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Abstract: The utilization of traffic information received from
intelligent vehicle highway systems (IVHS) to plan velocity and
split output power for multi-source vehicles is currently a
research hotspot. However, it is an open issue to plan vehicle
velocity and distribute output power between different supply
units simultaneously due to the strongly coupling characteristic
of the velocity planning and the power distribution. To address
this issue, a flexible predictive power-split control strategy based
on IVHS is proposed for electric vehicles (EVs) equipped with
battery-supercapacitor system (BSS). Unlike hierarchical strate-
gies to plan vehicle velocity and distribute output power sepa-
rately, a monolayer model predictive control (MPC) method is
employed to optimize them online at the same time. Firstly, a
flexible velocity planning strategy is designed based on the sig-
nal phase and time (SPAT) information received from IVHS and
then the Pontryagin’s minimum principle (PMP) is adopted to for-
mulate the optimal control problem of the BSS. Then, the flexi-
ble velocity planning strategy and the optimal control problem of
BSS are embedded into an MPC framework, which is online
solved using the shooting method in a fashion of receding hori-
zon. Simulation results verify that the proposed strategy
achieves a superior performance compared with the hierarchical
strategy in terms of transportation efficiency, battery capacity
loss, energy consumption and computation time.

Keywords: electric vehicle (EV), model predictive control (MPC),
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1. Introduction

With the rapid development of urban modernization, the
issues of fuel consumption and exhaust emissions of
transportation systems have drawn increasing attention
[1]. Vehicle electrification, such as hybrid electric vehi-
cle (HEV), plug-in hybrid electric vehicle (PHEV) and
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electric vehicle (EV), has been viewed to be a key way to
address these issues. Among them, EV is the most
promising alternative due to the features of regenerative
braking and zero emissions [2]. However, the pressures
of insufficient power density and capacity loss for bat-
tery are still the primary restrictions for wide production
and application of EVs [3,4]. To relieve these pressures, a
battery-supercapacitor system (BSS) is generally used to
be the supply unit of EV [5,6] and its superior perfor-
mance compared with the battery-only powertrain has
been verified in [7]. Meanwhile, to fully exploit the
potential of BSSs, an efficient power-split strategy is
required to distribute output power between the battery
and the supercapacitor in real time [8]. The power-split
strategies can be roughly divided into three categories:
rule-based method [9], optimization-based method [10]
and learning-based method [11]. The recent results on
power-split strategies were summarized in [12].
Furthermore, the utilization of the traffic information
received from intelligent vehicle highway system (IVHS)
to plan the near future velocity trajectory cannot only
effectively enhance the performance of EVs, but also
shorten the travel time [13,14]. Due to the strongly cou-
pling characteristic of the velocity planning and the
power distribution, the hierarchical control architecture is
generally used to address them separately. The higher-
level controller plans the vehicle velocity trajectory using
the traffic information to minimize the travel time, ensure
ride comfort and avoid collision. And the lower-level
controller distributes output power between different sup-
ply units according to the velocity trajectory obtained
from the higher-level controller for minimizing fuel con-
sumption and battery capacity loss [15—-20]. Meanwhile,
Sangjae et al. [21] showed that the vehicle performance
can be further improved if special information is adopted,
e.g., the traffic lights in urban roads [22]. Thus, Yuan et
al. [23] designed a velocity predictor utilizing the histori-
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cal signal phase and time (SPAT) information and the
driver’s intention, and then a power-split strategy for con-
nected hybrid EVs (CHEVs) was proposed to distribute
the output power between engine and battery based on the
predicted velocity trajectory obtained from the velocity
predictor. To coordinate the distinct energy consumption
characteristics between EVs and traditional gasoline vehi-
cles in a mixed-traffic platoon, He et al. [24] developed
an eco-driving strategy to guide the mixed-traffic platoon
in order to get through each intersection combining the
upcoming SPAT information and the energy consump-
tion characteristics of EVs and traditional gasoline vehi-
cles, which improved transportation efficiency and
energy efficiency.

It is well-known that it is necessary to plan the velo-
city trajectory online and distribute output power of EVs
in a complex traffic environment. Model predictive con-
trol (MPC) is widely used to address these issues of EVs
due to its ability to explicitly deal with system con-
straints and multi-objective optimization problems in real-
time [25-28]. In [29], the MPC framework was adopted
to optimize the velocity trajectory online of CHEVs in
urban roads based on the SPAT information received
from IVHS, and then an adaptive equivalent consump-
tion minimization strategy (ECMS) was used to track the
optimal velocity trajectory. More MPC-based power-split
strategies were summarized in [30].

Although using the upcoming SPAT information trans-
mitted from IVHS to plan velocity trajectory of CHEVs
can improve the performance of the power-split strategy,
there is lack of related efforts on connected EV equipped
with BSS (CEV-BSS). Note that the power-split problem
of CEV-BSS is not directly followed from the CHEVs”,
since the CEV-BSS and CHEVs are equipped with dis-
tinct supply systems and the power-split strategies pur-
sue different optimization objectives [31,32]. In addition,
the velocity planning and the power distribution are ge-
nerally decoupled into two sub-problems and a hierarchi-
cal method is used to solve them separately in previous
results [33]. However, the report from U.S. Department
of Energy indicates that the vehicle performance can be
improved significantly if the velocity planning and the
power distribution can be addressed simultaneously [34].

Inspired by these previous works, in this paper a flexi-
ble receding horizon power-split strategy for CEV-BSS in
urban roads is proposed to improve transportation effi-
ciency, reduce energy consumption and relieve battery
degeneration. The problems of velocity planning and
power distribution are formulated as a flexible velocity
planning strategy and an optimal control problem, respec-
tively, and a monolayer MPC method is used to optimize
them online simultaneously. Firstly, a flexible velocity

planning strategy is designed based on the upcoming
SPAT information, which guarantees that the CEV-BSS
can get through each intersection without shutdowns.
Meanwhile, the Pontryagin’s minimum principle (PMP)
is adopted to establish the optimal control problem of the
BSS. Subsequently, the flexible velocity planning stra-
tegy and the optimal control problem are embedded into
an MPC framework which is solved by the shooting
method in a fashion of receding horizon. Moreover, to
avoid the deterioration of ride comfort, the L, regulariza-
tion regarded as the penalty of the objective function is
introduced to trade off the flexibility and smoothness of
vehicle velocities. Note that the time delays caused by
information transmission will not be considered in this
paper, because they could be generally compensated by
shortening the duration of green light. Finally, several
simulations are used to verify the effectiveness of the pro-
posed strategy.

The main contributions of this paper are summarized
as follows: (i) Unlike the hierarchical method to optimize
the velocity trajectory and distribute output power
between different supply units separately, a monolayer
MPC is used to optimize them simultaneously in this
paper. The simulation results validate the superiority of
the proposed strategy compared with the hierarchical
method in terms of traffic efficiency, battery life-time and
adaptive ability to unknown scenarios. (ii) The flexible
velocity planning strategy is designed based on the SPAT
information to provide an extra degree of freedom for the
power-split strategy. Meanwhile, the L, regularization is
introduced to constrain the flexibility of vehicle velocity
and then avoid the deterioration of ride comfort.

The rest of this paper is organized as follows. Section 2
builds the control-oriented models. The flexible predic-
tive power-split control strategy is structured in Section 3.
The simulation results are discussed in Section 4 and Sec-
tion 5 concludes the paper.

2. Control-oriented models

This paper considers a CEV-BSS to get through N inter-
sections with signal lights on a flat urban road, which is
shown as Fig. 1. It is assumed that the CEV-BSS can
receive the SPAT information from the signal lights of
the downstream intersection through IVHS.

IVHS

Fig.1 A schematic of the traffic scenario
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The longitudinal dynamics of vehicles composed of
motor, rolling resistance, aerodynamic drag and gravita-
tional force is considered in this paper. To trade-off accu-
racy and conciseness, it is assumed that the CEV-BSS
runs on a flat and dry-asphalt road and ignores tire slip in
the longitudinal direction. Thus, the vehicle longitudinal
dynamics of CEV-BSS [35] can be described by

S=v
. > (1)
v=u/m-gC,—0.50C,Av"/m

where s, v and u denote the position, velocity and tractive
force of CEV-BSS, respectively; m, C,, p, C, and 4 are
the mass, rolling resistance coefficient, air density, drag
coefficient and front area of the CEV-BSS, respectively.

Here, the configuration of the CEV-BSS is simplified
as a BSS, an electric motor and a powertrain shown as
Fig. 2. As the main power supply unit, BSS provides
electrical energy to the motor and recovers part of bra-
king energy through the direct current-direct current (DC-
DC) bus. Then the tractive force generated by motor
transmits to the powertrain along the mechanical joint.
The differential unit distributes the tractive force to the
tires on either side. In Fig. 2, the BSS consists of a bat-
tery pack, a supercapacitor pack and a bidirectional DC-
DC converter, where the supercapacitor pack is con-
nected in parallel with the battery pack through the bi-
directional DC-DC converter [9,10]. For simplified calcu-
lation, the bi-directional DC-DC converter is generally
modeled as an equivalent coefficient #, which represents
the efficiency of the DC-DC convertor.

Mechanical joint  Electrical connection

Brake disc
[l | [T T T T
i i I i
i | Super-| | Bi-directional L I i
I [capacitor|  |DC-DC converter| I Fimal i
i 1" 1DC-DC] . Differential
-| Motor — reduction X !
| 1+ bus N unit i
H i drive ‘
| |Battery [f---—m-mmomoog | ‘
i i i
e -} Powermain | ]
Brake disc

Fig.2 Configuration of the CEV-BSS

The power flow between the BSS and the DC-DC bus
[36] can be formulized as

nPsc = Pd_Pb
P, = (mv+mgC, +O.5pAC,,v2)v

[\S]

2)

where P, is the demanded power, P, and P, are the out-
put power of the battery and the supercapacitor, respec-
tively.

In general, the high-fidelity models of batteries and
supercapacitors cannot be applied in practice because of

their complexity and the requirement of real-time applica-
tions. As shown in Fig. 3, the Rint/RC equivalent circuit
consisted of a voltage source and an equivalent resis-
tance in series is adopted in this paper.

(b) RC equivalent circuit
Fig. 3 Rint/RC equivalent circuit for the BSS

The dynamic characteristics of state of charge (SOC)
for battery and supercapacitor [37] can be described as

I, Vi, - \/VZ —4R, P,

SOC,=-= =—
o 2R,0Q
. (SOCsc ‘/sc,max)z - 4RscPsc SOC.. V.. .
SOCSC — \/ _ sc ¥ sc,max
2Rsc Csc Vsc,max 2Rsc Csc ‘/sc,max
3)

where SOC, and SOC,, represent the SOC of the battery
and supercapacitor, respectively; O, R,, and V;, are the
rated capacity, equivalent internal resistance and open
circuit voltage of the battery pack, respectively; C., R,
and V. .x are the capacity, equivalent internal resistance
and maximum rated voltage of the supercapacitor pack,
respectively.

3. MPC-based flexible power-split

In this section, the flexible predictive power-split control
strategy is proposed to plan velocity and distribute output
power between battery and supercapacitor for CEV-BSS
and avoid stopping at red lights to reduce travel time and
minimize the output current of battery /,, which improves
energy efficiency and reduces battery capacity loss. As
shown in Fig. 4, the proposed strategy roughly includes
the following steps: (i) To avoid stopping at red lights,
the velocity range that leads the CEV-BSS to cross the
downstream intersection at green lights is calculated
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according to the SPAT information; (ii) For real-time
computation requirement, the PMP is adopted to formu-
late the optimal control problem for CEV-BSS; (iii) Con-
sidering the velocity range and the optimal control prob-
lem, the flexible predictive power-split control strategy is
designed with the shooting method.

Flexible predictive power-split control strategy

I i i

Optimal control
problem

Shooting method Velocity range

Vehicle state

SPAT

information &Q E

Traction force

Fig. 4 A schematic of the proposed strategy

As described in Section 2, the CEV-BSS runs on a flat
urban road with signal lights and it must observe the traf-
fic rules. Apart from that, avoiding stopping at red lights
can effectively reduce travel time. Thus, it is necessary to
calculate the velocity range based on the SPAT informa-
tion to guide the driving behaviors of the CEV-BSS. As
shown in Fig. 5, t=t,+¢, denotes the period of traffic light,
where ¢, and ¢, are the duration of red light and green
light, respectively; d represents the distance between the
current positions of the CEV-BSS and downstream inter-
section.
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Fig. 5 A schematic of velocity range calculation
The velocity range at time instant # can be calculated as

d(t)

———, light=red
Kt,—t,—t

d(t)

K[A—t <vmal)(

V(1) = § Vmax,  light = green ; , 4

d(t)
Kt +t —t

light = green and otherwise

d(t
@ , light =red

Kt,—t

d(1) . d(1)

= light = ;—>—— < max s
V(1) K1 ight = green; K1 v &)
d(t . .

#, light = green and otherwise

. red, 0< mod(t/t,) <t,
light = ) (6)

green, f. < mod(t/t,) <t

where v,(¢t) and v(¢) are the upper and lower bounds of
the velocity, respectively, and K= ceil(#/¢,) is the number
of traffic light cycle.

Due to its low computational complexity, PMP is us-
ually used to solve large-scale optimization problems
[38]. Combination of PMP and MPC can fully exploit
their features of low computational burden and real-time
applications. Thus, the PMP is adopted to formulate the
optimal control problem for CEV-BSS, and then inte-
grated into the MPC framework. Since the ampere-hour
throughput takes the primary responsibility for the bat-
tery degradation and the internal resistance of the battery
is greater than that of the supercapacitor, the perfor-
mance of a power-split strategy can be evaluated by mini-
mizing the battery current /, [37]. Thus, the index func-
tion of power-split is formulated as

J=a f PP, 0dt %

where a,>0, #, and #, are the weight, the initial time and
the terminal time, respectively, and

1Py = (Vi = V= 4R,Po(0)) 2Ry,

Then, the dynamic characteristic of SOC for the super-
capacitor is regarded as the state equation of the optimal
control problem, which is

SOCSC(t) = ﬁ (SOCSC7 PSC’ t)‘ (8)

Substituting (2) into (8), we can easily derive the cou-

pling dynamic of the BSS that
fl(SOCsc,Psc’t) = fl(SOCsc’ u, Pb’t)- (9)

According to the PMP, the Hamiltonian function of the
optimal control problem is defined as

H(SOC,.,u, Py, A,1) = a,I}(Py, 1)+
A0 /i(SOCy, u, Py, 1) (10)

where A(¢) denotes the co-state variable corresponding to
the coupling dynamics (9) of the BSS. The necessary
conditions of the optimal control problem with respect to
(7) are formulated as

- 0H
SOC, (1) = i Si(SOC ,u", P;,1), €8))]
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0 £,(SOC.,u*, P;.1)

()=~ =-A(¢ 12
@ 0SOC,, @ 0SOC,, - (12
H(SOC.,,.u’, P, A",1) < HSOC.,u, P,, A',1).  (13)

Equations (11) and (12) guide the iterative direction of
the state variable SOC(?) and co-state variable A(¢), and
(13) guarantees that u*(f) and P;(f) can minimize the
Hamiltonian function (10).

According to the velocity range (4)—(6) calculated
above based on SPAT information and the optimal con-
trol problem (7)—(13) for the CEV-BSS, the flexible pre-
dictive power-split control strategy based on MPC is
designed.

Let A>0 be the sampling time interval, N, be the pre-
diction horizon, vector x(ilk) denote the predicted vari-
able at sampling time &k for the future instant k+i. Define
the state vector x=[SOC,, SOC,, s, v, X]T and output vari-
able y=I,. Combining (1)—(3) and (10)—(13), we have the
interpolation function f{x,u,P,)=x+x(u, P,)At and the cost
function

N,-1

J(x(k), u(k), Py(k)) = Z [H(SOC(ilk), uilk),

i=0

Py(ilk), A+ 11k), k) + a2 (ilk)] (14)

where the L, regularization w(ilk)=|v(i+1|k)—v(ilk )| for
sparse outputs is introduced to avoid the deterioration of
driving comfort, and a, is the weighted factor. Then the
flexible predictive power-split control strategy is pre-
sented as

min J (x(k), u(k), P, (k))
‘Kbéilb
s.t. x(i+11k) = f(x@ | k),u(i | k), Py(i | k)
Wi lk)=g(Py(i|k))
xmin < x(l | k) < xmastb,min < Pb(l | k) < Pb,max
u(i | k) = thnax, - V(i1 k) <vi(i ] k)
u(i | k) = tin, V(| k) 2 vi(i ] k)
Upmin < U | k) <y,  otherwise
|SOC:C (Np | k) - SOCsc, target (k)| < é’

x(0k)=x(k), i=0,1,---,N,—1 (15)

where the sequences u(i|k) and P,(i|k) are the control varia-
bles, x,,;, and x,,,, are state constraints, Py i Ppmaxs Umins
U are the physical limitation of power of battery and
tractive force, respectively. u;,,, and u,,, are the tractive
force constraints associated with the velocity range [v.(k),
v,(k)], which ensure the avoidance of stopping at red
lights. SOC e 1s the target SOC over the prediction

horizon, which denotes the terminal constraint of the
supercapacitor SOC. From (15), it can be observed that
the CEV-BSS needs to catch up within [v,(k), v,(k)] as
much as possible.

The proposed strategy essentially results in a two-point
boundary value problem to minimize (15) over the pre-
diction horizon N, . The shooting method is a typical
approach to solve this problem for obtaining the numeri-
cal solution. The shooting method generally includes the
following steps:

(1) Discretize the control variables over the prediction
horizon, i.e.,

uOlk) — u(llk)

_ u(N,—1lk)
v = [ P,OK)  P,(110) }

P,(N,—1]k)

AUZ |: qu,max_uf,min :|/nU’

Pb,max _Pb,min
I/t(llk) Mf min uf max )
. = ' AU : ' ,
|: Pb(llk) :| ([ Pb,min Pb,max
i=071"”’Np_1, (16)

where n;, determines the interval of the discretization of
control variables.

(i) Adjust the initial co-state variable A(0|k) of each
shooting. The key step of the shooting method is adjus-
ting the A(0Jk) to hit a target state over the prediction hori-
zon. Thus, a secant method [31,39] is employed to adjust
the A(0Jk) of each shooting, i.e.,

A4, (0k) = Ao(0lk)
:(0lk) = A(0lk) +6
A4(0lk) = 41 (01k) = (A-1 (0lk) — A,-2(0lk))- (17)
SOCscﬁq—l (Np|k) - SOCsc,ra.rget(k)
(Socsc,ql (Nplk) - SOCsc,q—Z(Np|k) +as

where g=3, 4, --, N, N, is a predetermined number of
shooting points, and shooting interval 6 = 0.04, the coeffi-
cient a; ensures the denominator is nonzero. 4,(0[k) repre-
sents the initial co-state of the gth shooting at sampling
instant k. SOC,. (N, |k) is the terminal SOC of the (¢—1) th
shooting for supercapacitor at the instant k.

(iii) Minimize the objective function and guarantee that
SOC; (N,|k) converges to the target state SOCq (),
ie.,

U* (k) = argmin J (x(k), u(k), P,(k))

5. SOC-.(i + 1]k) = SOC™(ilk) + SOC".(ilk)At
X+ 10k) = (i) + X R)AL
|SOC:(Np|k) - SOCsc,target(k)l < { (1 8)

where i=0, 1,---, N,—1. As shown in Fig. 6, from the ini-
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tial state SOC,.(0]k), the target state SOCq e V,/ko) can
be reached after n shots over the prediction horizon,
where 0<n< N,. Then state SOC,(1k,) is viewed as the
initial state SOC(0lk,) of next instant k, . Repeat the
shooting process until the actual state reaches the target
state SOCj, (k). The detailed pseudo-code is pre-
sented in Algorithm 1.

Algorithm 1 Pseudo-code for the power-split strategy

Initialization of parameters and variables
while s(k)<s,,.
forg=1:N,
Generate the initial co-state variable using (17)
fori=0:N,
fori=0:N,
Generate the target velocity range sequence (4)—(6)
if v (ilk) < v(ilk) or v(ilk) = v,(ilk)
if v (ilk) < v(ilk)
U 1K) =
else if
U 1K) =
Determine the optimal battery output power
P (k) = arg 1;11(12)1 J(SOC., Py, u*, A%, k)

sc?

else
u — Ui
AU — f,max f,min /nU
Pb,max - Pb.min

I/l(l|k) uf min ufmax
. = ’ AU : ’
[ Ph(llk) (|: Ph,min Ph,mux
forz=1:n,+1
Determine the optimal input sequence by mini-
mizing (8)
U (k) = arg 1}}1&1}1 J(x(k), u(k), P,(k))

end
end
end

if [SOC (N, |k)=SOCq. tyee(k)| <, break
end
Apply the first element of U*(k) to CEV-BSS
x(k+1) = fix(k), u(0[k), Py(0[k)), y(k)=g(P(0[k))
Let ki=k+1
end

Remark 1 It should be emphasized that this work
focuses on the design of flexible predictive power-split
control for BSSs of EV and presents a monolayer MPC
method for the flexible predictive power-split control of
the EV. Although the stability and feasibility issues of
MPC are important, to the best of our knowledge, the theo-
retical result on the stability and feasibility problem of
PMP-based nonlinear MPC is still an open and challen-
ging issue. Note that the result on the solution conver-

gence of PMP-based linear MPC can be found in [38].
Nevertheless, in practice one known method to guarantee
stability of MPC is to impose the terminal constraint into
the finite horizon optimization problem (15) with the
heuristic method of tuning controller’s parameters.

SOC/%
1
27
SOC.(0lk0)+ SOC,, ielko)
Time/s
(a) Target shooting at k=k,
SOC/%
1
2
1 7% SOC. )
SOC,(0lk,)
Time/s
(b) Target shooting at k=k,
SOC/%
1
SOCy, rgei(Ky)
SOC,(0lk)
R
Time/s

(c) Target shooting at k=k;

Fig. 6 A schematic of the shooting method

Remark 2 The main idea of the strategy proposed in
this work is to consider the traffic light information at
intersections, calculate the speed range to avoid stopping
and then provide a sparse velocity for CEV-BSS. The
gently uniform speed can be calculated with L, regula-
rization term according to the determined speed range,
which can minimize the battery current throughput and
then ensure satisfactory ride comfort during crossing the
intersection.

4. Simulation results

In this section, the effectiveness of the proposed method
is validated using the scenario of the real world of
Hangzhou, China collected from Alimap. To demon-
strate the superiority of the proposed strategy, the pro-
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posed method and a hierarchical MPC method [29] are
compared under the urban road scenarios in [29]. Parame-
ters of EV, battery pack and supercapacitor pack are
listed in Table 1 and Table 2 [31], respectively. Simula-
tion parameters are presented in Table 3.

Table 1 Parameters for the longitudinal dynamics

Parameter Value
m/kg 1550
plkg'm ) 1.23
A’ 2.68
C, 0.014
Ca 0.275
Table 2 Parameters of the BSS
Component Parameter Value
Vi/V 312
Battery pack Q/Ah 90
R/ 0.3
Viema!V 310
Supercapacitor pack C/F 2500
R, /Q 0.01
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Table 3 Simulation parameters

Parameter Value Parameter Value
(Ui )N 3100 iV ) 0/22
(SOC, 1in/SOC, )/ % 20/100 SOC, /% 75
(P mind Pp.ma /KW -20/35 o 0.1
(SOC e min/ SOCe )/ %0 50/100 N, 20
(Prcmind Prcnax) KW -105/105 N, 10
¢ 0.001 At 1

4.1 Simulation results

The overview of Hangzhou, China is shown in Fig. 7,
which has an approximate length of 2200 m and includes
six traffic lights. The initial speed, SOC, and SOC,, of
CEV-BSS are set as 6 m's ', 90% and 75%, respectively.
More details of the SPAT information for simulation are
presented in Table 4, where the ‘r-26’ means that the sig-
nal light will turn from red to green after 26 s when the
vehicles firstly enter the starting point. As shown in
Fig. 8(a), the red/white interval indicates the duration of
the red/green light, which means an impassable/accessi-
ble area, and the blue curve represents the driving route
of the CEV-BSS. It can be observed that the proposed
strategy enables the CEV-BSS to get through each inter-
section during green light.

Mavie & Television
Hangzhou, People's
+] Xihu Law Bookstore Government
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Building = @Tianmushan Road
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i llinjiang Inn

zij
Zhejiang Safety

Fig. 7 Overview of Hangzhou, China collected from AMAP

Table 4 Details of SPAT information

Signal light Initial state/s Interval (¢/t,)/s Distance/m
1st r-26 45/20 210
2nd g2 40/25 428
3rd g-18 45/20 460
4th g-3 20/45 490
5th 2-6 40/25 357
6th r-24 45/20 255

Meanwhile, the velocity trajectory of CEV-BSS in
Fig. 8(b) indicates that the CEV- BSS can achieve a gen-
tle driving behavior throughout the trip without shut-
down. These can effectively improve transportation and
energy efficiency since stop-and-go traffic is one of the
main factors that cause traffic jams and additional energy
consumption in urban roads. In addition, the power-split
results of the proposed strategy are presented in Fig. 9,
where the blue curve represents the demanded power for
CEV-BSS and the red/green curve is the output power of
battery/supercapacitor. It can be observed that the pro-
posed strategy takes the ability to keep the output power
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of battery at a low level, and the supercapacitor is uti-
lized to timely compensate the high-frequency demand
power, which is beneficial to reduce battery capacity loss.
Fig. 9 shows that the proposed strategy can ensure that
the output powers of BSS meet the constraints.
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Fig. 9 Power-split results of the proposed strategy

Meanwhile, the SOC trajectories of battery and super-
capacitor shown in Fig. 10 indicate that the proposed
strategy ensures that the battery is not exhausted and
supercapacitor SOC fluctuates around 75% at all times.
This satisfies the terminal constraint in (15) and is benefi-
cial to handle the upcoming unknown power demands in
the future. Above all, the battery and supercapacitor ope-
rate within their allowable constraints.
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Fig. 10 Evaluation of SOC for the BSS

4.2 Comparison with hierarchical methods

In this subsection, a hierarchical method [29] with higher-
level MPC and lower-level adaptive ECMS strategy is
used as the baseline strategy to verify the comprehensive
performance of the proposed strategy in terms of trans-
portation efficiency, energy consumption, battery capa-
city loss and computing time. The simulation scenario is
also introduced from [29], where the periods of the
red/green signal light and the distance between adjacent
signal lights are sampled from a uniform distribution with
range 37-43 s/12—17 s and 300-500 m, respectively.
Moreover, the initial signal light and vehicle velocity are
also sampled from a uniform distribution with range 0—
49 s and 6—12 m/s, respectively. The details are pre-
sented in Table 5.

Table 5 Details of simulation scenario

Signal light Initial state/s Interval (¢,/t,)/s Distance/m
Ist r-16 42/13 451
2nd r-12 38/15 376
3rd r-31 43/14 414
4th g-14 39/14 315
5th r-21 38/16 311

As shown in Fig. 11(a), even though both the pro-
posed strategy and the baseline strategy can get through
each intersection during the green light, the space-time
trajectories indicate that the proposed strategy achieves
shorter travel time compared with the baseline strategy,
where the travel time for the proposed strategy is 138 s
but 193 s for the baseline strategy. Meanwhile, it can be
observed in Fig. 11(b) that the proposed strategy adopts a
driving behavior that is completely different from the
baseline strategy. Especially, at the first intersection, the
proposed strategy speeds up the CEV-BSS to get through
the intersection within the current green light owing to
the fact that the L, regularization in (14) provides a sparse
velocity for CEV-BSS.
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Fig. 11  Space-time trajectories and velocities based on the pro-
posed and the hierarchical method

The power-split results are presented in Fig. 12. Ob-
viously, although the baseline strategy achieves a lower
peak of instantaneous demanded power for CEV-BSS at
the cost of travel time, it leads to a worse power-split
result compared with the proposed strategy since the
higher-level controller of the baseline strategy does not
consider the states of BSS when planning the velocities.
Moreover, Fig. 13 illustrates that the proposed strategy is
able to efficiently reduce the accumulative current
throughput of battery. It means that the battery life can be
prolonged because the battery capacity loss is heavily
related with the ampere-hour throughput of battery. Since
the lifecycle of supercapacitor is 100 times that of bat-
tery before battery capacity is lower than 80% of its no-
minal capacity [37], the capacity loss of supercapacitor is
not considered in this paper.
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Fig. 12 Power-split results for the proposed strategy and the base-
line strategy
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Fig. 13 Accumulative current throughput of battery X|I,| for the
proposed and baseline strategy

In order to evaluate the adaptive capability of the
strategies with respect to the various urban traffic scenes,
four scenarios separately considering 5, 10, 15 and 20
signal lights, denoted by LO05, L10, L15 and L20, are
employed in the simulation in the subsection. All simula-
tion experiments are performed on a laptop with a 1.7 GHz
CPU and 8 G memory. The statistical results are summa-
rized in Tables 6—9 including travel time, accumulative
current throughput of battery 2'|7,|, final SOC of battery,
and average CPU time.

Table 6 Travel time for proposed and baseline strategies

Travel time/s

Scenario Proposed Baseline fmprovement/%
LO05 138 193 29
L10 388 482 20
L15 639 791 19
L20 887 1050 16

Table 7 Accumulative current throughput of battery

Accumulative current throughput/mA

. Proposed Baseline Improvement/%
LO05 2.1545 3.1636 68
L10 3.4135 9.9033 34
L15 5.9290 21.234 28
L20 7.5566 25.553 30
Table 8 Final SOC of battery %
. Final SOC
Scenario - Improvement
Proposed Baseline

LO05 89.39 89.40 —0.01

L10 89.09 89.07 0.02

L15 88.40 88.28 0.12

L20 87.90 87.55 0.35

Table 9 Average CPU time ms
Scenario Proposed Baseline
High level Low level

LO0S 188.0 456.4 87.0

L10 163.8 450.8 89.2

L15 144.5 450.2 117.1

L20 145.5 473.1 121.2
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The travel time in Table 6 indicates that the proposed
strategy can effectively reduce travel time for CEV-BSS
and improve transportation efficiency by at least 16%
under the same scenarios compared with the baseline
strategy.

Meanwhile, it can be observed from Table 7 that the
proposed strategy is able to cut down approximately 30%
current throughput of battery compared to the baseline
strategy when the driving distance increases. Generally,
since the capacity of supercapacitor is far less than that of
battery, only the difference of final SOC of battery
between different strategies is discussed.

In Table 8, the index of ‘Final SOC of battery’ repre-
sents the total power consumption over the trips. From
Table 8, one can see that the lower the final SOC is, the
more power is consumed. In Scenario LO5, although the
Final SOC index of the proposed strategy is slightly
worse than that of the baseline strategy, it can be seen
from Table 6 and Table 7 that the corresponding ‘Travel
time¢ and Accumulative current throughput’ are improved
by 29% and 68%, respectively. This phenomenon implies
that the proposed strategy can improve the traffic effi-
ciency and prolong battery life-time under the same elec-
tric energy consumption. From Tables 6—8, one can fur-
ther find that the proposed strategy can improve the traf-
fic efficiency and prolong battery life-time with the lower
electric energy consumption for Scenarios L10, L15 and
L20. These verify the better adaptive capability to
unknown scenarios of the monolayer MPC than that of
hierarchical MPC.

Furthermore, the performance of real-time optimiza-
tion is also an important index for evaluating the power-
split strategy. As the average CPU time shown in
Table 9, the proposed strategy has an almost three-fold
improvement in computational efficiency compared with
the higher-level controller of the baseline strategy.

5. Conclusions

In this paper, a flexible predictive power-split control
strategy is proposed for CEV-BSS to improve transporta-
tion efficiency, reduce energy consumption and relieve
battery degradation. The simulation results based on real-
world scenarios reveal that the proposed strategy enables
the CEV-BSS to get through each intersection at a gentle
velocity during the green light and achieves a lower-level
output power for battery. Furthermore, the comparisons
of the proposed method with a hierarchical method indi-
cate that the proposed method is able to improve trans-
port efficiency by at least 16%, cut down nearly 30% cur-
rent throughput of battery, reduce nearly 0.4% energy
consumption and enhance almost three-fold computa-
tional efficiency. In the future work, the scenarios of mul-

tiple CEV-BSS, and even the traffic jam scenario are
worthy to study in the context of traffic control [40].
Moreover, theoretical analysis of the feasibility, stability
and robustness issues of the proposed PMP based nonli-
near MPC will be further pursued to be studied.
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