lity of the two spacecraft in different planes is much
greater than their observability in the same plane [16].
Therefore, the evasion of the chaser and target in the
same orbital plane is mainly studied. The chaser actively
approaches the target through an impulse maneuver. If
the target does not evade, a dangerous rendezvous will
occur. As shown in Fig. 3, the blue dashed line is the
chaser trajectory, while the black dashed line is the target
trajectory. When the chaser applies an impulse maneuver
at #,, it shifts from the track farther away from the target
to the target. When the trajectory is closer, the target
needs to adjust its trajectory in time. Otherwise, a danger-
ous rendezvous will occur at ¢, at the dangerous intersec-
tion in Fig. 3.
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Fig. 3
target and the chaser

Schematic diagram of dangerous rendezvous between the

Based on the above scenario description of the maneu-
ver evasion navigation system, the following assump-
tions are constructed:

(1) The optical camera is installed at the mass center of
the target, that is, the optical camera measurement coordi-
nate system coincides with the target orbital coordinate
system;

(i1) The chaser and the target are on the same orbital
plane, and their orbital coordinate systems are parallel to
each other;

(iii) The chaser and the target both carry only optical
sensors, obtaining the elevation angle and the azimuth
angle.

2.2 State model

The problem of evasive maneuver in the case of a dange-
rous rendezvous of spacecraft is considered and the rela-
tive distance between the target and the chaser is much
smaller than their orbit radius. At the initial time #,, the
initial relative state is X (0) = [x(0),y(0),z(0),x(0),y(0),
z(0)]". The classical Clohessy-Wiltshire (C-W) equation
is adopted to describe the relative motion of the two
spacecraft in the maneuver evasion navigation system:

Xk = ¢Xk—1 +Gu +wk (1)

where k denotes the time epoch, X ()Fry]'=x &),y k),
z(k),x(k),y(k),z(k)]" represents the relative state of the
chaser relative to the target, r= [x(k),y(k),z(k)],
v=[x(k),y(k),z(k)], u is the chaser’s orbital maneuver,
w, represents the process noise at time k, and @ is the
state transition matrix. The specific expression of @ is as
follows:

— ¢rr ¢rv _
o= o o ]:[ e ]_
, . 21— .
4-3cosn 0 0 Sl:)” ( :05") 0
2 —1) 4sinn-3
6inn—n) 1 (cosn—1) 4sinn—3n 0
@ @ sinn
0 0 cosn 0 0 —_—
w
3wsinn 0 0 cosn 2sinn 0
6w(cosn—1) 0 0 —2sinn 4cosn-3 0
0 0 —wsinn 0 0 cosn|

where n = wt, T=1t—-1,, w is the average orbital angular
velocity of the chaser, and @,,, @,,, ®,,, and D,, decom-
pose @ to represent the relative position and relative
velocity state transition matrix, respectively.

When the thrust acceleration u = 0 in (1), the equation
of the relative state is expressed as X, = ®X;_| +w;.

Since the target evades the chaser through the impulse
maneuvers, suppose that the target makes the impulse
maneuver at time k—1, and AV =10, 0,0, V., V,, VI ,
where V,,V,, and V, are the impulse components of the
target in the x, y, and z directions, respectively. There-
fore, the state equation of the chaser at time & in the tar-
get’s orbital coordinate system can be described as fol-
lows:

Xk = ¢Xk—1 + ¢AV+wk. (2)

Similarly, because the orbital coordinate systems of the
chaser and the target are parallel to each other, if the
chaser approaches the target with the impulse maneuver
AV at time k—1, then the target’s state X’(k) in the
chaser’s orbital coordinate system at time k can be
obtained: X' (k) = [r(k),v(k)]", where rk)=[-x(),
—y(k),—z(k)], and v(k) = [-x(k),—y(k),—z(k)]. And the
corresponding state equation can also be expressed in the
form of X', = ®X'\_, + DAV +w,.

At time 1, the relative state of the z-axis is only related
to the initial state of the z-axis and the angular velocity,
and has no relation with the relative state in the x-y plane.
The relative state in the x-y plane is also independent of
the relative state of the z -axis. Therefore, the relative
motion of the two spacecraft can be decomposed into two
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independent motions: in the orbital plane (x-y plane) and
perpendicular to the orbital plane (z-axis direction).

Since the problem studied is the impulse maneuver
evasion of the targets in the orbital plane, at time k, the
relative motion of the target to the chaser in the orbital
plane is as follows:

Xy=D, Xy + DAV, +wy 3)

where X, (k) =[ x(k), y(k), x(k), y(k) 1T represents the
relative motion state of the target in the orbital plane,
AV;=10,0,V, V, 1" is the impulse maneuver in the
orbital plane, and the specific expression of @; is as fol-
lows:

D, = D), D]

where @;, is a position-related state transition matrix in
the orbital plane, and @, is a speed-related state transi-
tion matrix in the orbital plane.

2.3 Observation equation of maneuver
evasion system

Assume that the relative state of the target in the chaser
optical camera measurement coordinate
Xz: = [rz:T’ vT]Ty r(: = [xc’ ym Zc']T and

c

system is
where
Ve = [%., Vo, z.]". According to the assumption, the opti-
cal camera measurement coordinate system coincides
with the chaser orbital coordinate system, therefore,
X.=X=[r", vT]T =[x, v, 2, %, ¥, z]", where r is the re-
lative position vector and v is the relative velocity vector,
denoted as r=|[x,y,z]' and v=|[x, 3 z]'. Then the
observation equation is as follows:

Z= [ Z ]—h(X)+s=

arctan ( &,

o

xX2+y2 ) |+
Yy &
arctan (— )
X

“4)

—_—

where 1 is the measured elevation angle; 6 is the mea-
sured azimuth angle; ¢, and &, are the corresponding
measurement noise of 7 and 6, respectively.

When the spacecraft is maneuvering, the relative dis-
tance information between the target and the spacecraft
can be obtained through the geometric positions of the
two satellites before and after the maneuver, which is
called pseudo-range information [25]. Because of the
pseudo-range information, the measurement equation of
the angles-only navigation system described in this paper
is different from the measurement equations in the previ-
ous literature. There are three reasons to consider the
pseudo-range measurement here. Firstly, the relationship

between relative navigation accuracy and the maneuver-
ability needs to be analyzed. Secondly, it is more conve-
nient to implement the state estimation through the filter-
ing algorithms. Finally, the pseudo-range generated by
the maneuvering is equivalent to adding a piece of mea-
surement information to the measurement equation,
which will improve the observability of the system. Since
the optimal evasion equation established in this paper is
related to the observability, it is necessary to analyze the
pseudo-range measurement information.

In the optical camera measurement coordinate, 7
denotes the relative position vector of the target when it is
not maneuvering and r is the relative position vector after
the orbital maneuver. The position vector Ar is the
change vector of the target’s relative position after the
orbital maneuver is applied, « is the angle between r and
7, and B is the angle between r and Ar, as shown in
Fig. 4.

After orbital maneuver

Before orbital maneuver

Fig. 4 Schematic diagram of impulse maneuver increasing rela-
tive distance information

Suppose the state of the target relative to the chaser at
the initial time #, is denoted as X, = [ro, vo]" = [Xo0, Yo, Zo»
X0, Yo» Zo]". At this time, without applying orbital maneu-
vering, the relative position vector 7 at the next time is
denoted as

;; = ¢Irrr() + ¢1rvv0- (5)

At the initial moment, make the impulse orbital maneu-
ver be AV, and then the relative position vector r at the
next moment is

r= djrrrO + ¢rv (vO + Av) ) (6)

and then the relative position change AV caused by the
impulse orbit maneuver Ar can be written as follows:

Ar=r—-r=®,AV. @)

According to Ar, r, and 7, the angle a between r and
7, and the angle 8 between r and Ar can be described as
follows:

a= arccos( rer ), ®)

-F
Il 7|
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B= arccos( F-Ar ) 9

[7]1Ar]

According to the law of sine function, the following
equation can be obtained:
r Ar|
il _ 1Ar (10)
sinf  sina
And the relative distance between the two spacecraft is
|r|, and can be written as

_|Ar|sing
sina

= |r] an

Therefore, the relative distance information p between
the target and the chaser can be obtained. Before and after
the orbital maneuver, there is the angle error between the
position vectors, vy is the error angle, as shown in Fig. 5.

Fig. 5 Schematic diagram of relative distance error

In Fig. 5, y is the angle error between the position vec-
tors caused by random errors, p,” and p,” are the actual
relative distances obtained due to the angle error, p is the
relative distance without angle error, and Ar is the rela-
tive position change vector. According to the law of sine
function, p,” and p,’ are as follows:

sina
'=———|A 12
b sin(cz+y)| . (12)
sina
= ———|AF|, 13
p Sin(a_y)l rl (13)

and the relative distance error Ap can be written as

Ap =o' —pl = lp" —pl=
ycosasing

IRV A (14)

sin“a +y?cosasina
According to (11) and (14), we can obtain
ypcosa

Ap = (15)

sina+ycosa’

Therefore, the standard deviation ¢, of the relative dis-
tance can be calculated as follows:

YpCos

& = \/ S0 =2+ o -p7] - (16)

sina+ycosa’

Then the observation equation can be written as follows:

Z
arctan [?]
\/ x-+y &,

arctan(z) +| o (17)
X

&p
VX2 +yr+ 22
where g, is the measurement noise of the relative dis-

tance. The measurement noise covariance matrix is

R =diag([ &, &, £ ). (18)

n’ P

N
Il
D I3

In addition, since this article considers that the
approach of non-cooperative targets and the evasion of
one’s own spacecraft are both in the orbital plane, only
the azimuth angle 6 is changing in the orbital plane. And
the elevation angle 7 =0. Therefore, the observation
equation is as follows:

&y

Z= [ ﬁ } =h(X)+e=

} (19)

P

5)
arctan| =
X +
X2 +y?

where 6 is the measured azimuth angle, &, is the corre-
sponding measurement noise, p is the relative distance,
and g, is the measurement noise of the relative distance.
Take the derivative of h(X;) with respect to X;, the
observation matrix H, can be written as follows:

e 000
oh(X)) X2 +y? V2 + X2
H, = ' M y 0o (20)
2+ A+

Combining (3) with (19), we can obtain the maneuver-
ing evasion model of the target, and the relative state of
the target can be estimated with unscented Kalman filter
(UKF) [26] .

3. Angles-only relative navigation observabi-
lity analysis

It is necessary to consider the influence of the process
noise and observation noise on state estimation accuracy
when using UKF for the relative state estimation.

The Cramer-Rao lower bound represents the smallest
lower bound of the estimated covariance that the filter
can achieve under certain observation conditions. The
improved conditional posterior Cramer-Rao lower bound
[23] is used to define the observability degree of the sys-
tem. The method considers both the process noise and the
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observation noise of the maneuvering evasion system.
For nonlinear system models with process noise and
observation noise:

{xk:f(xkl)+wkl @1

Zi = h(x,) + &

where x;, represents the system’s state vector at time k,
and z; is the observation vector of the system at time k.
f(xi_1) and h(x;) are the nonlinear state function and
observation function of the system, respectively. w,_; and
&, are not correlated with each other, and the process
noise with the zero mean value and the variance Q and
the measurement noise also with zero mean value and the
variance R. In the model of the maneuver evasion sys-
tem, the state equation in (3) is linear, and the measure-
ment equation in (19) is nonlinear.

The Fisher information matrix F, at time k [27,28] is
expressed as

F,=D?-D}(F.,+D}) D! (22)
where
D{' =E[-A¥ Inp(xlx,.)|
D =E[-AY Inp(xlx..)|
D}' =E[-A Inp(xlx,)) (23)
DY =E[-A%Inp (xefxi )| +
E[-A% Inp (z )|
where
Ar=V.V, = 00

dx By
E[-] is the expectation, p(x;|x;_;) and p(z.|x;) are the
conditional probability density of the state equation and
the measurement equation, respectively.

The following relationship [23] is established:

1
—Inp(xlx ) =c + §(g1(xk))TQ (g1(x1)
(24)

1
—Inp(zilxy) =c + z(gz(xk))TQ (g2(x0)

where g,(x,) = x, = f (Xi-1) , 82(%1) = X — f(x,-1), €1 and
¢, are constants, and then (23) can be simplified to

D' =E{V.. f )@ [V f )] |
DP*=-E{V, [ (x.))

D} =E(V, [T (x))

D?=Q" +E{VxJzT (x)R™ [kahT (xk)]T}

(25)

where

V_B

A

Equation (25) is introduced into the maneuver evasion
system, and we can obtain

D'=®,"0"'®,

Dzlcz — _¢1TQ—1

Dil — _Dl]cz — ¢1TQ—]
D?=-Q"'+H, R'H,,

(26)

Then, (22) can be rewritten as

-1
F,=Q"'+HR"'H-Q"®(F_ +0'Q"'®) &'Q".
27)
According to the matrix inversion lemma, the above
equation can be written as

Fo=HR'H.+(Q+ ®F &") (28)

where (28) is the lower bound of Cramer-Rao at time &,
H, is the observation matrix obtained at time k accord-
ing to (20). The initial value F, of the lower bound of
Cramer-Rao and the initially estimated error covariance
matrix P, of the nonlinear system filter are related, usu-
ally, Fo, = P;' [27] , the Cramer-Rao lower bound o of
the i th state component is the diagonal element of the
Fisher information matrix F,. Therefore, based on the
Cramer-Rao lower bound, the relative position’s observ-
ability degree ¥, and the relative velocity’s observabi-
lity degree ¥, [18] of the two spacecraft in the orbital
plane at time k are defined as follows:

%=\Z@, (29)

w, = \ Za;. (30)

The Cramer-Rao lower bound represents the smallest
lower bound of the estimated covariance that the filter
can achieve under certain observation conditions. There-
fore, when the relative position’s observability degree ¥,
and the relative velocity’s observability degree ¥, corre-
spond to smaller values, the smaller the error of the filter
estimation, the better the corresponding observability.

4. Optimal maneuver strategy

Under the condition that the observation conditions of the
two spacecraft and the observation performance of the
space-borne optical camera are the same, the relative
states estimated by the two spacecraft are also the same.
Therefore, the observability degree between the target
and the chaser is the same. For the spacecraft’s in-plane
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evasion problem, when the target automatically avoids
the chaser by maneuvering, the worse the observability of
the target to the chaser is, the worst the observability of
the chaser to the target is. Further, the best evasion effect
can be obtained. Therefore, it is necessary to find an opti-
mal impulse maneuver to make the observability worse
during the dangerous rendezvous.

From (20), the solved observation matrix is mainly
related to the relative position of the spacecraft, but has
no relation to the relative velocity. Therefore, the relative
position is the main influencing index of observability. In
this paper, the minimum value of the relative position’s
observability degree ¥, at the time k at the dangerous
intersection is taken as the optimization goal to obtain the
optimal impulse evasion maneuver strategy as follows:

2
max f (AVy) = ¥, = [ 30 (31
i=1

where AV, is the impulse maneuver of the target, and o
is the i th diagonal element of the Fisher information
matrix Fy.

To optimize the impulse maneuver, we can optimize
both the direction and the magnitude for the impulse
maneuver.

4.1 Optimization of maneuvering direction

The fuel of the target restricts the magnitude of impulse
maneuver. The more fuel available, the stronger the
observability of the navigation system [28] .

Therefore, when optimizing the direction of the
impulse maneuver, suppose the magnitude of the target’s
impulse maneuver AV, to be fixed as the constant v, the
angle between the direction in which the target imposes
the impulse orbital maneuver in the orbital plane and the
x-axis direction of the target orbital coordinate system is
¢. Then the target’s impulse maneuver AV, can be calcu-
lated as follows:

AV, = [vcosp,vsing]". (32)

Since the direction of the impulse AV, under the chaser
coordinates is determined by the angle ¢, AV, in any
direction needs to be represented by ¢. Therefore, ¢
needs to satisfy the following constraints:

¢ e[-n, n]. 33)
At the same time, to prevent collisions during the eva-
sion process, the collision constraints are required as fol-
lows:
—||®X;_; + PAV| <0

~||D (DX, + PAV)|| <0
: (34)

— || (¢X.k_1 +®DAV)| <0

Let
—[|PX, + PAV]|
—|P(PX,, + PAV)||
C(AV) = .
|| (X, + DAV
then C(AV) < 0,;.

According to the above derivation, an optimization
model of the observability degree can be established
to avoid the dangerous rendezvous by impulse maneu-
ver. By solving the direction of the impulse maneuver
applied by the target, the observability of the target rela-
tive to the chaser is the worst, that is, the impulse maneu-
ver evasion effect of only the angle measurement target is
the best.

4.2 Optimization of maneuvering magnitude

The magnitude of the maneuver is related to the amount
of fuel carried by the spacecraft. Therefore, when fixing
the direction of the maneuver, the change of the observ-
ability degree with the magnitude of the maneuver can be
analyzed to find the optimal maneuver magnitude. In the
optimization process, it is also necessary to prevent the
collision between the target and the chaser; that is, there
are still C(AV) < 0,,,, where

—||PX,_, + PAV|
— 1P (DX, + PAV)||
C(AV) = .

| (@X,, +DAV)|

5. Simulation

According to the above description for solving the opti-
mal impulse maneuver, a numerical scene simulation is
carried out for the problem that the target implements the
impulse maneuver to evade when a chaser approaches the
target at a close distance.

The target’s orbital period is assumed to be 7=54 000 s,
the orbital angular velocity n=2n/T, and the sampling
interval 7,=0.5 s. The chaser measures the target through
the optical sensor carried by itself. The angle measure-
ment error of the corresponding azimuth angle is
&, =0.001 rad, assume that the total impulse magnitude
of the target for the impulse orbit maneuver is
v=10m/s?, then the impulse vector is denoted as
AV, =[10cos ¢, IOSingo]T, and the relative state of the tar-
get at ,is X (0) = [300, 50, 30, —1.5, —0.25, —0.15]".

According to the state equation, if without maneuver-
ing, the relative distance can be calculated and reaches
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the minimum at 200 s. Fig. 6 shows the relative distance
trend of the two spacecraft according to the target state
equation, that is, the minimum relative distance reaches at
the 400th sampling point.
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Fig. 6 Relative distance change without maneuvering

5.1 Case 1: optimization of maneuvering direction

It is assumed that if there is no evasion, a dangerous ren-
dezvous will occur at 200 s, and the analysis starts when
the target finds that the chaser is approaching the target
for the impulse maneuver evasion. The change in the
observability degree of the relative position at the 400th
sampling point is as shown in Fig. 7.
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Fig. 7
degree for relative position in the orbital plane

Influence of maneuvering direction on the observability

Fig. 7 shows the observability degree of the relative
position in the orbital plane when not maneuvered. The
optimal maneuver, and any 50 random maneuvers are
selected, verifying that the best maneuver has the largest
observability degree value at the evasion terminal, that is,
the worst observability.

Fig. 8 shows the relationship between the maneuver-
ing direction and the observability degree of the relative

position in the evasion terminal under the fixed maneu-
ver magnitude.

Observable degree

4 -3 2 -1 0 1 2 3 4
Maneuver direction/rad
—— 1 Av=10 m/s>.

—_ = = =
‘Ol\)-bO\OOOI\)JkO\OO

Fig. 8
degree at evasion terminal

Influence of maneuvering direction on an observability

It can be seen from Fig. 8 that when the angle between
the maneuvering direction and the x -axis is 0.8335
degrees, the observability degree of the relative position
at the evasion terminal is the largest, and the observabi-
lity is the worst at this time.

Fig. 9 compares the relative distances of the two space-
craft under the three conditions of optimal maneuvering,
optional random maneuvering, and non-maneuvering. It
can be seen from Fig. 9 that both the optimal maneuvers
and the random maneuvers can increase the shortest dis-
tance between the two spacecraft to evade dangerous ren-
dezvous.
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—— : Not maneuvered.

Fig. 9 Relative distance of two spacecraft under optimal maneu-
vering, non-maneuvering, and random maneuvering

In Fig.10, UKF is used in three scenarios, including
non-maneuver, optimal direction maneuver and random
directions maneuver. It shows the trend of the actual rela-
tive distance between the target and the chaser during the
non-maneuver, random maneuver, and optimal maneuver
after UKF filtering.
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Fig. 10  True relative distance of two spacecraft under optimal

maneuvering, non-maneuvering, and random maneuvering
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Fig. 10 shows the true relative distance between the
non-cooperative target and its own spacecraft in the pre-
sence of the process noise and the observation noise. It is
verified that the optimal maneuver can prevent the colli-
sion to the greatest extent.

Fig. 11(a) compares the state estimation deviation
between the optimal maneuver and the non-maneuver in
the x -axis direction, and Fig. 11(b) compares the state
estimation deviation between the optimal maneuver and
the random maneuver in the x-axis direction. Fig. 11(c)
compares the state estimation deviation between the opti-
mal maneuver and the non-maneuver in the y-axis direc-
tion, and Fig. 11(d) compares the state estimation devia-
tion between the optimal maneuver and the random
maneuver in the y-axis direction.
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Fig. 11 Comparison of state estimation deviation of non-maneuvering, optimal maneuvering, and random maneuvering

Fig. 11(a) and Fig. 11(b) show that the state estimation
deviation obtained by the optimal impulse maneuver in
the x-axis is larger than that of the non-maneuver and ran-
dom maneuver. Fig. 11(c) and Fig. 11(d) show that the

state estimation deviation obtained by the optimal
impulse maneuver in the y-axis is larger than that of the
non-maneuver and random maneuver.

The root mean square error (RMSE) [29] is used to
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evaluate the state estimation performance of the target
through UKF.

RMSE =

where X, is the estimated value of the target at time &, and
X is the true value of the target at time £.

From the evasion maneuver to the estimated time of
the dangerous rendezvous, the estimated RMSE of the
target’s x -axis direction andy -axis direction at the
most terminal state under non-maneuvered, optimal
maneuver and random maneuver conditions are analyzed
in Table 1.

Table 1 Relative state estimation error on evasion terminal m- 2

Maneuver
RMSE
Non Optimal Random
X-axis 0.03191 2.3350 0.8941
y-axis 0.4189 2.3642 1.9586

It can be seen from Table 1, at the evasion terminals,
the RMSE in the x-axis and y-axis direction of the opti-
mal maneuver is significantly greater than that of the non-
maneuver and random maneuver. It is verified that the
optimal maneuver makes the state estimation accuracy
the lowest and can achieve a better evasion effect.

5.2 Case 2: optimization of impulse maneuver
magnitude

In the impulse maneuver magnitude simulation, the direc-
tion of the impulse maneuver is fixed. This direction
is the optimal maneuver direction obtained in Fig. 8 si-
mulation. The range of maneuver magnitude is 0—20 m/s.
The optimal maneuver range is obtained through opti-
mization.

When the maneuver magnitude is changed, the trend of
the observability degree is shown in Fig. 12. It can be
determined that the observability degree is the largest
when the maneuver magnitude is 20 m/s, which is the
optimization result. Meanwhile, the observability is
the worst. This conclusion shows that the larger the
maneuvering magnitude, the larger the observability
degree when the maneuvering direction is fixed. The
space-borne fuel restricts the maneuvering magnitude.
Therefore, in practical engineering applications, the opti-
mization for the maneuvering direction is more impor-
tant.
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Relationship between maneuver magnitude and relative

When the maneuvering direction maintains the opti-
mal maneuvering direction in Simulation 1, the interior
point method can obtain the optimal maneuvering magni-
tude. The random maneuver magnitude is taken from
Om/sto 20m/s, and the trend of the observability
degree during the optimal maneuver, random maneuver,
and non- maneuver is compared in Fig. 13. It verifies that
the observability degree of the optimal maneuver avoids
the terminal is the largest.
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maneuver and random maneuver on the observability degree of re-

Influence of the magnitude of non-maneuver, optimal
lative position

In summary, the simulation verifies that in the termi-
nal, the method mentioned in the article can indeed
reduce the observability of the system to the greatest
extent and thereby reducing the accuracy of the state esti-
mation of the spacecraft by non-cooperative targets.

It is noted that the chaser only does one maneuver and
then moves on a new orbit to approach the target at a
close range. However, if the chaser makes a second
maneuver, the target will perform the second optimal eva-
sion maneuver. In addition, it is not necessary for the tar-
get and the chaser to see each other at the same time. Gene-
rally, the chaser with the active approach capability sees



ZHANG Yijie et al.: Optimal maneuvering strategy of spacecraft evasion based on ... 183

the target earlier than the time when the target sees the
chaser. In this paper, we assume that the maneuvering
start time is taken as the initial moment. When the chaser
sees the target before performing an evasive maneuver, it
estimates the state of the chaser before the maneuver.
Therefore, when it is estimated that at the moment the
dangerous rendezvous occurs, the chaser has the worst
observability of the target, and it is considered that the
optimal avoidance can be achieved.

6. Conclusions

In the orbital plane, non-cooperative space targets with
autonomous approach capabilities may encounter danger-
ous rendezvous with the spacecraft through impulse
maneuvers. The observability of the system is considered
in the spacecraft evasion problem and an optimal maneu-
ver evasion strategy for the orbital plane of the angles-
only spacecraft is proposed based on the observability
degree.

The model of the maneuver evasion system with angles-
only measurement is formulated. The lower bound of the
posterior Cramer-Rao is used to consider the process
noise and the observation noise at the same time. The
observability degree of the relative states is defined and
the minimum observability degree is considered as the
optimization goal. Further, the optimal impulse evasion
maneuver is proposed, so that observability of one’s own
spacecraft (the target) relative to the non-cooperative tar-
get (the chaser) with approachability is the weakest when
facing the dangerous rendezvous. Only in this way can
the target avoid the dangerous rendezvous much better.
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