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Abstract: To strengthen border patrol measures, unmanned ae-
rial vehicles (UAVs) are gradually used in many countries to de-
tect illegal entries on borders. However, how to efficiently deploy
limited UAVs to patrol on borders of large areas remains chal-
lenging. In this paper, we first model the problem of deploying
UAVs for border patrol as a Stackelberg game. Two players are
considered in this game: The border patrol agency is the leader,
who optimizes the patrol path of UAVs to detect the illegal immi-
grant. The illegal immigrant is the follower, who selects a certain
area of the border to pass through at a certain time after observ-
ing the leader’s strategy. Second, a compact linear programm-
ing problem is proposed to tackle the exponential growth of the
number of leader’s strategies. Third, a method is proposed to re-
duce the size of the strategy space of the follower. Then, we pro-
vide some theoretic results to present the effect of parameters of
the model on leader’s utilities. Experimental results demonstrate
the positive effect of limited starting and ending areas of UAV’s
patrolling conditions and multiple patrolling altitudes on the lea-
der’s utility, and show that the proposed solution outperforms
two conventional patrol strategies and has strong robustness.

Keywords: border patrol, uynmanned aerial vehicle (UAV), Stacke-
Iberg game, compact linear programming, dominated strategy
elimination.

DOI: 10.23919/JSEE.2023.000022

1. Introduction

Protecting borders from illegal entry activities is vital to
national security [1]. Many countries have built fences,
walls, and barriers to enhance the border security. How-
ever, such defense measures can play an important role
only by effectively scheduling and deploying patrol
resources [2,3]. Furthermore, the arbitrariness and unpre-
dictability of illegal cross-border activities, as well as the
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vast and geographically diversified border areas, have
increased the attention to strengthen border patrol mea-
sures. Unmanned aerial vehicles (UAVs) are new detec-
tion platforms with zero casualties and high flexibility,
which can independently complete a given task in differ-
ent geographical areas [4—6]. At present, the use of
UAVs to patrol national borders has gradually become an
important border patrol measure in many countries. For
example, the United States has expanded its UAV sys-
tem coverage to the entire southwest border and used
UAVs to monitor remote areas [1]. The European Union
uses UAVs to enhance the ability to intercept potentially
illegal immigrants [7]. However, given the vast area of
the border, it is impossible to cover the entire border at all
times with limited UAVs. An urgent problem is how to
effectively deploy UAVs in vast border areas to better
ensure border security.

Recently, Stackelberg game has been used in studying
security issues, which models the security problem as a
non-cooperative game between the leader and the fol-
lower, aims to find an effective strategy for the leader [8].
The unique and attractive feature of the Stackelberg game
in modeling security problems is that the leader will first
commit a random patrol strategy. The follower makes the
optimal choice after observing the leader’s strategy. In
this model, the leader makes decisions knowing that it
will be observed. Therefore, the leader randomizes all
possible pure strategies to maximize its own utility. The
emphasis of randomization is on generating an unpre-
dictable strategy, because a fixed or patterned strategy
will be observed and utilized by the follower. At present,
this method has been successfully applied to some practi-
cal problems [9—11]. However, the following problem is
that the scale of practical problems is huge. The number
of pure strategies is extremely large, not to mention the
mixed strategies of probability distribution over these
pure strategies. Therefore, how to effectively reduce the
number of strategies and improve the efficiency of solv-
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ing the problem should be a new focus.

The problem considered in this paper is that the border
patrol agency deploys a certain number of UAVs to patrol
the border to detect the potentially illegal immigrants.
This deployment is achieved by scheduling the patrol
time, patrol area, and patrol altitude of each UAV in a
patrol duration. Considering the effect of the surrounding
environment on the detection accuracy of equipment car-
ried by UAVs, we assume that the UAV detects the ille-
gal immigrant with a certain probability. In addition, con-
sidering the continuity of actual patrols, the UAV is limi-
ted in starting and ending its patrol in certain areas. The
illegal immigrant can observe the patrol schedule and
select a time and area with the minimum probability of
being detected to cross the border. In contrast, the border
patrol agency aims to maximize such probability.

Although some studies have focused on generating an
optimal patrol strategy to protect border security [12,13],
the approach that addresses all of above factors simulta-
neously is still ignored. In addition, unlike the deploy-
ment of static resources in the existing border patrol
research [14,15], there is an exponential increase in the
number of strategies due to temporal and spatial con-
straints, which introduces huge computational challenges
to the problem.

In this paper, first, the problem of deploying UAVs to
patrol the border to detect the illegal immigrant is mo-
deled as a Stackelberg game, where the leader uses the
time- and space-dependent path of multiple UAVs as its
patrol strategy, and the follower uses a continuous period
of crossing as its border-crossing strategy. Second, we
develop a compact linear programming problem, where
the patrol strategies are expressed as flows on graphs.
The computational complexity of the enumerating expo-
nential strategy is simplified as solving the optimal solu-
tion of linear programming. Third, we propose a method
to eliminate the dominated strategies of the follower. The
number of strategies of the follower can be reduced to
2/T of the original pure strategies, where 7 is the patrol
duration. Then, we provide the conditions on areas where
the UAV is limited to starting and ending its patrol to pre-
vent the invalid leader’s strategies. Some theoretic results
on utilities are stated to provide a preliminary judgment
for some cases. Numerical results show that our solution
has significantly better quality than the two existing con-
ventional patrol strategies. The limitation on start and end
zones ensures the continuity of patrols without much loss
of utility and the increasing patrol altitude can increase
leader’s utility when the detection probability of UAV is
not greatly reduced. Additionally, our solution has strong
robustness under different perturbations.

The remainder of this paper is structured as follows:
Section 2 reviews the literature on the application of
security games and briefly introduces the research work

related to this issue. Section 3 contains a detailed descrip-
tion of the problem and the mathematical programming
formulation. Section 4 introduces the compact linear pro-
gramming, explains the elimination method of the pro-
posed strategy and provides some theoretical results on
utility. Section 5 presents the computational experiment
and explains the experimental results. Section 6 con-
cludes the contributions of this paper and discusses future
work.

2. Related work

Security issues are ubiquitous in real life. These issues
have attracted people’s attention, especially those related
to the security of important places of national economy
and politics. The key of the security problem is how to
effectively deploy limited defense resources on vast area
to patrol to prevent possible attacks [16—18]. Fixed or
patterned patrol methods are easily observed by the
attacker, who attacks the intervals between patrols. The
Stackelberg game was first used in security problems and
solved the difficulties of generating a random patrol stra-
tegy. Team Core, a team of researchers at the University
of Southern California, has been working in this area.
They first successfully deployed the assistant for rando-
mized monitoring over routes (ARMORs) [9] at the Los
Angeles International Airport to solve the problems of
checkpoint selection on the way to the airport. Then,
intelligent randomization in scheduling (IRIS) [10], game-
theoretic unpredictable and randomly deployed security
(GUARDS) [11], and port resilience operational/tactical
enforcement to combat terrorism (PROTECT) [19] were
successively developed for the Federal Air Marshals, the
United States Transportation Safety Administration and
the Boston Port. Unlike ARMOR and IRIS, which focus
on specialized customized applications, GUARDS and
PROTECT are used in larger scale deployments, which
further create computational challenges in the security
game [20,21]. Similarly, the deployment of resources on
the border is a problem of deploying the limited resources
to a wide range of areas.

Border security is one of the most important security
problems, which is vital to homeland security and has
attracted the attention of many researchers. Canbolat et
al. [22] discussed the optimal location of emergency
facilities in the presence of a limited set of points along
the border. Karabulut et al. [14] modeled the interaction
between the border surveillance agency and the intruder
as a Stackelberg game. The agency deploys a set of sen-
sors to achieve coverage intensity to increase the possibil-
ity of detection, while the intruder selects a path that mi-
nimizes exposure or maximizes damage to the sensors.
Recent research is about the optimal deployment of secu-
rity resources between different precincts in a border
patrol problem [13]. The core of these problems lies in
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the exponential growth of the number of deployment
schemes with the increase in spatial scale.

Unlike the deployment of the above static resources,
UAVs are mobile, so the static one-off deployment
becomes dynamically covered. UAV patrol strategies
include both temporal and spatial dimensions, which
introduces great computational challenges to deploying
UAVs on borders. An effective method to address the
considerable strategy space is to reduce the scale of the
game through effective technology [23]. Yin et al. [24]
introduced a directed graph to transform the patrol stra-
tegy form, which greatly reduces the number of variables
in the original problem. This transformation of strategy in
the form of a graph exists in many patrol problems, such
as determining the optimal patrol path for mobile robots
[25] and discussing the value and optimal patrol strategy
of patrolling games for arbitrary graphs [26,27] and line
graphs [28]. These studies discuss how to reduce the
scale of the game from the patrol side, i.e., to solve the
problem of the large scale of the patrol strategy. How-
ever, there are many attacker strategies in many practical
problems, which directly affect the efficiency of solving
the problem.

As a new type of patrol platform, UAVs have been
gradually applied to the border patrol process [29]. Ear-
lier research constructed a UAV system based on a hier-
archical control architecture to manage multiple UAVs to
perform border patrol tasks [30]. A recent paper pro-
posed a detection method to support the UAV patrol and
surveillance at the border and analyzed the problem of
target recognition when UAVs are used for high-altitude
patrols in border and forest areas [31]. Another recent
research is about how to overcome the limited time of
UAVs in border patrol [32]. Due to information acquisi-
tion or equipment factors, there are certain uncertainties
when UAVs perform tasks [33—35]. When UAVs are
used to perform border patrol tasks, considering the accu-
racy of the equipment carried by UAVs in practice, there
is a degree of uncertainty in the patrol process. The
resulting uncertainties are reflected in the probability of
UAVs detecting the illegal immigrant in each patrol area.
Similar research on UAV detection probability includes
introducing a variable resolution sensing model to add-
ress the problem of variable probability of UAV detec-
tion, which is suitable for the online patrol with uniform
grids [36]. On this basis, how heterogencous UAVs coo-
perate in patrolling designated areas was analyzed, and
different sensor models were introduced to predict the opti-
mal patrol team size and performance configuration [37].

Despite efforts to enhance border security, an optimal
patrol strategy considering the decision-making effect of
both patroller and illegal immigrant, limited UAVs, the

patrol altitude of UAVs and limited start and end areas
simultaneously remains elusive. To provide an effective
patrol strategy, this paper first constructs a Stackelberg
game for the border security problem. However, the
extensive number of strategies makes it difficult to solve
the game [38,39]. Therefore, this paper reduces the scale
of the game from two perspectives. First, it transforms the
leader’s strategies to a compact form to reduce the model
variables. Then, it uses the concept of dominated strategy
to eliminate the follower’s strategies. In addition, the
impact of the actual environment on detection is consi-
dered, which makes the problem more relevant to real
patrols. To the best of our knowledge, this is the first
work that focuses on the deployment of UAVs to patrol
the border considering the strategies of the illegal immi-
gration and multiple patrol altitudes.

3. Stackelberg game model

In this section, we introduce the problem, which is mo-
deled as a Stackelberg game between a leader and a fol-
lower. The leader deploys a group of UAVs on the bor-
der to detect illegal immigrants. Its strategy is a patrol
path on the border within the flight time of the UAVs.
Since the border is too long to be handled with continu-
ous variables, we divide the border into a group of small
zones. The time is discretized into a series of time points.
The intervals between every two consecutive time points
are equal [40]. When the UAV patrols in a zone, it can
fully cover the zone. The UAV can always cover the cur-
rent zone or move to adjacent zones. In addition, the
UAV is limited in starting and ending its patrol path in
certain zones. It can patrol at certain altitudes with diffe-
rent numbers of covered zones. Fig. 1 illustrates a possi-
ble patrol path of three UAVs between two consecutive
time points. The follower can observe the leader’s stra-
tegy and subsequently select a zone of the border to pass
through for some time. The UAVs transmit images to
border staff in real time, and the staff intercept the fol-
lower after detection. Therefore, we consider only the
optimal deployment of UAVs here. If the follower is not
detected and successfully crosses the border, it is easy for
him or her to escape by camouflage or other means.
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& 1 UAVI; 4eb 1 UAV2; o) : UAV3;

= : Patrol route of UAV; [_] : Border.

Fig. 1
between two consecutive time points

Possible patrol path of three UAVs at a certain altitude
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3.1 Border
We assume that border R contains r zones, R={l,
2,---,r}. For a zone i€ R, its adjacent zones are deno-

ted by N(i), and i€ N(i). Then, the patrol duration ¢

= {t19t29"' 9tT}9
and the interval between adjacent time points is a time

is discretized into T time points,

step. Assuming that the UAV moves only at time
points and moves to its adjacent zone, the time re-
quired for the UAV to move from one zone to its
adjacent zone is a time step. Furthermore, a directed
graph G = (V,E) is constructed to represent the players’
strategies, where a vertex v = (i,#;) includes zone i and
time point #,. There is an edge e between vertices
v =({,t,) and i” € N(’) and
kK'=k+1.

Fig. 2(a) shows an example of the constructed directed
graph. The edge between vertices (3,1,) and (2,f;5)
indicates that the UAV moves from Zone 3 at time

V' = (i",t) when

point #, and arrives at Zone 2 at time point #;. The
edges (3,,) and  (3,13) indicate
that the UAV patrols in Zone 3 between time points #,
and ;.

between vertices

Zone
Time 1 2 3 4

4

t

8

l

® : Vertex including zone and time point; ——> : Edge.
(a) Directed graph G with =4 and 7=4

Zone
Time 1 2 3 4
t [ J

2}

1 [ ] [ J

@® : Vertex including zone and time point;
(b) Directed graph G with =4, T=4, and R={2, 4}

—— : Edge.

Unit
Time 1,2,3 2,3,4
f )
12}
5]
t o

®

o : Vertex including unit and time point; — : Edge;
@ : Starting vertex; ®: Ending vertex.
(c) Directed graph G, with =4, 7=4, 1,=3, and R={2, 4}
Fig.2 Examples of directed graph

3.2 Leader strategies

The leader determines the patrol path of each UAV. We
assume that the leader has m homogenecous UAVs. Let
R, C R be the zones where the UAV can start and end its
patrol. Specifically, when R; = R, i.e., the UAV can start
and end its patrol in any zone. When R, C R, the UAV is
limited to starting and ending its patrol in the zone in R,.
Fig. 2(b) illustrates a possible R, on graph G.

Then, let H be the patrol altitudes of UAV. The num-
ber of zones covered by the UAVs at altitude h € H is 4,.
Let j, be the patrol unit at altitude h, which contains 4,
zones. R, = { N A j',f"‘} is the set of patrol units at alti-
tude i. We use jj, to represent the zone with the smallest
number in patrol unit j,, j,=1,2,---,r+1-4,, and
Jn = U Juo + Lo+ ju + A, — 1}. Specifically, when |H| =
1, UAVs are limited to patrolling at a certain altitude.

Furthermore, we construct a group of directed graphs
G’ ={G,},ey to represent the patrol path of UAVs at dif-
ferent altitudes. For G, its vertex v, = (jj, ) includes
patrol unit j, and time point #, (k< {1,2,---,T}). There is
an edge e between vertices v, = (j',, %) and v, = (j” ;. 1)
when j € N(j’ho) and k" =k'+1. Since the UAV can
patrol at any altitude in H, we add a set of virtual start-
ing vertices S ={S,,S2---, S} to G ={G,},ey. For
S,€eS, we add an edge between vertex S, and
> 1) (Y i, € Ry). Similarly, we add a set of virtual end-
ing vertices E={E,E,,---,Ep}to G ={G,},y- For
E,€E, we add an edge between vertex E, and
s tr) (Y i, € Ry). Specifically, when |H|=1and 2, =1,
G' =G, =G. Fig. 2(c) illustrates a possible directed
graph G,,.

Therefore, a patrol path of UAV we W ={1,2,--- ,m}
is a path between S, and E, on graph G,, i.e., d, =
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S Unti) En), ju € Ry ke f{1,2,---,T}. Fig. 3(a) illustra-
tes a possible path of UAV on G,. A pure strategy of the
leader is m paths of m UAVs, i.e., d = (d,,),,c- The prob-
ability distribution x = (x,), of all pure strategies is a

mixed strategy of the leader, where x, is the probability
ID|

of selecting strategy d, 0 < x; < 1 and Zxd =1.
d=1

Unit
Time 1,2,3 2,3,4

4 °

t o

I o

t4 () /
®

0 : Vertex including unit and time poini— : Path of UAV;
@ : Starting vertex; ®: Ending vertex.
(a) Possible path of UAV on G, with =4, T=4, 1,=3, R,={2, 4}
Zone

Time 1
t e}

e
]

1y ® @] [ [

® : Vertex including zone and time poin — : Path of follower.

(b) Possible path of the follower on G
Fig. 3 Examples of path of the UAV and the follower

3.3 Follower strategies

We define a pure strategy of the follower as a path
a={,t),U,ths1), .G, ))yon G, ie., the follower
passes through zone i within /[ time steps between time
points f,(k> 1) and f,,, (k+[<T). On graph G, a pure
strategy of the follower is any path that connects the same
zone, thus the number of pure strategies of the follower is
C2-r=(T(T-1)/2)-r. Fig. 3(b) illustrates a possible
path of the follower on G. Similar to the relevant research
in security games, this paper restricts the follower’s stra-
tegy to a pure strategy [41].

3.4 Utilities and equilibrium

When the zone of one vertex in the strategy selected by

the follower is included in the unit of one vertex of the
UAV’s patrol path and the time points of two vertices are
identical, the follower may be found by the UAV. We
call these types of vertices coincident vertices. Given the
pure strategy d = (d,,),..y of the leader and pure strategy
a of the follower, the coincident vertices in the patrol
path of UAV w are

V(w,a) = {(jh?tk)l(jhstk) € dw9E|(i5 ll\) €as.t l € jh }

Let 6(v,) be the detection probability of the UAV at
Vi, 0(v,) €(0,1). Then, let p(w,a) be the probability of
UAV w detecting the follower, which can be defined as

1-pw.a)= [ | 1=8(). (1)
veVia)

Assuming that each UAV is independent, given a pair
of strategies (d,a), the probability of the follower being
detected by the leader p(d,a) satisfies

1-pd.a)=] |(1-pw,a). @)
w=1
The follower expects to maximize the probability of
being undetected by the leader. Based on (1) and (2),
given a pair of strategies (d,a), the utility of the follower
is

Uday=[][]a-6m. (3)
w=1 veV(, 4

The leader expects to minimize the probability of not
detecting the follower. Let the utility of the leader be
-U,(d,a). Maximizing the utility of the leader means
minimizing the probability of not detecting the follower.
Therefore, our game is a zero-sum game. Given the
mixed strategy x = (x,),p of the leader and pure strategy

a of the follower, the expected utility of the follower is

Ua (xva) = Z-dea (d’a)9

d
and the expected utility of the leader is
U,(x,a)=-U,(x,a).

Our goal is to find the optimal strategy of the leader,
which is to find the strong Stackelberg equilibrium in the
game. Given the zero-sum setting, the strong Stackelberg
equilibrium is equivalent to maximizing the leader’s uti-
lity when the follower responds with its optimal strategy.
Let X and A be the strategy space of the leader and fol-
lower, respectively. A pair of strategies (x,g) comprises
an equilibrium when it satisfies

{Ud (x,8(x)>U,(x",g(x)),
U,(x,g(x)) > U,(x,8 (x)),

where g(x) is the optimal response function of the fol-
lower. In the setting of a bi-level programming problem,

Vx' e X
Vg'(x)eA
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the first objective function and its appropriate constraints
constitute the upper-level optimization problem. The
lower-level optimization problem takes the appropriate
objective function and constraints as the nesting problem
of the upper-level optimization problem, which is consis-
tent with the fact that in the Stackelberg game, the leader
first promises a mixed strategy, and the follower subse-
quently makes decisions after observation.
Therefore, the above conditions can be formulated as
bi-level programming problems:
max Ua(x,y)

|D|
Xg = 1
d=1 ’

x €[0,1]"

max U, (x,y)
y

s.t. Zy“ =1

a=1 ’

S.t.

yefo, 1
where y, is the probability of selecting strategy a. In this
bi-level programming problem, the leader’s optimization
problem is the upper-level optimization problem, and the
follower’s objective function and constraints are the
nested problems of the leader’s optimization problem.

4. Solution method

In this section, we mainly discuss how to solve the prob-
lem of the rapid increase in number of pure strategies of
the leader and follower with the scale of the game. Some
theoretic results are stated to provide preliminary judg-
ments on the leaders’ strategies and utilities.

4.1 Linear program formulation

With increasing game scale and number of UAV patrol
altitudes, the number of leader’s pure strategies exponen-
tially increases. To solve the computational challenge, the
mixed strategies of the leader are compactly represented
by marginal coverage:
A= xd )
d

where d(v;,) is the number of UAVs covering vertex v, in
pure strategy d. Given mixed strategy x of the leader, the
corresponding marginal coverage vector f={f, (Vi)}, ey, rer
and pure strategy a of the follower, the expected utility of
the follower is

U, (f, a) = 1_[ n (1 _6(Vh))./n(v,,) @

heH v,eV,(a)

where

Vi@ = (i) | Gino 1) € G A1) €asit i € ).

Now, we construct the optimization linear program-
ming problem using compact representation (CRLP) to
solve the optimal marginal coverage:

mjgx U, %)

subject to

U, <-U,(f,a), YacA 6)

Suu) = Z 2 ViV, YV € G VG, @)

(V" 1)EG),

AOD= D0 50, Y eGiV¥G,  (8)

V' 1,vi)EG),
Zzzh(sm(jh,fl))=m, )
S1€S jueR,
Z Zzh ((Jn-tr),By) = m, (10)
ErcE joeR,

Vv )20, Y(,v) € Gy VG, (11)

Constraint (6) indicates that the follower will select a
strategy that maximizes its utility, i.e., a strategy that
minimizes the utility of the leader. Constraints (7) and (8)
are constraints of flow conservation. Constraints (9) and
(10) constrain the total number of UAVs that start and
end patrols to m, and constraint (11) represents the range
of variables in the model.

Recall that the follower aims to maximize U, (f,a).
Since the natural logarithm function Inx(x>0) is a
strictly increasing function and 0<d(v,) <1, ie.,
1-6(v,) >0, maximizing U, is equivalent to maximiz-
ing InU,. Thus,

vt =] [ a-sen™.

heH v,eVy(a)

InU,(f,a) = ln{n 1_[ a _6(Vh))f},(v,,)} _

heH v,eVy(a)

Zln{ I (1—5(v,1))ﬁ’””’)} -

heH vi,€Vy(a)

D, D, (=60 =

heH v,eVy(a)

33 A e)In(-5@m,).

heH v,eVy(a)

Constraint (4) is transformed into

Ud's—{z Z f,l(vh)ln(l—é(vh))}, VaeA. (12)

heH v,eVy(a)

The objective function is
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mfax u/, (13)

and
U, = —exp(-U)). (14)

Therefore, solving the optimal marginal coverage is
transformed into solving the linear programming prob-
lem. After identifying the optimal solution of the linear
problem, the optimal utility of the leader can be obtained
by (13). According to [24], the mixed strategy of the
leader with identical utility to the optimal coverage can
be constructed in polynomial time.

4.2 Strategy elimination method

Recall that the number of pure strategies of the follower
is C2-r=(T (T -1)/2)-r, which geometrically increases
with time duration 7 and zones r. Thus, we provide the
dominated strategy elimination method (DS-EM) to
reduce the number of strategies as follows.

Definition 1 (Weakly dominated strategy) A strategy
a € A of the follower is weakly dominated if V f,

Aa’ € A\{a}: U, (f,a) < U,(f,a).

The follower does not select a weakly dominated stra-
tegy because the utility will not be higher.

Lemma 1 Considering [ pure strategies of the fol-
lower,

ail = <(i7tk)a(lj7t/\'+l)>5 a; = <(l5t/\)’(la tk+|)’(i7tk+2)>9‘” >
a; = <(lv tk)’ (19 tk+l) P (l7 tk+/)>

where k> 1 and k+I<T. a;={(i,t),(, tre1), - (i, 1))
is a pure strategy with time step / related to zone i. Given
the marginal coverage vector f = ({f,(vi)},,cy, s Of the
leader, the relationship between the follower’s utility
U,(f.a),U,(f.d.), - . U,(f,a})) corresponding to I
strategies satisfies:

U (f.d)) 2 Uu(f.a3) > > Uu(f.d)).
Proof Let

ail = <(i7tk)7(lj7tk+l)>9 a; = <(i9tk)’(is tk+l)s(i7tk+2)>9.“ s
a; = <(l9 tk)s (l9 tk+l) PR (l, tk+l)>

be [ pure strategies of the follower. For an arbitrary
marginal coverage vector f={f,(vi)}, cy,sen Of the
leader, the utility of the follower corresponding to stra-
tegy a is

v,(fa)=[ | [] a=6Gnu o

heH juevyiej,

(1=6Cjn D) Rty

The utility of the follower that corresponds to strategy
a is

Ua(f,a§)=H n (1 =8 1))

he‘H lj,,ev,,:iej,, o
(L =8 ins tra) " (1 = 8 gy Bygn)) 02
The value range of the exponential function

a(0<a<l)is O<a*<1when x>0. In addition,
0<d(vy) < 1; obviously, 0 < 1-6(v,) < 1. Based on con-
straints (5) and (6), f(v) = 0.

Thus, 0 < (1 =68 t0))""" < 1. Therefore, U,(f,
@) > U, (f.ab).

Similarly,

Uu(f.a)) > U, (f.d) . Ua (fodh) > U (fod}). .
Ua(f,aj,l) > U(,(f,a;).

Therefore,

Ua(f,aﬁ)ZUa(f,a;>>~~->Ua(f,af). O

Theorem 1 For the same zone i, the pure strategy of
the follower whose time step is larger than 1 is the
weakly dominated strategy of the pure strategy of the fol-
lower whose time step is 1.

Proof Lemma 1 shows that in the same zone i, for
any given marginal coverage vector of the leader, the uti-
lity of the strategy with a time step larger than 1 is always
less than or equal to that of the strategy with time step 1.
Definition 1 shows that the pure strategy of the follower
with a time step larger than 1 is the weakly dominated
strategy of the pure strategy of the follower with time
step 1. O

According to Theorem 1, we can eliminate the pure
strategy of the follower whose time step is larger than 1.
After elimination, the strategy space of the follower con-
tains only the pure strategy with time step 1. The number
of pure strategies is reduced from (7(T—-1)/2)-rto
(T —1)-r. With the DS-EM, we reduce the number of
strategies of the follower to 2/T of the original pure
strategies.

4.3 Theoretic results

In this subsection, we present some conditions on the
start and end zones to provide effective strategies of the
leader. Additionally, some general properties of the
leader’s utility are stated.

4.3.1 Conditions for effective leader’s strategies

We find that with the limitation of the start and end
zones, the vertices that correspond to the zones outside
the set of start and end zones are not patrolled at some
time points. If some zones are not patrolled at two or
more continuous time points, the follower will cross the
border through these zones without being detected. In
these cases, the leader’s strategies are invalid. We now
make certain conditions for the start and end zones to pre-
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vent the invalid leader’s strategies.

Lemma 2 For R,, suppose that the following condi-
tions hold:

(i) At least one of Zones 1 and 2 should be the start and
end zones, i.e., leR,or2€R,.

(i1) There must be a start zone at most two zones apart,
ie,if 1 eR;, then4 €R,, 7 €R,, etc.

(iii) At least one of zones r—1 and r should be the
start and end zones, i.e., r—1 € R, or r € R;.

Then, there are no invalid leader’s strategies with the
limitations of the start and end zones.

Proof If Zones 1 and 2 are not the start and end
zones, there is no UAV patrol in Zone 1 at time points ¢,
t,, tr_1, and t; because the adjacent zones of Zone 1 are
Zone 1 and Zone 2. Only the UAV starts patrolling from
Zone 1, Zone 2 can arrive at Zone 1 at time point #,. To
arrive at Zone 1 at time point #;, the UAV must arrive at
Zone 1 or Zone 2 at time point t;_;. Therefore, at least
one of Zone 1 and Zone 2 should be the start and end
zones. Similarly, at least one of r—1 and r should be
start and end zones. If the nearest start zones are separated
by more than two zones, some zones will not be pa-
trolled at consecutive time points. For example, if Zone 1
and subsequently Zone 5 are start zones, then Zone 3
will not be covered at time points ¢, t,, t7_;, and #7. The
reason is that at two consecutive time points, the UAV
can move only between adjacent zones. Therefore, the
start zones must be at most two zones apart; otherwise,
some zones will not be covered at consecutive time
points. O

Theorem 2 To guarantee the effectiveness of the
leader’s strategies, the number of start and end zones sa-

tisfies:
r
o 1]

Proof Lemma 1 shows that to ensure that there are
no invalid leader’s strategies, there must be a start zone at
most every two zones. When r is a multiple of 3, then

|R,| satisfies |R,| > r/3; otherwise, |R,| satisfies |R,|>
[r/3].
) r
Therefore, |R,| satisfies |R,| > 3 O

4.3.2 General properties of the leader’s utilities

When analyzing the effect of the patrol duration and
number of UAVs on the leader’s utilities, we find some
interesting phenomena. We now show the general proper-
ties of the leader’s utilities in some cases.

Theorem 3  Given graphs G'and G?, suppose that the
following conditions hold:

() R'=R*=R, =R’

(i) T' < T

(iii) The detection probability of each vertex at the first
T' time points on G* is identical to that of the corre-

sponding vertex on G'.

Then the optimal utility of the leader of two digraphs

satisfies
U, >U;.

Proof Let fUand f* be optimal marginal coverage
on G' and G?, respectively; g(f') and g(f*) are the fol-
lower’s optimal strategies on G' and G*, respectively.
According to the definition of the strong Stackelberg
equilibrium, the utilities of the leader and follower on G'
satisfy

Uy(fe(f7)) = Ui(f'e(f1), Vs e F'
U;(fl*,g(f'x))>U;(f],a), YaecA' i
Since G' is a subgraph of G2, the strategy space of the

follower satisfies A! c A%. Then, the optimal strategy of
the follower on G? satisfies

g(fr) = argmax{ U, (f2“7a) ‘aqe {g(f“),AQ —Al}},
Thus, the utility of the follower satisfies
v s ()= Ul s ()

Since the utility of the leader and follower satisfies

U,=-U,
{Uﬁ(leg( ) <velrr)

Therefore, U} > Uj . O

In actual planning, the patrol duration is a key factor
when making a decision. The above result can provide a
preliminary judgment for the decision maker. The leader’s
utility may decrease if he plans a long-span patrol when
the detection probability greatly varies among different
time spans, such as the weather being fine or overcast.
The reason is that there is no accurate information about
how many time points of the leader’s strategy are
observed by the follower. However, planning a strategy
for a short duration of time may result in a lack of cohe-
rence among the strategies. The end zone of the last
patrol may not be the start zone of the next patrol. Thus,
there may be movement cost of UAVs.

When other conditions are fixed, with increasing num-
ber of UAVs, the leader’s utilities will increase. How-
ever, what is the relationship between the leader’s utili-
ties under different numbers of UAVs? We now present
the relationship to provide a preliminary judgment for
some cases.

Lemma 3 Let f"and f™ be the optimal marginal
coverage on G when the number of UAVs is 1 and m,
respectively. Then,

fr=mfr.

Proof The optimal solution of the linear program-
ming problem can be expressed as X* = B~'b, where B is
the optimal basis linear programming problem, and & is
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the constant term. In CRLP, the constant term of CRLP is
[0,0,---,0,m,m,--- ,m]".

Let X* = B™'b be the optimal solution of CRLP when
b=1[0,0,---,0,1,1,---,1]7, and let X’ be the solution of
CRLP when b’ =[0,0,---,0,m,m,--- ,m]".

Thus b’ =mb. Hence, the solution of CRLP when
b =1[0,0,---,0,m,m,--- ,m]" satisfies X’ = mB'b =mX.
Since the optimal solution of CRLP satisfies
X*=B'pb>0, X >0, the test number remains
unchanged and the optimal basis remains unchanged.
Then, X’ is the optimal solution of CRLP when
b’ =1[0,0,---,0,m,m,--- ,m]". Let f"and f” be the opti-
mal marginal coverage on G when the number of UAVs
is 1 and m, respectively. Therefore, f = mf" . O

Theorem 4 Let U} and U} be the optimal utility on
G when the number of UAVs is 1 and m, respectively.
Then,

vy =-(u))".

Proof Let f™ be the optimal marginal coverage on
G when the number of UAVs is m. For Ya € A, the uti-
lity of the follower is

Ud(f7,a)= [ Ja-sp™ .

According to Lemma 4, f™ = mf" . Then,

v,y = [ Ja-soy™ =] Ja-sey” =

vE€a ve€a

{1—[(1_6@)),.*@} =mU, (f".a).

vea

The utility of the leader and follower satisfies
U, = -U,. Therefore, U" = —(U})". O

The number of UAVs used in real patrols is also a
major concern for decision makers, since it is directly
related to costs. The above findings can provide decision
makers with an intuitive result about the relationship
between the utilities and the number of UAVs.

5. Computational experiment

In this section, we first present the instances. Based on
these instances, we analyze and evaluate the performance
of the proposed method from three aspects. CRLP is pro-
grammed in the C++ language and solved by CPLEX
(version 12.7.1). All experiments are run on 64-bit com-
puters with 8.0 GB RAM and a CPU at 1.80 GHz.

5.1 General settings

5.1.1 Instance sets

We generate three test sets of 90 problem instances and
conduct experiments on these instances to investigate the
effect of the number of zones, UAVs, time points and

detection probability. The three test sets are named Set A,
Set B, and Set C, and each of them consists of 30 prob-
lem instances and has 200—1000 zones and 6—36 time
points. For each instance, we present the results when the
number of UAVs is 5, 10, 15, and 20. UAVs can patrol at
low, medium and high altitudes. The number of zones
covered by the UAVs at the three altitudes is fixed to 1,
2, and 3. The start and end zones are selected according
to the conditions in Subsection 4.3. The detection proba-
bilities of the three test sets when the UAVs patrol at low
altitudes are randomly generated in [0.4, 0.6), [0.6, 0.8),
and [0.8, 1). The three value ranges represent a low detec-
tion probability, medium detection probability and high
detection probability, respectively. In all instances, the
detection probability of UAVs at the middle altitude and
high altitude are 0.75 times and 0.6 times of the detection
probability at the low altitude. The two values are deter-
mined through several sets of experiments which based
on practical surveys.

5.1.2 Experimental setting

To illustrate the effect of start and end zones and various
patrol altitudes on leader utilities and the scalability of
DS-EM, we compare the results between four CRLPs
with different parameter sets:

(1) CRLP with R; =R and |H| =1;

(ii) CRLP with |R,| =[r/3] and |H| = 1;

(iii) CRLP with R, =R and |H| = 3;

(iv) CRLP with [R,| =[r/3] and |H| = 3.

Note that when |H| = 1, UAVs patrol at low altitude.

Furthermore, to assess the quality and robustness, we
compare the solution of these four CRLPs with two patrol
modes:

(i) Patrol mode of the average coverage strategy
(ACS): UAVs are uniformly deployed in all zones. For
each node v =(i,#;) of the directed graph G, the cove-
rage of UAVsis f(i,t) =m/r.

(i1) Patrol mode of the probabilistic coverage strategy
(PCS): UAVs are deployed according to the probability
of detecting targets in each zone. A lower probability of
detection in zone i corresponds to a higher coverage of
the UAVs. For each node v = (i,7,) of the directed graph
G, the coverage of UAVs is

f(l’ tk) =

m{Z(l—é(i,tk))J : [ZE(l—é(t,zk))].
k=1

k=1 i=1

The utility of the leader in the two patrol modes is
obtained by the optimal choice of the follower against f
in the two patrol modes.



108 Journal of Systems Engineering and Electronics Vol. 34, No. 1, February 2023

5.2 Experimental evaluation

In this subsection, we analyze and evaluate the quality
and robustness of CRLP and the scalability of DS-EM.
The utility in the following subsections is the leader’s
optimal utility.

5.2.1 Solution quality

We first compare the solution quality among four CRLPs,
ACS and PCS. Results are provided in Table 1. For each

instance set, we present results of all instances when the
number of UAVs is 20 in the first three rows, and the
results of all given number of UAVs in all instances in
the last three rows. The column PD-ACS is the percent-
age difference between the utility of CRLP and ACS. PD-
PCS is the percentage difference between the utility of
CRLP and PCS. The row Aver is the average percentage
difference of the instances. Max is the maximum percent-
age difference of the instances. Min is the minimum per-
centage difference of the instances.

Table 1 Average results on utilities of four CRLPs, ACS, and PCS for all instances %
Ry=R,|H|=1 [Ral=T[r/31,1H| =1 Rs=R,|H|=3 [Rql=1[r/31,1H| =3
Set. UAV. Percentage difference oy ) g™ pppcs  PD-ACS ~ PD-PCS  PD-ACS PD-PCS  PD-ACS  PD-PCS

Aver 1.62 1.69 ~0.05 0.02 5.08 5.14 4.88 4.95

20 Max 375 3.70 0.08 0.20 11.07 10.99 10.73 10.75

Min 0.70 0.74 -0.35 -0.43 2.8 232 2.17 222

SetA Aver 1.02 1.06 ~0.03 0.01 3.20 3.4 3.08 3.12
All Max 375 3.70 0.08 0.20 11.07 10.99 10.73 10.75

Min 0.18 0.19 ~0.35 ~0.43 0.58 0.58 0.55 0.56

Aver 2.63 3.03 -0.31 0.10 6.48 6.85 6.23 6.61
20 Max 5.84 7.10 -0.11 0.68 13.83 14.98 13.32 14.42

Min 1.14 1.30 -L11 -0.42 2.86 3.07 2.80 2.90

setb Aver 1.65 1.90 ~0.19 0.10 4.10 434 3.94 4.18
All Max 5.84 7.10 -0.03 0.68 13.83 14.98 13.32 14.42

Min 0.29 033 ~L11 ~0.42 0.72 0.78 0.71 0.73

Aver 6.94 10.43 1.14 493 7.60 11.06 6.65 10.15
20 Max 16.29 23.54 320 11.25 1721 2438 14.38 21.75

Min 3.09 438 0.29 1.86 3.39 4.67 2.96 433

Serc Aver 442 6.67 0.71 3.11 4.82 7.05 420 6.46
All Max 16.29 23.54 3.20 11.25 17.21 2438 14.38 21.75

Min 0.78 111 0.07 0.47 0.86 1.19 0.75 1.10

Table 1 shows that, in general, CRLP has a greater
advantage than ACS and PCS in utility with increasing
number of UAVs. Specially, the leader has much higher
utilities when the UAV can patrol at three altitudes with-
out start and end zone limitations. The leader’s utilities
are lower when the number of start and end zones are
limited to the minimum because the limitation of start and
end zones reduces the leader’s optional strategies. How-
ever, the utility of CRLP with |[R,|=[r/3] and |[H|=1isa
little worse than that of ACS and PCS in some instances.
The reason is that the patrol mode of ACS and PCS does
not limit the start and end zones, so the zones that are not
included in the start and end zones set are covered more
at the start and end time points. In addition, PCS has the

worst performance in most instances because the fol-
lower does not depend on only the detection probability
when selecting his strategy.

To illustrate the effect of the number of zones, UAVs,
and time points on leader’s utilities, we present the results
for Set A instances with the number of time points being
six on Table 2 and Set C instances with the number of
zones is 200 in Table 3. The column Inst, UAVs, Zone,
and TP are the instance label, the number of UAVs, the
number of zones, and the number of time points, respec-
tively. The column PD-ACS is the average percentage
difference between the utility of CRLP and ACS. PD-
PCS is the average percentage difference between the
utility of CRLP and PCS.
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Table 2 Results on utilities of four CRLPs, ACS and PCS for Set A instances with six time points %

Rs=R |H|=1 [Ral =1r/31,1H| =1 Ra=R,|H|=3 |Rql =1r/31,|H| =3

Inst  Zone  UAV. ""pp acs  PD-PCS PD-ACS  PD-PCS PD-ACS  PD-PCS  PD-ACS  PD-PCS
5 0.95 0.90 —-0.06 —-0.11 2.89 2.84 2.72 2.67
A0l 200 10 1.89 1.80 -0.12 -0.21 5.70 5.60 5.36 5.27
15 2.83 2.69 —-0.18 -0.32 8.42 8.29 7.93 7.79
20 3.75 3.56 -0.23 —0.43 11.07 10.90 10.43 10.25
5 0.48 0.48 —0.01 -0.02 1.46 1.46 1.38 1.38
A07 400 10 0.96 0.95 —-0.03 —0.04 291 2.90 2.75 2.74
15 1.44 1.42 —0.04 —-0.06 433 4.31 4.09 4.08
20 1.92 1.89 —-0.06 —-0.08 5.73 5.71 5.42 5.40
5 0.32 0.33 0.00 0.00 0.98 0.98 0.92 0.93
INE 600 10 0.65 0.65 0.00 0.00 1.94 1.95 1.84 1.85
15 0.97 0.98 0.00 0.01 2.90 291 2.75 2.76
20 1.29 1.30 0.00 0.01 3.85 3.86 3.65 3.66
5 0.24 0.24 —-0.01 -0.02 0.73 0.73 0.68 0.68
AL 200 10 0.47 0.47 -0.03 -0.03 1.45 1.45 1.36 1.36
15 0.71 0.71 —-0.04 -0.05 2.17 2.16 2.03 2.03
20 0.94 0.94 —0.06 —0.06 2.88 2.87 2.70 2.69
5 0.19 0.20 —0.01 0.00 0.58 0.59 0.55 0.56
AZ5 1600 10 0.38 0.39 —0.01 0.00 1.17 1.18 1.11 1.12
15 0.57 0.59 -0.02 0.00 1.74 1.76 1.65 1.67
20 0.76 0.79 —-0.03 0.00 2.32 2.34 2.20 2.22

Table 3 Results on utilities of four CRLPs, ACS and PCS for Set C instances with 200 zones %

Rqa=R,|H|=1 |Ral=[r/31,1H|=1 Ri=R,|H|=3 |Ra| =[r/31,1H| =3

Inst TP UAV. ""pp aAcs  PD-PCS PD-ACS PD-PCS PD-ACS  PD-PCS PD-ACS PD-PCS
5 4.35 6.49 0.72 2.94 4.61 6.75 3.71 5.86
10 8.50 12.56 1.43 5.79 9.01 13.04 7.28 11.38
cot 6 15 12.48 18.23 2.13 8.56 13.20 18.91 10.71 16.58
20 16.29 23.54 2.83 11.25 17.21 24.38 14.02 21.47
5 3.87 5.70 0.54 243 4.26 6.08 3.75 5.58
10 7.60 11.08 1.09 4.81 8.34 11.79 7.36 10.85
oz 12 15 11.18 16.15 1.63 7.13 12.24 17.15 10.84 15.82
20 14.62 20.93 2.16 9.39 15.98 22.18 14.18 20.52
5 3.87 5.58 0.39 2.16 4.25 5.96 3.54 5.26
10 7.59 10.85 0.77 4.28 8.33 11.57 6.96 10.25
o3 18 15 11.16 15.83 1.15 6.35 12.23 16.84 10.26 14.97
20 14.60 20.53 1.53 8.37 15.96 21.80 13.44 19.45
5 3.90 5.80 0.81 2.77 4.27 6.16 3.81 5.71
10 7.65 11.26 1.61 5.46 8.35 11.94 7.47 11.09
cod 2 15 11.25 16.41 241 8.08 12.26 17.36 10.99 16.17
20 14.72 21.26 3.20 10.63 16.01 22.45 14.38 20.95
5 3.96 6.17 0.56 2.84 4.28 6.48 3.73 5.95
10 7.76 11.95 1.11 5.60 8.37 12.54 7.33 11.54
€03 30 15 11.41 17.38 1.66 8.29 12.29 18.20 10.79 16.80
20 14.92 22.48 2.21 10.89 16.05 23.50 14.12 21.75
5 3.75 5.59 0.61 2.51 4.13 5.96 3.70 5.54
C06 36 10 7.35 10.86 1.21 4.96 8.08 11.56 7.27 10.78
15 10.82 15.84 1.82 7.34 11.87 16.83 10.70 15.73

20 14.16 20.54 241 9.67 15.51 21.79 14.01 20.40
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Table 2 shows that with increasing number of UAVs,
the leader’s utilities of four CRLPs increase. This is con-
sistent with the results in Subsection 4.3.2. When the
number of zones increases, the utilities of leader
decrease. It is surprising that there is not much reduction
in leader’s utilities when we limit the start and end zones.
From another viewpoint, considering the actual patrols,
the cost of UAV movement will be reduced because of
certain start zones. In reality, the patrol is a continuous
process. When there is no limit on the start and end
zones, the ending zone of the UAV’s last patrol may not
be the starting zone of the next patrol. Therefore, limita-
tion on start and end zones is needed when designing
patrol strategy to ensure the continuity of patrols.

From Table 3, with increasing patrol duration, the utili-
ties do not show the results in Subsection 4.3.2, since the
detection probability between instances are not identical.

When there is little difference between detection proba-
bilities of different time spans, the gap between the utili-
ties is small. Therefore, it is necessary to judge the gap of
the detection probability between different time spans
when deciding the patrol duration. Otherwise, a long-time
patrol planning will lead to a significant reduction in uti-
lity.

Then, to further display how many UAVs are required
to decrease the undetected probability to a certain extent,
we compare the minimum number of UAVs required for
four CRLPs when the undetected probability decreases to
0.2, 0.4, 0.6, and 0.8. Results are provided in Table 4 and
Table 5. The columns Zone, Goal, and Inst are the num-
ber of zones, the expected undetected probability and the
instance label, respectively. The last four columns are the
average minimum number of UAVs required for four
CRLPs.

Table 4 Average results on UAVs needed for four CRLPs for all instances

Zone Goal Inst Minimum_UAV
Ri=R,|H|=1 [Ral =Tr/31,1H| =1 Ra=R,|H|I=3 |Ral =Tr/31,1H|=3
A01-A06 232 317 148 151
0.2 B01-B06 133 183 97 99
200 C01-C06 67 93 65 68
A01-A06 33 45 21 21
0.8 B01-B06 19 26 14 14
C01-C06 10 13 9 10
A07-A12 464 630 295 301
0.2 B07-B12 266 362 194 198
C07-C12 133 185 130 135
400 A07-A12 65 88 42 42
0.8 B07-B12 37 51 27 28
C07-C12 19 26 18 19
Al13-A18 696 951 443 452
0.2 B13-B18 399 543 290 295
C13-C18 200 260 194 204
600 Al13-A18 97 132 62 63
0.8 B13-B18 56 76 41 41
C13-C18 28 39 28 29
A19-A24 929 1270 590 603
0.2 B19-B24 531 726 387 394
C19-C24 266 369 258 270
800 A19-A24 129 176 82 84
0.8 B19-B24 74 101 54 55
C19-C24 37 51 36 38
A25-A30 1160 1584 737 754
0.2 B25-B30 663 906 484 492
1000 C25-C30 332 460 323 338
A25-A30 161 220 103 105
0.8 B25-B30 93 126 68 69
C25-C30 47 64 45 47
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Table 5 Results on UAVs needed for four CRLPs for Set B instances

Minimum UAVs

Inst Zone Goal
Ri=R,|H|=1 R4l =T[r/31,|H|=1 Ry=R,|H|=3 [Rql=Tr/31,|H| =3
0.2 133 183 97 99
0.4 76 104 56 57
B01-B06 200
0.6 43 58 31 32
0.8 19 26 14 14
0.2 266 362 194 198
0.4 152 207 111 113
B07-B12 400
0.6 85 115 62 63
0.8 37 51 27 28
0.2 399 543 290 295
0.4 227 309 166 169
B13-B18 600
0.6 127 173 93 94
0.8 56 76 41 41
0.2 531 726 387 394
0.4 303 413 220 225
B19-B24 800
0.6 169 231 123 125
0.8 74 101 54 55
0.2 663 906 484 492
0.4 378 516 276 281
B25-B30 1000
0.6 211 288 154 156
0.8 93 126 68 69

Table 4 shows that UAVs are needed more for
instances in Set A than that in Set B and Set C. Specially,
when the undetected probability decreases to 0.2 for some
instances in Set A, the number of needed UAVs is more
than the number of zones. Thus, when the detection probabi-
lity of UAVs is reduced to a certain extent, the cost of
using UAVs to improve the probability of undetected is
much higher. Corresponding to real patrols, when envi-
ronmental factors greatly affect UAV detection probabi-
lity, it may not be suitable to use UAVs to patrol.

Table 5 illustrates that more UAVs are needed with
decreasing undetected probability and increasing number
of zones. In addition, when the number of start and end
zones is limited to the minimum and the UAVs patrol at a
low altitude, the required number of UAVs is the highest,
which is consistent with earlier results of utilities.

5.2.2 Robustness

In real life, the patrol strategy is planned in advance
based on the leader’s knowledge, but the real detection
probability may deviate from the value in the previous
setting due to climate fluctuations in the environment. In
addition, the strategy that the follower observes may
deviate from the leader’s strategy due to the accuracy of
the information. Therefore, we evaluate the robustness of

our solution in two aspects:

(i) The detection probability of UAV §(v,) in each ver-
tex is in the range of [(1 —a)-6(v,),(1 +a)-6 (v,)].

(i1) The actual coverage of each vertex ﬁ, (v,) is in the
range of [(1-08)- f,(vy),(1+8)- f(v,)], where @ and B
are the noises of the data.

Table 6 presents the results with @ =0.1 and 8=0.1.
For each instance set, we present results of all instances
in the case of deviation of detection probability in the
first three rows, and the results of all instances in the case
of deviation of coverage in the last three rows. The row
PDP-I, PDP-ACS, and PDP-PCS are the average percent-
age difference between the utility of CRLP in the case of
deviation of detection probability and CRLP, ACS, and
PCS, respectively. The row PDC-I, PDC-ACS, and PDC-
PCS are the average percentage difference between the
utility of CRLP in the case of deviation of coverage and
CRLP, ACS, and PCS, respectively.

The percentage difference is (U, - U,)/(-U,))x 100.
In the case of deviation of detection probability, U, is the
utility of the leader obtained by the optimal choice of the
follower against previous coverage f based on 4. In the
case of deviation of coverage, U, is the utility of the
leader obtained by the optimal choice of the follower
against f.
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Table 6 Average results on robustness of four CRLPs compared with itself, ACS and PCS for all instances %
Set Case Percentage difference Ri=R,|H|=1 R4l =Tr/31,|H|=1 Ri=R,|H =3 |Rql =Tr/31,|H| =3

PDP-1 —-0.59 -0.43 0.02 0.06

Prop PDP-ACS 0.44 —0.46 3.22 3.14

PDP-PCS 0.48 —0.42 3.26 3.18

Set A

PDC-1 —0.40 -0.29 0.02 —0.04

Cover PDC-ACS 0.63 -0.32 3.22 3.04

PDC-PCS 0.67 —0.28 3.26 3.08

PDP-1 -1.38 -0.97 0.00 0.21

Prop PDP-ACS 0.31 —-1.16 4.10 4.13

PDP-PCS 0.56 —-0.90 434 4.37

SetB PDC-I ~0.70 051 ~0.02 0.21
Cover PDC-ACS 0.97 —-0.70 4.08 4.14

PDC-PCS 1.23 —0.44 432 438

PDP-1 -2.59 -1.33 —0.02 0.24

Prop PDP-ACS 1.99 —0.60 4.80 443

Set C PDP-PCS 432 1.84 7.04 6.68
PDC-1 -1.38 -0.92 0.01 0.20

Cover PDC-ACS 3.14 -0.20 4.83 4.39

PDC-PCS 5.44 2.23 7.06 6.65

From the results in Table 6, we can find that, in ge-
neral, the solution of four CRLPs has strong robustness
and performs better than ACS and PCS when the zone
coverage and detection probability are uncertain. It also
shows the stability of our solution in practical applica-
tions. Specifically, compared to the detection probabi-
lity, the coverage has less influence on the solution qua-
lity. It is not surprising that a lower probability of detec-
tion corresponds to a smaller fluctuation of the solution.
When the number of start and end zones of the UAV is
limited to the minimum and the UAV patrols only at a
low altitude, the utility is lightly worse than that of ACS

and PCS in some instances. The reason is that the patrol
mode of ACS and PCS do not limit the start and end
zones, so the zones that are not included in the start and
end zone sets are covered more at the start and end time
points.

To further illustrate the fluctuation of solution in the
case of two disturbances, we present the detailed results
for Set C instance in Table 7 and Table 8. For each per-
centage difference, we present results of all instances
when the number of UAVs is 20 in the first three rows,
and the results of all given number of UAVs in all
instances in the last three rows.

Table 7 Results in the case of deviation of detection probability for Set C instances %
PDP UAV Percentage difference Ri=R,H|=1 R4l =[r/31,|H| =1 Ri=R,H|=3 R4l =[r/31,|H =3
Aver -3.92 -1.93 —-0.02 0.28
20 Max -1.89 -0.43 0.36 1.73
Min —9.66 —3.52 -1.47 —0.88
PDP-I
Aver -2.59 -1.33 —-0.02 0.24
All Max -0.43 -0.14 0.57 2.09
Min -9.66 —4.83 -1.47 -1.48
Aver 3.34 -0.77 7.59 6.91
20 Max 14.70 0.97 17.33 14.55
Min 0.27 -2.38 3.39 2.19
PDP-ACS
Aver 1.99 —0.60 4.80 443
All Max 14.70 1.23 17.33 14.55
Min 0.02 -3.62 0.85 0.37
Aver 6.98 3.11 11.04 10.41
20 Max 22.09 9.55 24.49 21.71
PDP-PCS Min 1.93 -0.34 4.84 3.49
Aver 4.32 1.84 7.04 6.68
All Max 22.09 9.55 24.49 21.71
Min 0.40 -0.40 1.28 0.88
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Table 8 Results in the case of deviation of coverage for Set C instances %
PDC UAV Percentage difference R;=R,|H|=1 IRql =Tr/37,|H| =1 R;=R,|H| =3 |Rql =Tr/31,|H| =3
Aver -2.16 -1.49 0.12 0.35
20 Max 0.00 —-0.03 2.70 1.70
Min -5.09 -3.56 -0.97 -1.28
PDC-1
Aver -1.38 -0.92 0.01 0.20
All Max 0.00 0.00 2.70 1.70
Min -5.09 -3.56 -1.34 -1.76
Aver 4.99 -0.32 7.71 6.98
20 Max 12.03 2.80 18.23 15.60
Min 2.16 -1.84 2.97 2.92
PDC-ACS
Aver 3.14 -0.20 4.83 4.39
All Max 12.03 2.80 18.23 15.60
Min 0.53 —-1.84 0.75 0.54
Aver 8.58 3.54 11.16 10.47
20 Max 19.65 11.22 24.44 22.20
Min 3.46 1.17 4.58 4.22
PDC-PCS
Aver 5.44 2.23 7.06 6.65
All Max 19.65 11.22 24.44 22.20
Min 0.88 0.29 1.25 1.02

Table 7 and Table 8 show that with increasing number
of UAVs, the fluctuation of the solution becomes larger
in both cases. However, the advantages of four CRLPs
over ACS and PCS do not decrease and are more obvi-
ous, which also shows the stability of our solution in
practical applications.

5.2.3 Scalability

In this subsection, we compare the efficiency of
four CRLPs with and without the proposed DS-EM in
Subsection 4.2. Results are presented in Table 9. For

each instance set, we present results of all instances
when the number of UAVs is 20 in the first three
rows, and the results of all given number of UAVs
in all instances in the last three rows. The column
UAVs is the number of UAVs and IR-CPU is the per-
centage difference of runtime, which is computed as
(CPU-CPU(DS-EM)/ CPU)x100. The row Aver is the
average percentage difference of the instances. Max
is the maximum percentage difference of the instances.
Min is the minimum percentage difference of the
instances.

Table 9 Average results on runtime of four CRLPs for all instances with and without DS-EM

Set UAV IR-CPU/% Ra=R,|H|=1 IRal =1r/31,1H| =1 Ra=R,|H|=3 |Ral =1r/31,|1H| =3
Aver 72.32 60.05 82.26 84.50
20 Max 96.40 89.07 98.06 98.89
Min 37.33 9.76 22.49 12.26
Set A
Aver 73.33 61.38 81.56 84.99
All Max 97.13 90.74 98.06 98.95
Min 17.84 9.76 18.67 2.16
Aver 76.24 57.83 82.83 84.79
20 Max 96.56 87.21 97.15 98.69
Min 27.98 5.66 21.49 35.57
SetB Aver 74.73 59.59 84.64 84.14
All Max 96.89 91.22 97.52 98.82
Min 6.57 5.66 18.86 17.70
Aver 80.33 72.75 81.23 82.37
20 Max 98.26 90.55 97.16 98.66
Min 45.19 45.87 18.71 1.81
Set C
Aver 79.42 70.53 80.20 83.23
All Max 98.26 90.73 97.16 98.86
Min 35.63 24.81 9.41 1.81
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Table 9 shows that the proposed DS-EM greatly
improves the solution efficiency. Consistent with our
thought, the runtime decreases when the start and end
zones are limited and increases when the number of
patrol altitudes increases. Further, the time is required
more when the UAV can patrol at three altitudes and
limit the start and end zones, because variables and con-
straints increase when limiting start and end zones.

To illustrate the effect of the number of zones and time
points on runtime, we present the results for Set A
instances with the number of time points is 24 in Table 10
and Set B instances with the number of zones is 600 in
Table 11. The columns Inst, Zone, and TP are the
instance label, the number of zones, and the number of
time points, respectively. The last four columns are the
average percentage difference of the instances.

Table 10 Results on runtime of four CRLPs for Set A instances with 24 time points %
IR-CPU
Inst Zone
Ri=R,|H|=1 |Ral =1[r/31,|H|=1 Ri=R,|H|=3 |Ral =r/31,|H| =3
A04 200 90.50 86.86 92.61 93.10
Al0 400 91.54 85.78 97.75 96.87
Al6 600 66.13 86.45 96.41 96.25
A22 800 61.65 84.55 96.59 95.96
A28 1 000 86.80 88.62 95.36 95.71
Table 11 Results on runtime of four CRLPs for Set B instances with 600 zones %
IR-CPU
Inst TP
Ri=R,|H|=1 |Ral =r/31,1H| =1 Ry=R,|H|=3 |Rq| =1r/31,1H| =3
B13 6 58.90 51.49 39.41 52.09
Bl4 12 72.19 66.85 89.45 64.33
B15 18 80.98 75.89 94.61 96.57
Bl16 24 81.36 79.93 95.17 94.83
B17 30 85.46 45.58 95.60 94.79
B18 36 86.17 36.93 95.46 94.58

Table 10 and Table 11 illustrate that, in general, com-
pared to the increase in number of zones, the DS-EM is
more efficient in increasing the time duration because the
DS-EM greatly reduces the number of pure strategies of
the follower in the time dimension.

6. Conclusions

In this paper, the problem of deploying UAVs on borders
is modeled as a leader-follower Stackelberg game with
the aim to find an effective patrol strategy to detect the
illegal immigrant. The objective of the leader is to deter-
mine the optimal patrol path of UAVs under different
patrol altitudes. The follower selects a time and area with
the minimum probability of being detected to cross the
border after observing the leader’s strategy. To ensure the
continuity of the actual patrol, UAVs are limited to start-
ing and ending their patrols in certain zones. However,
such limitations make some strategies invalid. Condi-
tions for effective leader’s strategy are developed to pro-
vide a preliminary intuition for decision makers. In addi-
tion, some properties of leader’s utilities are stated to help

the border patrol agency make a trade-off between costs
and utilities.

With the increase in scale of the game, the number of
strategies of the leader exponentially increases with time
and space. To solve the computational challenge, first, a
nonlinear programming model in a compact form named
CRLP is proposed to reduce the variables in the original
model. Then, the constraints for the follower are linea-
rized to build an equivalent model. When the time and
space increase, the strategy space of the follower rapidly
grows. Therefore, we propose a method named DS-EM to
reduce the strategy space of the follower by eliminating
the strategies that are not performing well.

To evaluate the solution quality and robustness, we
compare the solution in four CRLPs that have different
parameter sets with two conventional patrol strategies on
generated instances. The computational results show that
the proposed solution has better utilities than the two
strategies, and is able to provide an effective patrol stra-
tegy to detect illegal entry and secure the border. More-
over, the proposed solution is strongly robust when the
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zone coverage and detection probability are disturbed. The
performance of the DS-EM is assessed on four CRLPs.
The experimental results show that the elimination me-
thod can significantly improve the efficiency. In the fu-
ture, we will focus on exploring new ideas of strategy re-
duction and designing an effective patrol strategy under
uncertain situations, e.g., the time required for the follo-
wer to cross different areas along the border is uncertain.
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