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UAV penetration mission path planning based on improved
holonic particle swarm optimization
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Abstract: To meet the requirements of safety, concealment, and
timeliness of trajectory planning during the unmanned aerial
vehicle (UAV) penetration process, a three-dimensional path
planning algorithm is proposed based on improved holonic parti-
cle swarm optimization (IHPSO). Firstly, the requirements of ter-
rain threat, radar detection, and penetration time in the process
of UAV penetration are quantified. Regarding radar threats, a
radar echo analysis method based on radar cross section (RCS)
and the spatial situation is proposed to quantify the conceal-
ment of UAV penetration. Then the structure-particle swarm
optimization (PSO) algorithm is improved from three aspects.
First, the conversion ability of the search strategy is enhanced by
using the system clustering method and the information entropy
grouping strategy instead of random grouping and constructing
the state switching conditions based on the fitness function.
Second, the unclear setting of iteration numbers is addressed by
using particle spacing to create the termination condition of the
algorithm. Finally, the trajectory is optimized to meet the intended
requirements by building a predictive control model and using
the IHPSO for simulation verification. Numerical examples show
the superiority of the proposed method over the existing PSO
methods.

Keywords: path planning, network radar, holonic structure, par-
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1. Introduction

The modern drone, unmanned aerial vehicles (UAVs),
can replace human-piloted vehicles in performing “dull,
dirty, or dangerous” missions. Because of their advan-
tages, they have long become the best option for military
missions and have been adopted in a wide range of capa-
cities [1—4]. There are numerous civilian, commercial, mili-
tary, and aerospace applications for UAVs, such as recon-
naissance intelligence, situational awareness, combat
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applications, and assessment of war situations combat
applications, and assessment of war situations [5-9].
Notably, trajectory planning is a key point for the UAV
that determines its efficiency in task completion [10,11].
A series of achievements have been obtained in the
research on drone path planning. The path planning of the
UAYV encompasses three parts, i.e., environment percep-
tion and modeling, optimization of the objective function
design, and construction of a solution algorithm. In the
part of environment perception, Galceran et al. [12] esti-
mated the obstacle to an ellipse and proposed an elliptic
tangent path planning algorithm, and a hardware imple-
mentation architecture was built to achieve the flight path
planning of the quadrotor drone. Liu et al. [13] systemati-
cally summarized coverage path planning (CPP) and its
improved algorithms for obstacle modeling and avoid-
ance in the track area, guiding obstacle modeling in this
paper. Wu et al. [14] proposed a high-resolution environ-
ment modeling method and used the grouped traveling
salesman problem for track planning, which improved the
sensing capability of the environment. Wai et al. [15]
designed an anti-collision method based on Kalman filter-
ing by considering the potential collision of drones with
other drones in motion and improving the perception of
dynamic targets. In developing the objective function, Li
et al. [16] optimized flight energy consumption through
improved particle swarm optimization (PSO). Sun et al.
[17] proposed an enhanced precise cell decomposition
method to optimize the drone’s trajectory and compress
its flight time and fuel consumption. Levin et al. [18] pro-
posed a multi-objective differential evolution algorithm
to improve the recognition accuracy of UAVs and reduce
the distance and potential threats simultaneously. It pro-
vides a reference for multi-objective optimization. In
terms of solving algorithms, Zhu [19] et al. used rapid-
exploring random trees (RRTs) to optimize the track,
while Wai et al. [20] adopted the Dubins track planning
method. Both methods are mature and stable, but their
efficacy in addressing multi-objective and high-dimen-
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sional optimization problems is limited. Qie et al. [21]
used a shallow network for track planning. However, its
optimization ability was defective. Therefore, Yue et al.
[22] and Zhang [23] resorted to an improved reinforce-
ment learning method to research track planning under
multi-objective conditions, and Duan et al. [24] further
enhanced the planning efficiency based on deep rein-
forcement networks. Additionally, Yang et al. [25] suc-
cessfully achieved drone track planning on the strength of
interactive learning. It is easier for the above-mentioned
methods based on reinforcement learning [24,25] to meet
the requirements of actual trajectory planning and have
good scalability. However, the performance of this type
of method is highly dependent on the setting of the
reward function. When there is a deviation in the setting
of the reward function, the performance of the method
decreases significantly. Researchers [26—28] used the
improved genetic algorithm, the ant colony algorithm, and
PSO algorithm to optimize drone trajectory. Intelligent
algorithms are experts in searching for the optimal solu-
tion in the high-dimensional space but deficient in their
tendency to fall into a local optimum and converge pre-
maturely.

The above methods can be used for reference and pro-
motion for the research on UAV trajectory planning.
However, when using drones to penetrate defenses, the
drones are required to fly as low as possible to reduce the
probability of detection. This requires consideration of
factors such as terrain, military threats, and the UAV’s
motion constraints. Previous researches have covered
these elements, but they are not comprehensive and
detailed. There are deficiencies in the intelligent opti-
mization algorithm used and there is room for further per-
formance improvement. Especially for the sequential
decision-making optimization problem involving a large
numbers of parameters, a more efficient optimization
algorithm is required. Therefore, based on the existing
ideas and results, in this paper we adopt an improved
intelligent algorithm to study UAV path planning. In
terms of environmental modeling, terrain threat, radar
threat, fuel consumption, and time factors of the UAV
during the penetration process are quantified. When con-
structing the multi-objective optimization objective func-
tion, the requirements of safety, concealment, and real-
time in the penetration process of the UAV are factored
in. In terms of constructing optimization algorithms, three
shortcomings of the algorithm mentioned in [29] are rec-
tified to improve its efficiency, and the optimization func-
tion is solved by incorporating the predictive control
model. In the end, the feasibility and superiority of the
proposed algorithm are validated through simulation.

2. Problem modeling

In the UAV path planning under penetrating missions, it

is necessary to consider its limitations and external fac-
tors. One major inherent limitation is the flight con-
straints of the drone, including speed, altitude, and head-
ing angle, while sudden changes are acceptable. External
factors mainly include terrain factors, radar threats, and
flight path length. In the process of penetration, we must
keep away from mountains and radar radiation. Mean-
while, the time requirement and fuel consumption vary
from task to task, which is the total length of the route.
Therefore, for the objective function of UAV track plan-
ning, all the above factors should be considered.

2.1 UAV self-restraint and flight ability

The drone flies in the mission area and it is regarded as
the moving particle in three-dimensional space. Its
motion formula [30] is

x(k+1) = x(k) + v(k)Atcos p(k) cos (k)

y(k+ 1) = y(k) + v(k)Atsin (k) cos 6(k)

z2(k+1) = zi(k) + vAtsin (k)

vik+1) = v(k)+ Av(k), Av(k) € [=AVmax> AVinax]
@k+1)= (k) + Ap(k), Ap(k) €[~APmaxs AP ]
Ok + 1) = 0(k) + AO(k), AO(k) € [—ABpax, AOmac]

where Ar is the time step, [x(k),y(k),z(k)] is the spatial
position of the drone at the kth time step; Av represents
the speed variation of the drone; (k) and 6(k) represent
the heading and pitch angles of the drone, respectively;
Ap(k) and A#(k) are the corresponding angular incre-
ments; vy, is the maximum speed of the drone; Ap.
and A0, are the maximum angular changes that are
bounded by maneuverability.

The hypothetical speed and angle constraints are given
in (1). However, in actual situations, the flight speed and
altitude of the drone are capped by the quality of the
drone, such as thrust and altitude. A method is proposed
for determining the theoretical limit and judging whether
the track is feasible or not [31]. After the route planning
of the UAYV, it is essential to determine whether the tra-
jectory is flyable or not.

M

2.2 Terrain threat

Threat modeling is an unavoidable problem in path plan-
ning. Generally, for security concerns, drones are geared
to bypassing threatening areas to avoid potential acci-
dents as much as possible. This subsection focuses on the
terrain threats to drones during path planning.

When the drone is flying at a low altitude, it is suscep-
tible to collision. The terrain threats are mainly caused by
mountain peaks. Generally, the following equation is
used to construct the basic threat probability model of the
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mountain to the UAV, and then it is superimposed and
combined [32] according to the actual terrain:

Fi@®),y k) = e 1000l )
where (x,,),;) represents the position coordinates of the
center point of the ith peak in a two-dimensional plane
among / peaks, and 4 is a parameter representing the dis-
tance of the peak threat. (x(k),y(k)) represents the coordi-
nate of the drone at the kth moment.

Assuming that the coordinates of the center point of a
mountain peak are (15,15) and A =1, we illustrate the
mountain model of (2) in Fig. 1.
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Fig. 1 Three-dimensional mountain peak threat probability model

It can be seen from Fig. 1 that the closer to the center
of the mountain peak, the greater the probability of threat.

Different mountain patterns can be formed by adjust-
ing the center position coordinates and parameter 4 of the
mountain model and combining mountain peaks. In other
words, when there are M groups of peaks, fi(x(k),y(k)),
fo(x(k),y(k)), -, fu(x(k),y(k)) are in the space (i) and
there is an overlap f.(x(k),y(k)), we define the existence
of a combined mountain. The values of f.(x(i),y(j)) are
calculated via the following formula:

JeGx@,y@)=max[f; (x(@),y (D), f(x(@D),y@), -,
Ju (x(@,y@)]. )

By (3) and adjusting the peak parameters, the com-
bined peaks can be derived as shown in Fig. 2.
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Fig.2 Schematic diagram of combined mountain

With the direct use of random number generation, the
surface generated in this diagram is very different from
reality because the random number is independent of one
another. This kind of isolation may cause glitches shown
in Fig. 2. In fact, the surface can be considered continu-
ous.

Therefore, we propose a method for constructing a sur-
face model of size nxn. First, a random number at (0,0)
is generated, which is the height /,(0,0) of the surface at
that point. A zero matrix of (n+ 1) X (n+ 1) order is con-
structed. Then, it is formed along the diagonal one by one
to obtain the surface height. The recursive formula is as
follows:

he(i+1,i+1)=h,(i,i)+rand(1), 1<i<n. (4)

Through the above formula, the surface height with a
diagonal length of n+ 1 can be shown in Fig. 3.

Fig.3 Schematic diagram of random surface

Subsequently, starting from the points on the diago-
nals, along the horizontal and vertical directions, the
height map of (n+1)Xx(n+1) is obtained recursively
using (4), as shown in Fig. 4.

Fig. 4 Global height formation process

Consequently, a height map of (n+1)Xx(n+1)is
drawn. Finally, perform a smooth height map operation.
Starting from the upper left corner, the average value of
the four points is the value of the lower left corner,
namely

U T . .
hgﬂ(l’J) = Zhg(l’])+hg(l+ 15])+ 1+

ho (i, j+ D) +h,(i+1,)), 1<i,j<n. 6)

The algorithm repeats this process until it reaches the
last node. The process is illustrated in Fig. 5.
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Fig. 5 Height line smoothing process

The four blue points of the small square in the lower
left corner are averaged to get the point in the lower left
corner of the small square denoted by the yellow dot in
Fig. 5. Afterwards, it recurs in order until a smooth height
line of nxn is generated, as shown in Fig. 6. Comparing
Fig. 2 with Fig. 6 indicates that the height line aligns with
the actual situation to a greater extent.
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Fig. 6 Surface height map after smoothing

The combined mountain and surface height maps
through the above process framework are closer to the
actual situation. It can be used to simplify the construc-
tion of three-dimensional maps and further research on
trajectory planning.

As the distance gets shorter, the time left for the drone
to bypass the mountain by changing its trajectory
decreases, and thus the difficulty of avoiding potential
threats and the probability of collision for the drone
increase. Suppose that the drone is threatened at the time
k, the terrain threat Th,(k) is quantified as follows:

Th, (k) = max | £(x(k).y ()} (6)

The total terrain threat to the UAV can be calculated
using the following formula:

Th, = Z Th, (k). (7)

k=1

To sum up, in path planning, the further the distance,

the less threatened for the drone by the terrain during the
flight.

2.3 Radar threat

2.3.1 Radar equation analysis

Radar is the main equipment for detecting and finding
targets in air defense systems and navigating firepower
such as air defense missiles to attack targets. In the low-
altitude penetration process of the UAV, the major threat
comes from the enemy radar network. Unlike a single
radar, the radar network is required to cover all the pro-
tected areas at the beginning of the deployment.

Therefore, in the course of the penetration, the drone is
likely to be within the detection range of the enemy radar
and scanned by the radar beam. However, the fact that the
drone is within the radar detection range or scanned by
the radar beam does not mean that it can be detected by
the enemy radar. If the echo of the drone received by the
enemy radar receiver is slight or even below its detection
threshold, the drone should not be detected.

The classic radar formula is

_ PG’VoF! g
" (4n)*RACyL ®)
where P, represents the radar echo received by the radar,
P,and G are the transmit power and the corresponding
antenna gain of the transmitter, 4 is the operating wave-
length of the radar, o is the radar cross section (RCS) of
the drone, F is the transmitting or receiving pattern pro-
pagation factor, R is the distance from the drone to the
radar, C; is the matching coefficient between the filter
and the signal waveform, and L is the loss factor of the
electromagnetic wave. If P, is small, it is difficult to
effectively detect or identify the state parameters of the
drone.

Next, we analyze the factors that affect P,. In (8), P, G,
A, F, and C; depend on the enemy radar and do not
change usually. If the corresponding relationship of these
parameters in (8) is denoted as Q, then (8) can be refor-
mulated as

P.= 0 ©)

That is, the echo P, is related to o and R. R can be cal-
culated by the distance equation above, and the RCS of
the drone is analyzed in the next subsection.

2.3.2 Analysis of UAV RCS

The situation diagram in the penetration of the UAV is
shown in Fig. 7.



LUO Jing et al.: UAV penetration mission path planning based on improved holonic particle swarm optimization 201

T U

Fig. 7 Space situation map of UAV and networking radar

Because the relative position of the UAV and the net-
working radar is different, the corresponding RCS areas
are also different when different radars irradiate the
UAYV. Assume that there are a total of M radars for net-
working, the RCS of the mth radar at time k& can be
denoted as ,,(k). Since the drone is completely known,
the RCS distribution map of the drone under different
wavebands and angles can be drew with certain methods.

In order to analyze RCS, the geometric combination
model method can be used for simple targets, while the
flat triangle triangular element model and parametric sur-
face model are usually for complex geometry. Based on
fitting the geometric shape of the UAV, we use computer-
aided drafting (CAD) software for segmentation to gene-
rate accurate geometric models. First, a collective coordi-
nate system corresponding to the UAV model and defini-
tion is built, as displayed in Fig. 8.

Fig. 8 UAYV model and body coordinate definition

Let the mass center of the drone be the origin O of the
coordinate system, the X, axis be the origin pointing in
the direction of the nose, and the Z;, axis is in the vertical
plane of the drone and perpendicular to the X, axis. Then,
a collective coordinate system is constructed to decom-
pose the enemy radar detection beam. The radar beam is
projected onto the X;,0Y,, plane. The angle between the
radar beam and the OXj, axis is the azimuth angle «. The
projection onto the X;,0Z, surface is the elevation angle
p. This can represent the three-dimensional detection
angle of the enemy radar beam.

2.3.3 Radar networking threat metric

The RCS of UAV can be obtained through hypothetical
formula and real exposure to radar. In the former method,
modeling and formulation are complicated, so the latter is
more widely used for radiation measurement. The RCS
varies significantly with radar signals in different fre-

quency bands and in different bandwidths. In case of
actual measurement, the radars in all frequency bands
need to be tested, which is not effective. To this end, the
built-in algorithm of FEKO, a 3D full-wave electromag-
netic simulation software, is used to combine the UAV
space model constructed in the previous section to simu-
late the RCS distribution map of the UAV. This method
is relatively mature and can be directly achieved through
Matlab simulation. The typical simulation results are pre-
sented in Fig. 9.
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Fig. 9 RCS distribution of UAVs at different pitch angles

After obtaining the spatial distribution information of
enemy radars, the UAV and each radar in the radar net-
work can be used to calculate the mth radar irradiated
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unmanned at the kth time in planning the drone’s track.
The radar’s cross-sectional area is o,,(k). Therefore, at the
kth moment, for the mth radar in the radar network, (8)
can be reformulated as follows:

m k
W®=%;8

m

(10)

where Q,, is determined based on the radar’s parameters,
independent of time. Based on the coordinates of the mth
radar and the position of the drone, o,,(k) and R,,(k) can be
determined to calculate P”(k). Receiving a radar echo
does not mean that a radar signal can be detected. When
the energy of the echo is lower than the radar detection
threshold S,,, it is considered that no target is detected.
D, (k) is formulated to measure the detection capability of
the mth radar as follows:

Pm k
al ), P (k)= S,
D,(k)={ S., . (11)
0, PI(k)<S,

At the same time, considering that low-altitude pene-
tration is the use of the curvature of the Earth to enhance
the radar blind zone, the detection limit distance R} (k)
of the mth radar at time k can be formulated based on the
empirical formula as follows:

Ry (k) = 4.12[ Vo + V2] (12)

where z,, is the height of the radar in the three-dimen-
sional space, and z,,(k) is the height of the drone. Both
units are m. The detection limit distance R} (k) is mea-
sured in km. That is, when the height of the radar and the
drone is determined, the maximum detection distance of
the radar can be derived. When the distance R, (k)
between the drone and the radar is greater than this limit
distance, the radar will not detect the drone. Then (13)
can be formulated as follows:

P (k
"B ey > 8,5 RE (0> Ry (6)
Du={ S, . (13)

0, PI'(k)<S,.; R, (k) <R,

lim

Because the enemy radar uses a networking mecha-
nism, once the drone is detected by a certain radar, the
drone information will be captured by the entire radar
network. Therefore, the radar network’s detection capa-
bility for the UAV depends on the radar with the
strongest detection capability among M radars. This
statement can be expressed in the following formula:

Th, (k) = max [D,,(k)]. (14)

I<ms<M

In the path planning, the total threat of the drone to the
enemy radar network is the sum of the threats to all plan-
ning points, namely,

.
Th, = Z Th, (k). (15)

k=1

In the path planning process, the radar threat should be
minimized.

2.3.4 Fuel consumption factor

In path planning, the planned path length s(k) at time k
can be expressed as follows:

s (k)=

VL D=x (T4 [y O+ Dy (O] + [z (k+ Dz (O
(16)

In (16), it is assumed that the speed of the drone dur-
ing flight is approximately constant, and that the spacing
points are dense during the path planning process. There-
fore the flight trajectory of each UAV is approximately a
straight line. The corresponding fuel consumption
depends on the flight path and status of the drone. There
are three UAV motion states, including ascent, level
flight and descent. Based on the empirical formula, the
fuel consumption can be expressed as follows:

C, (k) = n.Atp,

C,(k) = nAtp, (17)

Cy (k) =n4Atp,

where C represents fuel consumption, a, /, and d repre-
sent the three motion states of ascent, level flight, and
descent, n represents the thrust to weight ratio, p repre-
sents the thrust of the engine in the corresponding state,
and v(k) represents the flight speed of the drone at this
moment. Thus, the fuel consumption C of the path at this
stage can be calculated.

Additionally, the total fuel consumption C; can be
expressed as follows:

K-1
Cr=7,Ch (18)
k=1

where C(k) represents the fuel consumption in each flight
status at time k in (17).

After obtaining the specific and environmental parame-
ters of the drone, the differential equations of the drone
flight formulated by the fourth-order Runge-Kuta method
can be used to calculate the drone flight fuel consump-
tion more accurately. This paper only proposes a more
general and fast method to calculate the fuel consump-
tion of the drone.

For time-constrained tasks or time-sensitive targets, it
is required to keep the penetration time of the drone as
short as possible. For tasks without tight time limits, the
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consideration for time can give way to safety. The longer
the total length of the trajectory, the higher the level of
corresponding energy consumption. This means that the
larger the load of the drone, especially when the total load
of the drone is fixed, the more the energy consumption
load and the the less the mission load, thus affecting the
performance of drones. Similarly, if the drone’s load is
large enough, consideration for fuel consumption can
give way to safety.

2.3.5 Path planning objective function

Subject to the constraints of the UAV kinematics model,
the objective function J of the path planning can be expres-
sed as follows:

J=w,Th] + 0, Th! + w:C} (19)

where Th;, Th!, and C’ are the normalized metric values
of the terrain threat, radar threat, and fuel consumption
factor, respectively. The normalization algorithm and cor-
responding value methods are explored later. w,, ®,, and
w¢ are the weights of the corresponding terms, and

w,+w,+wc=1. (20)

These three weights focus on describing security, con-
cealment, and fuel consumption, respectively. The weight
value can be calculated by combining certain weight
determination methods based on the actual task require-
ments. However, the details of this method are not
explored in this paper.

After weighing the importance of each factor to deter-
mine the corresponding weight value, the corresponding
objective function can be defined as follows:

J =min(w,Th! + w,Th! + w-C}). (21

The optimization goal of (21) is to find a set of trajec-
tories, so that the weighted sum of the three factors,
namely, threats, concealment, and flight distance, is mini-
mized during the flight of the drone.

3. Improved holonic PSO (IHPSO)

Optimal trajectory planning is a typical NP-hard problem,
which can be solved by using intelligent algorithms. To
this end, this paper improves the PSO algorithm based on
the synthesizing structure to figure out the optimal solu-
tion to the path planning problem. This section intro-
duces the architecture and flow of the particle swarm
algorithm based on the holonic structure, and probes into
the corresponding improvements.

3.1 Holonic structure algorithm flow

The algorithm architecture and main flow of holonic PSO
(HPSO) in [29] can be simplified as Fig. 10.

Initialize population number », number of iterations N,
regrouping period 7, and other parameters

\ 4

Constructing a holonic structure of
a population

A 4

In the first 0.8V iterations, each time iterate 7, times, re-
grouping is performed, and the particle parameters are adjusted

v

In the last 0.2/ iterations, the particle parameters are adjusted

A 4

Obtain the best results

Fig. 10 HPSO algorithm flow

The above process can be summarized as the follow-
ing steps.

Step 1 In the initialization PSO algorithm, configure
the number of population 7, the number of iterations N,
and the repacking period 7,.

Step 2 Construct the initial synergy structure. Set the
number of layers in the structure and the number of
groups per layer, and randomly group the particles.

Step 3 The first 0.8N iterations are mainly to achieve
a wide range of searches and prevent particles from
falling into the local best advantage. In [29], through se-
veral comparisons and attempts, the author inferred that
the ratio of 0.8 is the best ratio for this algorithm. Each
time a regrouping period 7, is entered, the particles are
regrouped. The rule is that after each grouping, two parti-
cles are randomly selected from the group. The two cho-
sen particles can be from different groups.

In the first 0.8 iterations, the particle parameters are
adjusted using the following equation to obtain the opti-
mal fitness function:

Level number
+1 _ t
Vel™ =w- Vel + ci
i=1

level number —i + 1 (22)
Ve iumber — ¢ -(pBest; — Position)

level number

Position'"! = Position’ + Vel’

where Vel represents the velocity of the particles, ¢ is the
number of iterations, w is the inertia factor, ¢; is the
acceleration coefficient of the ith layer, 7, is a random
number uniformly distributed in [0,1], and level number
is the number of layers of the structure, pBest; represents
the position of the optimal particle in the ith layer, and
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Position' is the position of the particle after 7 iterations.

Step 4 Generally, after the first 0.2N searches, the
range in which the optimal solution may appear can be
determined. Therefore, the last 0.8V searches are mainly
to obtain the optimal solution within a small range of
accurate searches. Therefore, it is unnecessary to regroup
and use the following formula for fine search:

Vel™' =w- Vel +c, - r, - (pBest, — Position) —

level number

level number —i+ 1
Cl . rl . .

— level number (23)

(pBest; — Position)
Position"' = Position’ + Vel’
where the parameters are the same as those in Step 3.

Step 5 Get the optimization results of the HPSO
algorithm.

The above process is the HPSO optimization process.
Since [29] only uses the synthesizing structure to improve
the PSO algorithm for the first time, there is still the pos-
sibility of improvement in some aspects. Therefore, this
paper further explores it.

3.2 HPSO algorithm improvements

3.2.1 Grouping strategy

In the HPSO algorithm, Roshanzamie et al. [29] used
approximately equal division to construct particle groups.
This grouping method may be the most convenient, but
not necessarily the best. At the same time, Roshanzamie
et al. [29] argued in the conclusion that “it is also possi-
ble to create groups by special rules to achieve specified
purposes . To this end, this paper proposes two com-
pletely opposite grouping strategies based on systematic
clustering and information entropy, then analyzes and
compares these two grouping strategies.

The systematic clustering method calibrates the simi-
larity of particles according to the distance between each
two particles, and the effect is intuitive and obvious.
Through the system clustering method, particles with a
short distance or a high degree of similarity can be
assigned into a group. That is, this classification method
can obtain a local area constructed by several particles,
and it is easy to find the local optimum of a certain area.
In this way, the optimization problem is converted into a
dynamic adjustment grouping method, and the local area
is optimized, and eventually the overall optimization pro-
cess is performed. This method is commonly used in
statistics. The algorithm flow and software implementa-
tion are relatively mature, and there is no need for further
discussion here.

Information entropy is a concept in information theory
that describes the probability of different states of the sys-
tem. In this way, the probability that the particles fall into

the global optimum is smaller. This grouping method is
to determine the number of groups and maximize the
information entropy in each group. By dividing the parti-
cles that are farthest from each other into one, the total
information entropy of the system is the largest.

Under the premise of setting the number of groups, the
group with larger information entropy will have more
possibilities. Thus the probability that particles falling
into a local optimum is lower. Assume that n elements
are divided into Q groups, a total of P grouping methods
are set, the information entropy in each group of each
classification method is Ez;,Ez, -, Ezp, and the infor-
mation entropy is the largest

0
max (Z EZS) . (24)

This classification method has the largest space for
exploration, and the probability of falling into a local
optimum is significantly reduced.

Apparently, (24) is also an optimization problem. If all
possibilities are traversed, the amount of calculation will
increase. Therefore, this paper uses an approximate
method. The larger the information entropy of a group,
the weaker the relationship between every two particles
and the greater the distance between them. Just in the
opposite of the systematic clustering method, the systema-
tic clustering method groups the particles with a short dis-
tance into one class, and the information entropy groups
multiple particles with a long-distance together. There-
fore, in the system clustering method, the elements in the
distance matrix are all inverses, while the other opera-
tions are precisely the same, and the particles that are the
farthest from each other can be clustered into one class.
At the same time, the amount of calculations is signifi-
cantly reduced.

In Subsection 3.1, (22) and (23) can be taken as two
search strategies, i.c., broad search and accurate search,
and the balance between the speed and the accuracy of
the algorithm.

Because both search strategies involve grouping parti-
cles, and combining the two grouping methods proposed
in this paper with the two search strategies produces four
results, as shown in Table 1.

Table 1 Grouping and search strategy combination

Scheme  First stage extensive search Second stage accurate search

Scheme 1  System clustering method System clustering method
Scheme 2 Information entropy method Information entropy method
Scheme 3

Scheme 4 Information entropy method

System clustering method  Information entropy method

System clustering method

This paper proposes two opposite grouping strategies
with the object to improve the performance of the algo-
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rithm. If the efficiency of wide-area search or accurate
search is higher, the algorithm performance will be enhan-
ced. Therefore, by the fourth strategy, namely, “informa-
tion entropy in extensive search stage, and systematic
clustering method in accurate search stage ”, a wider
range when searching in a wide area and a more accurate
search when performing an accurate search can be made.

3.2.2 State transition condition

Let the trend of the absolute value of the slope of the fit-
ness function (slope described later) be

ki = 1J5 (1) = Jge (i = DI (25)
where i represents the number of iterations, Jg (i) repre-
sents the fitness function value of the ith iteration, and k;
represents the absolute value of the change rate of the fit-
ness function. |-| means taking the absolute value.

k; can reflect the search status of particles. At the ini-
tial stage, the fitness function value decreases rapidly,
and no switching is required. When the particle searches
for a local or global optimum, the fitness function and the
rate of change as a whole decreases gradually, which can
be switched to an accurate search. To this end, condi-
tions are factored into the following expression to judge
the switch from broad search to accurate search described
as

kiaj = ki, ki_j—ki
<w
kio; k
where (k_—k;)/k_; represents the ratio between the jth
iteration fitness function change amount (k,—k,) and the
original one k._;. As the particles approach the optimal
solution, this ratio increases progressively, that is, it
decreases more and more slowly. w is the weight coeffi-
cient. Generally, the value is within [0.8,0.9], and j may
be a smaller positive integer. Because of the judgment
conditions of reverse switching, which is discussed later,
the values of w and j can be arbitrary, even if the initial
value is not good. It can also be switched back through
the reverse switching strategy. The two complement each
other and improve the efficiency of optimization, which
is another great advantage of this method.

Considering that the local optimization may occur dur-
ing the search process, which means that the fitness func-
tion may be 0, and the denominator of (26) is invalid,
thus (27) is used to determine the actual optimization pro-
cess:

(26)

i

ki_j(kiaj—ki_j) < wkip; (ki —k;). (27)

The right side of (27) is the multiplication form, which
can be switched by satisfying (27).

However, there is a situation where (22) is satisfied,

that is, the handover condition is satisfied, but in fact, the

handover should not be performed at this time. That is, if
the (i—2j)th and the (i—j)th searches fall into the local

optimum, the fitness functions of the two times are simi-
lar, and the difference is small. In this way, the differ-
ence in the parentheses on the left side of the inequality in
(22) will be small. It is easy to cause the switching stra-
tegy to be adopted regardless of the calculation result on
the right. And if the algorithm has already jumped out of
the local optimum during the ith search, there is no need
to switch at this time.

Therefore, in order to avoid the above situation, a dis-
criminant condition should be added before (22) to deter-
mine whether to jump out of the local optimum, namely,

ky < ak;_; (28)
where @ can be a positive integer between 2 and 10. If
the local optimum is jumped out, the change rate of the
fitness function will increase sharply, which is signifi-
cantly larger than the previous slope. Equation (28) is
used as the first judgment condition, and (27) comes to
the second. At this time, the system switches to the accu-
rate search mode based on system clustering, otherwise, it
continues to perform extensive search.

3.2.3 Adaptive termination condition

The performance of the HPSO algorithm is correlated
with the number of iterations. If the number of iterations
set is too much, it will inevitably lead to a heavy calcula-
tion burden for the algorithm. On the other hand, if the
number of iterations is too small, the algorithm will end
prematurely and will probably not converge to the better
solution. At the same time, for different problems and fit-
ness functions, different calculation accuracy and require-
ments, the number of iterations of the algorithm may be
vastly distinct. It is difficult to estimate the specific prob-
lem without any prior knowledge or experimental basis.
The number of iterations severely limits the scope of the
algorithm.

In addition to the fitness function, the position of the
particles is constantly changing. The traditional method is
that when the particles all converge to a point, that is, the
coordinates of all particles are almost identical, the algo-
rithm ends. In this way, it is difficult to ensure whether it
converges to the global optimum. For this reason, this
paper creates discriminant conditions based on the dyna-
mic position of the particles to achieve a system state
switch.

First of all, a double discrimination condition is con-
structed. Whether the particle converges to the global or
local optimum, its fitness function no longer decreases,
and the corresponding slope is 0. The first discrimination
condition is as follows:

ki =0. (29)
If the condition of (29) is not satisfied, the system will



206 Journal of Systems Engineering and Electronics Vol. 34, No. 1, February 2023

continue to perform an accurate search; otherwise, the
next determination will be made. When the condition of
(29) is satisfied, however, according to the previous clas-
sification method of system clustering and information
entropy, the particles are classified again based on infor-
mation entropy, and only the classification is not
searched. Define the distance sum in each group as SD,,
that is,

pellz] (30)

Suppose that the information entropy grouping {SD,,,,
SD,.,,---,SD,..}, the distance and the smallest is SD,n,
and the system clustering method is {SD,;,SD,g, ",
SD,.}, the distance and the largest are SD,,,,, that is,

SD, = sum{d;;},

SDpemin = min{SDpeI»SDpeZ»"' ’SDpez}s (31)

SD,smax = max {SD,;,SD,,+,SD,.}. (32)

The second-level discrimination condition is

SD,min < SDsmax- (33)
That is, when the distance sum of the closest grouping
based on the information entropy method is not greater
than the most extensive grouping based on the system
clustering method, it can be determined that the particles
are converged to the global good value, and the algo-
rithm ends.

The discriminant condition of (29) is to show that all
particles are aggregated within a certain area. At this
time, the search is only to find the best in this area. The
subsequent search strategy is not changed, and the accu-
rate search strategy is adopted until all particle positions
are gathered at one point, and this process is called con-
vergence. This method can achieve autonomous conver-
gence and better adaptability.

3.3 IHPSO algorithm flow

This subsection constructs an IHPSO algorithm flow as
shown in Fig.11.

Parameter initialization

Grouping particles based on
information entropy method

Implementing
extensive search strategy

\ 4
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'

Implementing
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Obtaining the slope of fitness
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Fig. 11
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psmax *

Implementing
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'

Algorithm ends to
get the optimal solution

IHPSO algorithm flow



LUO Jing et al.: UAV penetration mission path planning based on improved holonic particle swarm optimization 207

The above flowchart can be detailed into the following
steps.

Step 1 Initialize global terrain information, radar
position information, and landing waypoints of the drone.

Step 2 Use information entropy to group the parti-
cles, start employing a broad search strategy, and calcu-
late the fitness function and slope.

Step 3 Use (27) and (28) to make a judgment.
Whether one of the or both conditions are not satisfied,
get back to Step 2. When both conditions are satisfied,
execute Step 4.

Step 4 Use systematic clustering to group particles.

Step S Execute the exact search strategy and calcu-
late the fitness function and slope.

Step 6 Determine whether the slope of the fitness
function is 0. If it is not 0, return to Step 5. Otherwise,
execute Step 7.

Step 7 Two methods are used to group the particles
which remain motionless. SD,.;, and SD are calcu-
lated and their relative sizes are determined. When
SD,emin s greater than SD,.., the algorithm returns to
Step 2. Otherwise, the search strategy is no longer
switched, and an accurate search is performed until all
particles converge to a point.

Step 8 Get the optimal worthy coordinates, which is
the optimal solution, and the algorithm ends.

Through Step 3 and Step 7, the switching of the sys-
tem state is achieved. The system search strategy is
adapted to the actual state of the particles. More impor-
tantly, the number of iterations is not required to be set in
advance.

psmax

4. Solving UAV path planning process using
IHPSO algorithm

Based on the objective function of the UAV track plan-
ning and the IHPSO algorithm constructed earlier, this
section explores the process of using the improved algo-
rithm to optimize and solve the optimal track.

4.1 Predictive control model

The drone can be regarded as a control system. Accord-
ing to (1), the state of the drone can be described as
S(k) = [x(k),y(k),z(k), p(k),0(k)], and the formula of state
is as follows:

SCk+1) = f(S(k),u(k)) (34)

where u(k) = [Av(k), Ap(k), A6(k)] is the input of the sys-
tem and f{-) is the state transition function of the system.
Starting from time k, given the H-step control input, the
trajectory of the UAV within the H-step can be predicted.
By adjusting the input of the system, the drone’s trajec-
tory is planned, and the UAV penetration, which takes

safety, concealment, and failure into consideration, is
achieved. The prediction model of the system is as fol-
lows:

Stk+j+11k) = f(Stk+jlk),uk+j|k)),
j=0,1,--- H-1, (35)

where H is the prediction period, and S(k+ j+ 1]k) is the
state of the prediction system at time k+j+ 1. At the
same time, this state depends on the system state
S(k+ j+ 1]k) and the control input u(k + j+ 1|k), which is
a recursive state.

Assume that the system state at time k is S(k), then the
input of H-step predictive control is as follows:

Uk = [u(k),u(k+1),--- ,utk+ H-1)]. (36)

The cost function of the system after H-step prediction
is expressed as

H-1
TS k), u(k) = Z &/ J(Sk+jlh),uk+j1k)  (37)

J=0

where « is the discount factor and represents the impor-
tance ratio between the current path planning cost and the
long-term cost.

Then the optimization model corresponding to the opti-
mal input of the system at time k can be expressed as fol-
lows:

U™ (k) = argmin J™ (S(k), U(k))
Stk+1+j|k)=

s.t. fSKk+jlk),utk+j|k)) (38)
S(k | k) = S(k)

where U is the optimal control input of the system and
the optimization function in this paper.

In offline planning, H can be set to a large value, which
is much larger than the upper planning time limit X, that
is, the entire trajectory of the drone is directly planned. In
this way, it is possible to obtain the best trajectory, and
the calculation burden is extremely heavy. If the actual
computing resources and planning time constraints are
excluded, this method is completely feasible. However, in
actual operation, this condition is unlikely to be satisfied,
even the on-board computer of the drone is used for self-
planning. Therefore, a smaller H can be set according to
actual conditions, which can be set to 3, 5, 10, and other
parameter values, and real-time planning, that is, predict-
ing five steps and executing one step repeatedly until the
track is obtained. This method can obtain a track that is
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feasible but probably not optimal. The specific settings
are implemented according to actual requirements and
constraints.

In summary, using the previous IHPSO algorithm, AV,
A¢, and A are recursively optimized in step A until the
track is derived.

4.2 Algorithm flow

Based on the THPSO algorithm for track planning, the
algorithm flow is illustrated in Fig. 12.

Parameter
initialization

l

Single objective optimization,
get the value of the normalized parameter

l

Determine task weight,
building the objective function

l

Predicting the
H step

Update
drone status
A

Perform the first
step in step H

Perform step H
output all waypoints and J values

Fig. 12 Track planning process based on IHPSO algorithm

This flowchart can be detailed into the following steps:

Step 1
the radar position information, and landing waypoints of
the drone.

Step 2 Normalize the parameters. Let w,, @,, and o,
be 1,0, and 0 in sequence. When only terrain threats are
considered, take =10 for 20 times of track planning,
record these 20 plans, and record the smallest single ter-
rain threat in multiple H- step predictions Th,,,, with
maximum radar threat Th,,,,,, and maximum path length
s

Initialize the global terrain information,

max-

Step 3 Similarly, let , and w, be 1, and the other
two weights be 0, and plan for 20 times. Finally, the mini-
mum value of the three sets of parameters, (Th,uim, Thymin,
Smin), and the maximum values of the three sets of para-
meters {(Thume s Themac)s (Thmases T )y (S S )
whichever is the greater of each group, are used to obtain
the maximum value of the three groups of parameters
(Thmaxs Thy s Simax)- After getting the maximum value of
the parameters, normalize the parameters, that is,

X = Xmin

X = (39)

Xmax ~ Xmin

In (39), x" is the normalized parameter, and x,,,, and
Xmin are the maximum and minimum values of the above
parameters, respectively. In this way, the normalization
process of the three variables can be realized, the dimen-
sions of the three variables are flattened, and the target
constituted by the three variables is optimized.

Step 4 Determine three weights according to the task
requirements, construct the objective function, initialize
the time k=1, and set H.

Step 5 Based on predictive control, use the IHPSO
algorithm to optimize and get the optimal result in step H.

Step 6 Determine whether the last step of step H is
the end of the track. If so, execute all steps, and output all
track points and the optimized objective function J. Oth-
erwise, go to Step 7.

Step 7 Execute the first step in the optimal H-step
planning, update the drone status, and return to Step 5.

Step 8 Repeat Step 2—Step 7 for 10 times to get 10
sets of optimized trajectory and corresponding objective
function J.

Step 9 Find the track corresponding to the smallest
J, which is the planned track.

Two points in the above process need further explana-
tion. The first is to use Step 2 and Step 3 to determine the
normalized maximum value of the parameters. A more
general method does not involve fixed parameter values,
especially for uncontrolled problems as track planning.
Due to the threat of natural mountains and rivers, the
deployment of enemy radar is not supposed to be adjusted
by our path planning, which means it is impossible to
characterize these parameters with universal parameters
under various and dynamic conditions of environment
and mission background. The quality of parameter nor-
malization seriously affects the final optimization result.
Therefore, a method is required to determine the corre-
sponding parameters according to the background factors.
Although the method proposed in this paper consumes
computing resources, it allows parameter adjustments
according to the actual environment. Therefore, this com-
plicated operation is needed.

Another point is the repeated planning of Step 8 and
Step 9. The number of repetitive plans set in this paper is
not large, and its calculation amount is negligible com-
pared with the workload of making H much larger than K.
Because the intelligent algorithm is used for optimization,
the algorithm may be precocious or fall into a local opti-
mum. Therefore, based on the ideas of Monte Carlo
experiment, by conducting multiple experiments and tak-
ing the global good value of multiple experiments as the
optimization result, efficiency of track planning can be
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improved.
4.3 Algorithm logic block diagram

The logic of trajectory optimization constructed in this
paper is shown in Fig. 13.

Construct three
cost functions

!

Objective
function

!

Position at the
next moment

Position at the

< IHPSO
moment

A 4

otion
restraint
satistied?

Output the position
of the next moment

Fig. 13  Algorithm logic diagram

The input of the trajectory planning algorithm con-
structed in this paper is the space position coordinates and
environmental parameters of the UAV at this moment.
The output, that is, the decision variable of this algorithm
is the coordinate of the UAV at the next moment. In way
of a loop iteration, a set of spatial coordinates is obtained
by the recursive method, which is the track obtained by
optimization. The specific logic can be described as fol-
lows:

First, input the space coordinates and environmental
parameters of the UAV at this time to construct the three
cost functions mentioned above, and use multi-step pre-
diction and weighted summation to construct the total
cost function, that is, the objective function to be opti-
mized.

After that, the IHPSO algorithm is used to optimize the
space trajectory points at the next moment. The opti-
mized space of the particle swarm is the 3D space of the
drone. The initial positions of the particles are randomly
distributed around the drone coordinates.

After obtaining the optimal next time coordinate, cal-
culate the relative relationship between the coordinate
and the current time coordinate to determine whether the
flight constraint is satisfied. If it is not satisfied, use the
IHPSO algorithm to re-optimize until it is satisfied.

After satisfying the constraints, a new coordinate point
is obtained. Recirculate the above process until the drone
flies to the target point.

The above is the logical block diagram of this paper.

Through the above process, the trajectory planning of the
UAV can be realized in an iterative manner.

5. Simulation

To verify the feasibility and advantages of the proposed
method, the above algorithm is simulated. First, set the
motion constraints of the drone, and let the upper limit of
the single change of A¢ and A6 be 15° and the maxi-
mum speed be 10 m/s, plan once every 5 min, and pre-
dict five steps each time. The weighting factors w,, ®,,
and w, are 0.3, 0.4, and 0.3, respectively.

After setting the environmental parameters, let the
drone depart from (0,0) km and fly to (100,100) km. The
corresponding threats are terrain threats and radar threats.

The terrain threat is mainly comprised of natural ter-
rain and mountain topography. The height of the natural
terrain obeys the joint two-dimensional Gaussian distri-
bution. To be true to reality, multiply the coefficient by
200 before joint distribution. For the other part of the
mountain threat described earlier, the coordinates are
[(10,10,500),(40,25,650),(45,50,750)], the coordinate un-
its of the x and y axes are km, and the coordinate unit of
the z axis is m.

The radar threat mainly comes from four radars, which
are located at [(11,55,234),(35,45,397),(55,65,468.8),(90,
60,450.60)], respectively, where the units are the same as
above. To simplify the analysis, the performance parame-
ters of the four radars are set to be the same limit detec-
tion performance for a target with an RCS of 0.1 m’anda
detection distance of 100 km. In this way, although Q is
unknown for (4), according to (8), when the position of
the drone and radar is known, the radar can be calculated.
Obviously, this is closer to the actual combat. Many
parameters in Q are difficult to obtain or need to be accu-
rately estimated, whereas, for the enemy radar, specific
parameters cannot be obtained. The threat is determined
by the ratio of the two.

To validate the performance of the algorithm proposed
in this paper, it is compared with the HPSO algorithm.
Regarding the algorithm parameters, the population size
is set as 100, particles are divided into five groups, and
the combined structure is three layers. The algorithm ite-
rates 100 times, @ is randomly selected from the set of
[0.95,1], and ¢=1.366 7. In the improved grouping stra-
tegy, let j=1, ®=0.8, and 0=3. At the same time, this algo-
rithm is compared with local PSO (LPSO) [33], hierarchi-
cal PSO (PS20) [34], multi population cooperative PSO
(MCPSO) [35], and competitive and cooperative PSO
with information sharing mechanism (CCPSO-ISM) [36].

The simulation condition is 17-4960, the main fre-
quency is 2.60 GHz with a memory of 16 G, and simula-



210 Journal of Systems Engineering and Electronics Vol. 34, No. 1, February 2023

tion experiments are performed based on Matlab 2014a.
The simulation results are shown in Fig. 14.
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- IHPSO; -:HPSO; -:LPSO;
: MCPSO; : CCPSO-ISM; ~:PS20.

Fig. 14 Comparison of track planning (©.=0.3, ©,=0.4, ®,=0.3)

The terrain effect described above is shown in Fig. 14.
The position of the radar is clearly shown by the red cir-
cles in Fig. 14. Considering safety, concealment, and
timeliness, the above six methods are used to plan the
UAYV penetrating trajectory based on the predictive con-
trol model. The results are displayed in Fig. 14, in which
all the tracks are effectively planned from the takeoff
point to the endpoint.

Based on the simulation results, the trajectory can be
divided into three categories. The first category is red and
purple tracks. Such tracks are less threatened as a whole,
but the overall route is longer than the counterparts. Dur-
ing track planning, when the red track is under the threat
of radar R, a significant inflection point appears near it.
This inflection point conforms to (8), that is, the threat of
radar is inversely proportional to the fourth power of the
distance. When the UAV is at the turning point, if the
speed still has a component pointing to R,, the distance
will be further shortened, resulting in a significant
increase in the threat of radar to the UAV. Therefore, in
this situation, the drone will adjust its motion state, lead-
ing to an inflection point. The second category is blue and
yellow tracks. Due to the difference in route selection
when avoiding mountain peak M, at the initial stage, the
drone must pass through mountain peak M, in order to
reach the end as soon as possible. In the two routes, the
drone is required to fly over and bypass the mountain
peaks, putting it into greater natural threats. The third ca-
tegory is black and green routes, in which the drone basi-
cally flies diagonally to the destination, saving a consi-
derable amount of time. Although the drone is threatened
by the radars R, and R; due to the low flight altitude, the
radar threat is weak in this case, according to (9). It also
reflects the advantages of the predictive control model,
which enables the drone to maintain a low altitude flight
according to the terrain. It can also be seen from the fi-
gure that the black track is slightly stronger than the
green track because the distance of the green track is

more threatened by the radar R, than the black track,
namely, the track planned in this paper.

To further quantify the performance differences of the
six methods, this paper conducts 20 Monte Carlo experi-
ments on the six methods to calculate the mean value of
the objective function J. The results are shown in Fig. 15.
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Fig. 15
tion J and the track points (o, =0.3, ©,=0.4, ©,=0.3)

Relationship between the mean value of the objective func-

As shown in Fig. 15, the objective function of this
method is smaller than its counterparts. The black curve
floats around 65, which is mainly threatened by radar R;.
However, the overall process objective function is better
than other methods.

To further compare the performance of the algorithm,
the complexity of the environment is increased. The
weights of mountain threat, radar threat and fuel con-
sumption are 0.3, 0.5, and 0.2, respectively. The simula-
tion comparison chart and the fitness function curve are
drawn as the following figures.

By comparing Fig. 16—Fig. 18, it can be seen that when
the weight of the radar threat is increased to 0.5, the tra-
jectory avoids the radar as much as possible, while the
impact of fuel consumption decreases. The round-the-
clock flight is used for UAVs to avoid mountain peaks.
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Fig. 16 Comparison of track planning (@, =0.3, ®,=0.5, ©»,=0.2)
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Fig. 18 Relationship between the mean value of the objective func-
tion J and the track points (o, =0.3, ©,=0.4, ©,=0.3)

It can be seen from the above comparison that the
advantages of the algorithm in this paper are evident
because the PSO algorithm mainly balances the contra-
diction between wide-area search and local accurate
search. The wide-area search is to allow the particles to
execute a more comprehensive search and prevent parti-
cles from falling into a local optimum. By contrast, the
accurate search is to enable the particles to find the opti-
mal value of the function more accurately.

For the HPSO [29] algorithm under different problem
backgrounds, 80% wide-area search and 20% accurate
search may not necessarily guarantee the optimal solu-
tion. It is prone to have excessive wide-area searches,
while the local search is inadequate, making it difficult to
reach the optimal solution. If the search rate is higher, the
total number of searches must be increased, and the cor-
responding calculation time is significantly increased.

The performance of the LPSO [33] algorithm is related
to the local best or optimal value in the neighborhood of
the particle, which is equivalent to improving the search
coverage of a single particle, However, apparently, there

is no global best among the particles, and no particles are
formed. The interaction of the algorithm makes the algo-
rithm susceptible to falling into the local optimization.

PS20 [34] achieves information sharing through the
symbiosis among particles and the extinction method,
abandons the search for some areas where no optimal
solution can be found, and improves search efficiency.
However, the degree of particle information sharing of
the PS20 algorithm is weaker, and thus its performance
is more limited compared with the algorithm in this
paper.

MCPSO [35] mainly focuses on the prototype of the
hierarchical structure between particles. However, the
affiliation between the corresponding particles remains
unclear, and regrouping is not included. The initial infor-
mation interaction between particles has become a mutual
restraint between subsequent particles, restricting the
effectiveness of the algorithm.

CCPSO-ISM [36] records the optimal information in
the optimization process by constructing the blackboard
method. This results in all particles being affected by the
optimal particles, and all particles approach the optimal
particles, thereby weakening the ability of the particles to
perform the wide-area search.

The difference between the above six algorithms is
mainly because the cost function is the result of integrat-
ing the influence of each threat. And this kind of synthe-
sis has a variety of composition modes, thus forming dif-
ferent track points. Moreover, this paper uses three-step
prediction for planning, and the optimal track points
obtained by the three-step prediction are also different. In
addition, the track points that can be predicted by trajec-
tory planning are very limited, and it is impossible to
adopt a global planning method. As a result, the initial
trajectory has a huge impact on the subsequent trajectory
points. The difference of the initial track points directly
affects the subsequent track points. Therefore, different
algorithms in Fig. 18 have different trends.

Therefore, the algorithm in this paper is superior in
performance.

Compare the complexity of HPSO and ITHPSO and the
following results are found. For complex optimization
functions, the number of grouping and regrouping of
these two algorithms is far less than the number of opti-
mization iterations, and the amount of calculation is neg-
ligible. The search strategies are the same and the com-
plexity of particle state update is identical in both algo-
rithms. In the HPSO algorithm, the number of iterations
should be set. After each iteration, the maximum number
of iterations should be determined, that is, one addition
and one judgment should be performed. In the IHPSO
algorithm, although it is a double judgment condition, if
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the first judgment condition is not satisfied, it will return
to the search. Additionally, the calculation is mainly for
the first judgment. In the conversion from extensive
search to exact search, the first criterion is (12), which
requires two subtractions, one multiplication and one
judgment. From accurate search to extensive search or
algorithm termination, the discriminant is (13), which
requires subtraction and judgment. Although the number
of discriminating parts of IHPSO is slightly higher than
that of HPSO, the amount of the extra calculation has lit-
tle effect on a single iteration. In solving the above prob-
lems, IHPSO involves 78% iterations of the HPSO, sav-
ing at least 20% of the calculation time, which is signifi-
cant for optimizing multiple complex functions.

6. Conclusions

This paper proposes a three-dimensional path planning
algorithm based on THPSO. When designing the objec-
tive function, terrain threat, radar threat and timeliness
requirements of the UAV during the penetration process
are comprehensively considered and quantified. At the
same time, the HPSO algorithm is improved, and the
objective function is solved based on the predictive con-
trol model to achieve three-dimensional path planning.

In researching radar threats, by taking the network
radar as the countermeasure and starting from the per-
spective of the echo strength received by the network
radar, the analysis method of the RCS is constructed to
quantify the threat degree of the network radar, making it
more accurate to measure radar threats.

The three shortcomings of the strong randomness of
the grouping strategy, the weak generalization ability of
the transition conditions, and the unclear setting of the
number of iterations in the HPSO algorithm are well
addressed in this paper. Grouping strategies based on sys-
tematic clustering and information entropy are proposed
correspondingly. State transition conditions are con-
structed based on the fitness function of particles. Algo-
rithm termination conditions are constructed using the
distances between particles to improve the performance
of the algorithm.

UAVs are planned with predictive control models and
IHPSO algorithms and compared with mainstream algo-
rithms. It can be seen from the simulation results that the
model in this paper can meet the requirements of security,
concealment, and real-time performance of UAV penetra-
tion. Overall, the algorithm in this paper is better than
other versions of the PSO in the optimization of the
objective function.

References
[1] WANG L, LIU Z, CHEN C L P, et al. A UKF-based pre-

(2]

(6]

(7]

(8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Journal of Systems Engineering and Electronics Vol. 34, No. 1, February 2023

dictable SVR learning controller for biped walking. IEEE
Trans. on Systems, Man, and Cybernetics: Systems, 2013,
43(6): 1440-1450.

WANG H C, WANG J L, DING G R, et al. Completion time
minimization with path planning for fixed-wing UAV com-
munications. IEEE Trans. on Wireless Communications,
2019, 18(7): 3485-3499.

ZHANG H D, HE'Y Q, LI D C, et al. Marine UAV-USV
marsupial platform: system and recovery technic verification.
Applied Sciences, 2020, 10(5): 1583.

MARDANI A, CHIABERGE M, GIACCONE P. Communi-
cation-aware UAV path planning. IEEE Access, 2019, 7:
52609-52621.

CHUANG H M, HE D, NAMIKI A. Autonomous target
tracking of UAV using high-speed visual feedback. Applied
Sciences, 2019, 9(21): 4552.

GIUSTI A, GUZZI J, CIRESAN D C, et al. A machine learn-
ing approach to visual perception of forest trails for mobile
robots. IEEE Robotics and Automation Letters, 2015, 1(2):
661-667.

WANG J G, WANG Y F, ZHANG J M, et al. Resolution cal-
culation and analysis in bistatic SAR with geostationary illu-
minator. IEEE Geoscience and Remote Sensing Letters,
2012, 10(1): 194-198.

YANG P, TANG K, LOZANO J A, et al. Path planning for
single unmanned aerial vehicle by separately evolving way-
points. IEEE Trans. on Robotics, 2015, 31(5): 1130-1146.
VAN NGUYEN H, REZATOFIGHI H, VO B N, et al.
Online UAV path planning for joint detection and tracking of
multiple radio-tagged objects. IEEE Trans. on Signal Pro-
cessing, 2019, 67(20): 5365-5379.

KUMAR P, GARG S, SINGH A, et al. MVO-based 2-D path
planning scheme for providing quality of service in UAV
environment. [EEE Internet of Things Journal, 2018, 5(3):
1698-1707.

LIU Y S, WANG Q X, HU H S, et al. A novel real-time
moving target tracking and path planning system for a
quadrotor UAV in unknown unstructured outdoor scenes.
IEEE Trans. on Systems, Man, and Cybernetics: Systems,
2018, 49(11): 2362-2372.

GALCERAN E, CARRERAS M. A survey on coverage path
planning for robotics. Robotics and Autonomous Systems,
2013, 61(12): 1258-1276.

LIU C, ZHANG S H, AKBAR A. Ground feature oriented
path planning for unmanned aerial vehicle mapping. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2019, 12(4): 1175-1187.

WU Z Y, L1J H, ZUO J M, et al. Path planning of UAVs
based on collision probability and Kalman filter. [IEEE
Access, 2018, 6: 34237-34245.

WAI R J, PRASETIA A S. Adaptive neural network control
and optimal path planning of UAV surveillance system with
energy consumption prediction. IEEE Access, 2019, 7:
126137-126153.

LI'Y, CHEN H, ER M J, et al. Coverage path planning for
UAVs based on enhanced exact cellular decomposition
method. Mechatronics, 2011, 21(5): 876-885.

SUNZ C, WU JJ, YANGJ Y, et al. Path planning for GEO-
UAYV bistatic SAR using constrained adaptive multiobjective
differential evolution. IEEE Trans. on Geoscience and
Remote Sensing, 2016, 54(11): 6444-6457.

LEVIN J M, NAHON M, PARANJAPE A A. Real-time
motion planning with a fixed-wing UAV using an agile



LUO Jing et al.: UAV penetration mission path planning based on improved holonic particle swarm optimization 213

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

maneuver space. Autonomous Robots, 2019, 43: 2111-2130.
ZHU M N, ZHANG X H, LUO H, et al. Optimization dubins
path of multiple UAVs for post-earthquake rapid-assessment.
Applied Sciences, 2020, 10(4): 1388.

SUNL L, CAO Y H, WU W H, et al. A multi-target track-
ing algorithm based on Gaussian mixture model. Journal of
Systems Engineering and Electronics, 2020, 31(3): 482—487.
QIE H, SHI D X, SHEN T L, et al. Joint optimization of
multi-UAV target assignment and path planning based on
multi-agent reinforcement learning. IEEE Access, 2019, 7:
146264-146272.

YUE W, GUAN X H, WANG L Y. A novel searching
method using reinforcement learning scheme for multi-UAVs
in unknown environments. Applied Sciences 2019, 9(22):
4964.

ZHANG W. Coarse-to-fine UAV target tracking with deep
reinforcement learning. IEEE Trans. on Automation Science
and Engineering 2018, 16(4): 1522—1530.

DUAN H B, LI P, SHI Y H, et al. Interactive learning envi-
ronment for bio-inspired optimization algorithms for UAV
path planning. IEEE Trans. on Education, 2015, 58(4):
276-281.

YANG Q, YOO S J. Optimal UAV path planning: sensing
data acquisition over loT sensor networks using multi-objec-
tive bio-inspired algorithms. IEEE Access, 2018, 6:
13671-13684.

SHAO Z. Path planning for multi-UAV formation ren-
dezvous based on distributed cooperative particle swarm
optimization. Applied Sciences, 2019, 9(13): 2621.
ROBERGE V, TARBOUCHI M, LABONTE G. Compari-
son of parallel genetic algorithm and particle swarm opti-
mization for real-time UAV path planning. IEEE Trans. on
Industrial Informatics, 2012, 9(1): 132-141.

WANG Y B, BAI P, LIANG X L, et al. Reconnaissance mis-
sion conducted by UAV swarms based on distributed PSO
path planning algorithms. IEEE Access, 2019, 7: 105086—
105099.

ROSHANZAMIE M, BALAFAR M A, RAZAVI S N.
Empowering particle swarm optimization algorithm using
multi agents’ capability: a holonic approach. Knowledge-
Based Systems, 2017, 136(11): 58-74.

ZENGIN U, DOGAN A. Real-time target tracking for
autonomous UAVs in adversarial environments: a gradient
search algorithm. IEEE Trans. on Robotics, 2007, 23(2):
294-307.

GILLES L. On determining the flyability of airplane rectili-
near trajectories at constant velocity. Advances in Aircraft
and Spacecraft Science, 2018, 5(5): 551-579.

LIU L, QU G Q, KONG W. UAV 3D trajectory planning by
using dynamic programming and potential theory. Computer

Engineering and Applications, 2013, 49(20): 235-239.

[33] SUGANTHAN P N. Particle swarm optimiser with neigh-
bourhood operator. Proc. of the Congress on Evolutionary
Computation, 1999, 3: 1958-1962.

[34] CHEN H N, ZHU Y L. Optimization based on symbiotic
multi-species coevolution. Applied Mathematics and Compu-
tation, 2008, 205(1): 47—-60.

[35] NIU B, ZHU Y L, HE X X. Multi-population cooperative
particle swarm optimization. Proc. of the European Confer-
ence on Artificial Life, 2005: 874-883.

[36] LIY,ZHAN Z H, LIN S, et al. Competitive and cooperative
particle swarm optimization with information sharing mecha-
nism for global optimization problems. Information Sciences,
2015, 293(2): 370-382.

Biographies
LUO Jing was born in 1984. She received her
B.E. degree of electronic information, and M.E.
’ degree of information and communication engi-
- o~

neering from Wuhan University of Technology,
i Wuhan, China. She has been pursuing her Ph.D.
\ degree at Naval Engineering University since
2017. Her current research interests are swarm
intelligence, intelligence system and signal pro-
cessing.
E-mail: 94523685@qq.com

LIANG Qianchao was born in 1961. He received
his M.E. degree of power engineering from Naval
Engineering University, Wuhan, China. And com-
pleted his Ph.D. degree in power engineering and
engineering thermal physics from Huazhong Uni-
versity of Science and Technology in 2004,
Wuhan, China. His current research interests are
power engineering and simulation and optimiza-
tion of power mechanical system.

E-mail: 1qc163cc@163.com

LI Hao was born in 1981. He received his Ph.D.
degree in electronic science and technology from
Air Force Engineering University in 2017, Xi’an,
China. His current research interests are swarm
intelligence, UAV swarm, intelligence systems
and signal processing.

E-mail: afeu_li@163.com



