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Leveraging Structured Information from a Passage
to Generate Questions

Jian Xu, Yu Sun�, Jianhou Gan, Mingtao Zhou, and Di Wu

Abstract: Question Generation (QG) is the task of utilizing Artificial Intelligence (AI) technology to generate questions

that can be answered by a span of text within a given passage. Existing research on QG in the educational

field struggles with two challenges: the mainstream QG models based on seq-to-seq fail to utilize the structured

information from the passage; the other is the lack of specialized educational QG datasets. To address the challenges,

a specialized QG dataset, reading comprehension dataset from examinations for QG (named RACE4QG), is

reconstructed by applying a new answer tagging approach and a data-filtering strategy to the RACE dataset. Further,

an end-to-end QG model, which can exploit the intra- and inter-sentence information to generate better questions, is

proposed. In our model, the encoder utilizes a Gated Recurrent Units (GRU) network, which takes the concatenation

of word embedding, answer tagging, and Graph Attention neTworks(GAT) embedding as input. The hidden states of

the GRU are operated with a gated self-attention to obtain the final passage-answer representation, which will be fed

to the decoder. Results show that our model outperforms baselines on automatic metrics and human evaluation.

Consequently, the model improves the baseline by 0.44, 1.32, and 1.34 on BLEU-4, ROUGE-L, and METEOR

metrics, respectively, indicating the effectivity and reliability of our model. Its gap with human expectations also

reflects the research potential.

Key words: automatic Question Generation (QG); RACE4QG dataset; Answer-Oriented GAT (AO-GAT); attention

mechanism; structured information

1 Introduction

Reading is a vital skill of human communication
in the digital age[1]. One of the most important
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teaching objectives in non-English speaking countries
is to improve learners’ reading comprehension[2].
Unfortunately, in practice, achieving the teaching
goal is not always ideal. The main reasons are due
to outdated and inflexible teaching materials (i.e.,
passages and comprehension questions). New materials
help keep instruction current and fresh, and allow
teachers to tailor lessons to the interests of particular
student populations. This necessitates that teachers
generate comprehension questions quickly whenever
they incorporate new text into the curriculum. However,
it is difficult to write diverse and attactive comprehension
questions. If teachers can generate comprehension
questions efficiently and quickly, the teaching quality of
English courses will be significantly enhanced, as will
students’ reading comprehension skills.

Fortunately, Artificial Intelligence (AI) has grown by
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leaps and bounds in recent years, shedding light on the
issue. Automatic Question Generation(QG) is an NLP
task and a significant branch of AI. QG task, which
aims at generating fluent and correct questions on the
basis of a given context and answers, has attracted many
researchers in recent years from the natural language
processing community[3–6]. The state-of-the-art models
commonly utilize the neural QG strategy, where a neural
network is trained on the basis of a seq-to-seq (i.e.,
sequence-to-sequence) backbone. Due to the complexity
of QG, the best QG model only achieves the BLEU-4
score of 11.19 in the educational field[7].

In essence, the QG task aims to train a neural model
that can automatically generate questions on the basis
of a dataset. Therefore, the performance of the QG
model depends primarily on its dataset and model.
Although there exist some related datasets, such as the
SQuAD[8], Narrative QA[9], Hotpotqa[10], and Race[11],
they cannot be directly used for our QG task, for
reasons in the following: (1) most of these datasets
are general-purpose datasets rather than educational
domain-specific datasets, and these datasets are Question
Answering (QA) datasets where each sample is a
quadruple (passage, question, answer, and distractor),
whereas each sample of a QG dataset is a triple (passage,
answer, and question). (2) The existing QG models
mainly use Recurrent Neural Networks (RNN), such
as the Long Short-Term Memory Network (LSTM)[12];
however, RNN models have an inherent sequential nature
and find it difficult to handle long input sequences,
forcing these RNN models to generate questions with
only sentence-level information rather than passage-
level information[3, 6]. To address the challenges, Du
et al.[3] proposed to utilize sentence-level information
to improve the performance of QG models. Given
that Du et al.[3] cannot perform well for passage-level
input (i.e., multiple sentences), Zhao et al.[5] introduced
a maxout-pointer and gated self-attention mechanism,
and achieved the best performance. However, even the
best QG models are dysfunctional when generating
comprehension questions for the educational domain.
The dysfunction can be attributed to a double challenge:
the quality of the education-type QG dataset and the
performance of the QG model. In education, addressing
these issues is crucial, as teachers can use automatically
generated questions to increase classroom engagement
and assess reading ability.

This paper investigates the RACE, an educational
QA dataset, and finds that it can be adjusted for our

QG task by removing irrelevant data and performing a
new answer tagging. Moreover, considering the poor
performance of the existing QG models, we propose a
more powerful QG model with a more advanced encoder
and decoder.

The contributions of this paper can be summarized as
follows:

(1) Reconstruct a QG dataset, reading comprehension
dataset from examination for QG (named RACE4QG),
on the basis of the existing educational dataset RACE.
We provide a new answer tagging strategy with similarity,
and this strategy can inject richer additional information
into RACE4QG.

(2) On the basis of the RACE4QG dataset, an end-to-
end framework for QG is proposed, and the framework
mainly comprises an encoder and a decoder. In the
encoder, a Graph Attention neTworks (GAT) mechanism
is applied to enrich the word embedding. In the decoder,
an attention mechanism and pointer network are used to
generate questions dynamically.

(3) Conduct several comparative and ablation
experiments. In addition, case studies and human
evaluations are conducted.

The rest of this paper is organized as follows.
Section 2 discusses the related work for question
generation. Section 3 focuses on building the end-to-end
framework for generating questions, using the Answer-
Oriented GAT (AO-GAT) strategy for the encoder and a
pointer network mechanism for the decoder. Section 4
presents the multiple conducted experiments for our
model. Section 5 provides the results and analysis.
Section 6 concludes the paper and points out future
research directions.

2 Related Work

Generating questions for reading practice and
assessment is the foremost application of QG, which has
been studied for many years[4, 13, 14].

Traditionally, QG is primarily based on heuristic rules
that use manually built templates to generate questions
and rank the generated questions[15–17]. Heilman and
Smith[15] first proposed to generate questions through
a heuristic strategy, which utilizes manually written
rules to conduct syntactic transformations that turn
declarative sentences into questions; then, they ranked
the generated questions by a logistic regression model
to select the best questions. Yao et al.[17] proposed a
semantic rewriting approach (i.e., minimal recursion
semantic representation) to build semantic structures
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and grammar rules to generate better questions. In
view of many challenges of creating full semantic
representation, Labutov et al.[16] sought to bypass
the challenges, they streamlined the QG task into an
ontology-crowd-relevance workflow, then crowdsourced
questions templates, and finally selected the best
candidate templates to generate questions. These QG
methods are mainly based on the heuristic rules, which
restrict the generalization ability of models in various
fields.

However, building well-structured rules is time-
consuming and labor-intensive. Since the mid-2010s,
there has been a greater interest in employing statistical
methods, especially neural networks[3, 5, 6].

Currently, seq-to-seq methods with attention
mechanisms have become mainstream, aiming to
generate questions by training a neural network using
a seq-to-seq framework[3, 5, 6, 18, 19]. Du et al.[3] first
used a seq-to-seq neural model to generate questions
and revealed that the seq-to-seq model achieves
great performance improvement beyond the previous
rule-based models. However, they also admitted that
the generated questions cannot accurately correspond
to some parts of the original context. To address this
challenge, Zhou et al.[6] proposed to incorporate the
position information of answer words (words occurring
in the answer text) into the encoding process using
an annotation vector. Rather than employing the
annotation vector to tag answer positions, Song et al.[18]

proposed to use a unified framework to encode both the
passage and the answer. However, the above work is
dysfunctional when dealing with a long input context.
Zhao et al.[5] introduced a mixed mechanism that uses
a gated self-attention and maxout pointer to process
the long input context. Following the work of Zhao
et al.[5], Yuan et al.[19] first obtained deep linguistic
features by training large pretrained neural models
on some NLP tasks and then incorporated these deep
linguistic features into a seq-to-seq QG model to guide
the question generation. The QG model improved the
baseline by 6.2% on the BLEU-4 metric.

The aforementioned models are generic and not
specific to the field of education. Moreover, they fail
to effectively utilize the structural information within
passages.

3 Our Model

3.1 Model overview

We propose an end-to-end framework for the automatic

QG on the basis of a reconstructed dataset, then generate
many grammatically consistent and fluent questions
according to the given input passage and answer.

Formally, we use p, a, and q to represent the passage,
answers, and questions, respectively. Passage in this
paper represents a sentence or a paragraph. The QG task
is defined to generate the question q,

q D arg max
q
P.qjp; a/ (1)

where P(qjp,a) is the conditional likelihood of the
predicted question q, given a passage p and an answer a.
Moreover, p has m words, i.e., p D fxtg

m
tD1 .

The mainstream strategy for automatic QG is to
leverage the seq-to-seq text generation networks[20].
However, the QG models using this strategy cannot
generate comprehension questions that meet teaching
needs.

To address the challenges, we first take the passage-
level neural question generation model[5] as the baseline
model and then propose a new QG model by introducing
the Gated Recurrent Units (GRU) network and GAT
mechanism to our QG model (see Fig. 1). First, the input
passage representation is fed into an answer-oriented
GAT to obtain answer-focus context embedding, i.e.,
GAT embedding. Second, the concatenation of word
embedding, answer tagging, and GAT embedding serve
as input to the bidirectional GRU encoder. Further,
a gated self-attention mechanism is then employed
to the passage’s hidden states. On the basis of the
above steps, we unify the hidden states of passage and
answer to obtain answer-aware context embeddings.
Finally, by employing an attention mechanism and
maxout pointer-based decoding method, the decoder
can generate questions word-by-word. The variables in
Fig. 1 are specified in Table 1.

3.2 Passage-answer encoding with GAT

In the encoder, we use a two-layer bidirectional GRU,
the hidden state hp

t at time step t is the concatenation

of the forward hidden state
�!
h

p
t and backward hidden

state
 �
h

p
t , i.e., hp

t D Œ
�!
h

p
t ;
 �
h

p
t �, and all hidden states can

be represented as Hp D
˚
h

p
t

	m

tD1
. GRU is a variant of

LSTM with fewer parameters and better performance.
GRU takes a passage and many answers as input, then
outputs the passage-answer embedding representations.
The hidden state of the t-th passage-word is hp

t ,
h

p
t D GRU

�
h

p
t�1; x

p
t

�
(2)

where hp
t�1 represents the hidden state of the .t�1/-th

word of the input passage; xp
t is a passage word at time t.
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Fig. 1 End-to-end framework for our model.

Table 1 Description of variables in Fig. 1.
Variable Description
h

p
t Hidden state of the t-th passage-wordbhp
t Updated hidden state of the t-th passage-word
hA

t Hidden states of the t-th answer-word
dt�1 Hidden state of the decoder at time step t�1
dt Hidden state of the decoder at time step tbd t Updated hidden state of the decoder at time step t
yt�1 Decoder’s prediction word at time step t�1
yt Decoder’s prediction word at time step t
Pgen Used to decide whether the predicted word is copied from the input sequence or generated from the vocabulary

3.2.1 Answer tagging
To construct our RACE4QG dataset, the original RACE
dataset is reconstructed to meet the QG task. Given
that RACE is a QA dataset, its questions and answers
are selected from the actual English exams, and answer
words are scattered in the context. It is different from
the general QA datasets (such as SQuAD), where the
answer is successive spans. In this respect, traditional
answer tagging methods[5, 6] are dysfunctional for our
task. Although Jia et al.[7] proposed a keyword-tagging
strategy, it is a hard matching strategy in which only
the exact matching passage words can be tagged. Any
passage word that is highly similar to any answer
word, intuitively, is also effective in guiding QG. To

accomplish this, we employ a new answer tagging
strategy to tag answer words in a passage. Specifically,
given an answer, we first tokenize the answer and remove
stop words to obtain a set of words called X. Then, we
tag each passage word (word occurring in the passage)
as “A” if its similarity to a word in X is greater than 0.5,
and other passage words are tagged as “O”.

3.2.2 Answer-oriented GAT
Our QG task aims to generate real comprehension
questions that require deep reasoning within and between
sentences; however, traditional QG models based on
RNN cannot meet this requirement.

To tackle the challenge, we can employ GAT, a type
of graph neural network[21], to capture the complex
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relations either intra-sentence or inter-sentence[22]. We
propose an AO-GAT to encode the input passage.
Following the work of Zhang et al.[23], the AO-GAT
is constructed through the following steps:

(1) Answer-oriented graph adjacency matrix. To
capture the internal dependency information within a
passage, we build a dependency graph for a specified
passage; then, the graph is represented as an adjacency
matrix. The workflow is as follows:

First, the StanfordCoreNLP library[24] is utilized to
generate a parsing dependency for each sentence per
passage. Then each sentence corresponds to a sentence-
level parsing dependency tree, i.e., S-tree.

Second, if two adjacent S-trees have answer words
(words of answer text), then connect the two S-trees to
build a passage-level dependency parsing graph. In the
graph, each node represents a passage word.

Third, we construct a corresponding adjacent matrix
G, where Gi;j is 1 if node i and node j are connected,
and 0 otherwise.

(2) GAT mechanism applied to the graph
adjacency matrix for getting richer node features.
Based on the adjacency matrix G, the implementation
of GAT follows the work of Velickovic et al.[22] In the
encoding stage, the intra-sentence and inter-sentence
dependency information is stored in the graph adjacency
matrix G. In our QG model, we adopt the GAT[22] to
extract this information from G.

Algorithm 1 gives the detaited procedure of using
GAT to capture the structure information in the passage.
The major work is to update the embedding of the node
by using the attention-weighted sum of the embeddings
of its neighboring words. The embeddings of node i, j,

Algorithm 1 Capture the structure information of a passage
1: for each node i of G do
2: for each neighboring node j of node i do
3: Attention of node i over its neighbor j is ai;j ,

ai;j D
exp

�
ei ; ej

�P
k2Ni

exp .ei ; ek/
;

4: end for
5: Embedding of node i ,namely ei , is again represented by

its neighbors,

e0i D sigmoid

0@ X
j2Ni

ai;j ei

1A ;
6: end for
7: Final output of GAT is e’,

e0 D
˚
e01; e

0
2; : : : ; e

0
m

	
;

8: e’ becomes one of the inputs to the framework’s encoder.

and k are denoted as ei , ej , and ek , respectively. The
embeddings of node i’s neighbors are denoted asNi , and
G represents the graph adjacency matrix.

The GAT procedure comprises three steps: input,
calculation, and output. The GAT takes both the
passage’s word embedding and the adjacency matrix
G as input in the input step. The dependency information
in the input passage is captured in the calculation
step by calculating each node’s attention against
its neighbors. The GAT feeds its output (a higher-
dimensional word embedding, i.e., the GAT embedding)
into the framework’s encoder in the output step. The
specific steps are as follows:

Step 1: Input G and e to the GAT. G is the adjacent
matrix, e is a set of features (i.e., a set of passage words’
embeddings), where e D fe1; e2; : : : ; emg, ei 2 RF ,
and F represents the number of features of each node.

Step 2: Calculate the attention of node i against each
of its neighbors,

aij D
exp

�
PReLU

�
.W a/T

�
ei ; ej

���P
k2Ni

exp
�
PReLU

�
.W a/T Œei ; ek�

�� (3)

where W a is a trainable weight matrix; Ni represents all
neighboring nodes of node i. The original article[22]

used LeakyReLU as the activation function. In our
experiment, we compared various activation functions,
such as ELU, ReLU, ReLU6, and PReLU, and found
that PReLU performs better in our QG task.

Step 3: Feed the GAT output to the encoder. Given a
set of node features e D fe1; e2; : : : ; emg, ei 2 RF , the
GAT will take the set e as input to obtain a corresponding
output (of potentially different cardinality F 0) e0 D˚
e01; e

0
2; : : : ; e

0
m

	
, e0i 2 RF 0 . Next, we will expand the

calculation process of e0,

e0i D sigmoid

0@X
j2Ni

aij ei

1A (4)

To further improve the performance of self-attention,
we utilize the multi-head attention mechanism[25]. Each
attention head is responsible for capturing the particular
features in the passage, then features captured by all
attention heads are concatenated as the output feature
representation. In this case, Eq. (4) becomes

e0i D sigmoid

0@ KX
kD1

X
j2Ni

ak
ijW

kej

1A (5)

where W k is a trainable weight matrix, K is the number
of attention heads. Our experimental results show that
k D 8 works best. As the final output of GAT, e0 D
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e01; e

0
2; : : : ; e

0
m

	
will be concatenated with the word

embedding and answer tagging as the encoder’s input.

3.2.3 Gated self-attention
After the above steps, we obtain the raw passage-answer
representation. To further aggregate information from
the passage and incorporate intra-passage dependency
to improve the passage-answer embedding at each time
step, a gated self-attention mechanism is first applied to
obtain self-matching representation.

aE
t D softmax..Hp/TW sh

p
t / (6)

St D H
p
� aE

t (7)

where aE
t represents the attention coefficient of t-th word

in the input passage; W s is a trainable weight matrix, St

is the weighted sum of all passage words’ embeddings
based on their attention to the current word at time step t.

Then, combine the raw representation hp
t and the self-

matching representation St to obtain a new passage-
answer representation bhp

t ,
ft D tanh.W f Œh

p
t ; St �/ (8)

gt D sigmoid.W g Œh
p
t ; St �/ (9)bhp

t D gt � ft C .1 � gt / � h
p
t (10)

where ft is the new self matching enhanced
representation; W f and W g are trainable weight
matrixes; gt is a gate vector for selecting information
between hp

t and St to obtain the final passage-answer
representation bhp

t .

3.2.4 Passage-answer union
Intuitively, the information between passage words and
answer words can serve to the generation of good
questions. Thus, we unify the passage raw hidden states
HP and the answer hidden states HA as

Hu
D union.W uŒcHP

IHA
IcHP

�HA�/ (11)

where W u is a trainable weight matrix; cHP D

f Oh
p
t g

m
tD1;H

A D fhA
t g

n
tD1, n and m are the number of

answer words and passage words, respectively.

3.3 Decoding with attention mechanism and
pointer network

The decoder (a single-layer unidirectional GRU) is
trained to predict the next word yt . On each time step
t, an attention mechanism is applied to the encoder’s
final hidden states to highlight the more important
words from the passage, then we can obtain a dynamic
representation of the original text, called the context
vector Ct . Then, the concatenation of Ct , previous
words (y1; y2; : : : ; yt�1) emitted by the decoder, and the

current decoder state dt will be fed into the decoder to
generate the next word yt by using the pointer network.

3.3.1 Attention mechanism
Attention mechanism[26, 27] has been a default setting for
improving the performance of seq-to-seq models. In our
decoder, the Luong attention mechanism[27] is used to
obtain the raw attention aD

t ,
aD

t D softmax.cHPW adt / (12)

Ct D
cHpaD

t (13)bd t D tanh .W Œdt ; Ct �/ (14)

dtC1 D GRU.Œyt ;
bd t �/ (15)

an attention layer Eq. (14) is applied over the
concatenation of the decoder state dt and the attentive
context vector Ct to obtain a new decoder state Odt . Then,
Odt can be used to generate its next state dtC1.

3.3.2 Pointer network
In the QG task of this paper, the output vocabulary of
the decoder must change dynamically according to the
length of the input sequence to generate better questions.
However, the traditional seq-to-seq model cannot tackle
the challenge. To this end, we follow the work of See
et al.[28] to address this issue using pointer networks.
On each step t of the decoder, Pgen is calculated from
the context vector Ct , the new decoder state bd t and the
decoder’s previous output yt�1,
pgen D �.W

T
h � Ct CW

T
d �

bd t CW
T

y � yt�1/ (16)

pvocab D softmax.W ŒhD
t ; Ct �/ (17)

pcopy D max
xjDyt

at
j (18)

where pgen is a trainable parameter, which is used to
decide whether the predicted word is copied from the
input sequence or generated from the vocabulary. pvocab

represents the generated probability from the vocabulary,
and pcopy represents the copy probability from the input
passage. On the basis of pgen, pcopy , and pvocab , we
can calculate the probability distribution of the decoder’s
output word,
p.yt jy1; : : : ; yt�1/Dpvocab�pgenCpcopy�.1�pgen/

(19)
4 Experiment

4.1 Dataset

We evaluate our model on a QG dataset RACE4QG
which is adapted from the RACE dataset[11]. The
RACE dataset is a large-scale exam-type dataset for
question answering, and the dataset was released by
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Carnegie Mellon University in 2017. RACE includes
27 933 passages with 97 687 questions from the English
examinations for Grades 7–12 students in China. In
RACE, each sample is a quadruple of (passage, answer,
question, distractor). Here a distractor is a wrong answer.

To accommodate the QG task, we must adjust RACE
following the strategy of the EQG-RACE dataset[7].
First, distractors must be removed. Distractors are
wrong answers, which are designed to puzzle students
and may bring noise when generating good questions.
Second, only questions related to the QG task can be
reserved. After some detailed investigation of the RACE
dataset, we observe that the questions in the RACE
dataset fall into two categories: cloze-type questions
and standard questions. Cloze-type question is also
called the fill-in-the-blank question, which belongs to
the traditional QA task and cannot be used directly for
our QG task. Therefore, to construct the RACE4QG
dataset based on the RACE dataset, we first remove
the cloze-type questions, then use the answer tagging
strategy mentioned above to tag the answer words from
passages. Finally, the RACE4QG dataset has 46 397
samples, accounting for 47.5% of all RACE’s samples.
As a result, each sample is a triple of (passage, answer,
question). Our task is to generate questions on the
basis of the given passages and answers. Compared
to the previous EQG-RACE dataset, our RACE4QG
has more than twice as many questions as EQG-RACE
does. Further, our answer tagging method innovatively
introduces a similar scheme (see Section 3.2 for details).

To train the model, the RACE4QG dataset must be
further divided into three splits. In the original RACE
dataset, there are 87 866, 4887, and 4934 samples in
the training set, validation set, and test set, respectively.
In contrast, our RACE4QG has 41 791, 2312, and 2294
samples for training, validation, and testing, respectively.

4.2 Implementation details

The vocabulary of our model contains 4.5�104 tokens,
and the pretrained GloVe.840B.300d[29] is utilized as
the initialization of word embedding. Other out-of-
vocabulary tokens are set to the UNK symbol.

In our model, three types of GRU are used in three
places. First, the encoder uses a two-layer bidirectional
GRU with a hidden unit size of 600 (300 in each
direction). Second, the decoder uses a single-layer
unidirectional GRU with a hidden unit size of 300. Third,
the answer encoder uses a single-layer bidirectional GRU
with a hidden unit size of 600 (half in each direction).

The dropout probability is set to 0.3. All trainable
parameters are set to U.�0:1; 0.1), except for word
embedding. During training, the stochastic gradient
descent optimizer was used, with a batch size of 45
and an initial learning rate of 0.01 for our model and
baselines. In our model, the learning rate was fixed at
0.01 for the first eight epochs, then it was halved every
other epoch, but could not be less than 0.001.

In the decoder, the beam size is set to 10. Models’
checkpoints are chosen on the validation set, and we
report the results on the test set.

4.3 Baseline

To evaluate the performance of our model against other
baselines, we rewrite the code of five famous baselines.
(1) Seq-to-seq[30]: A seq-to-seq model using attention-
mechanism and copy-policy. (2) Pointer-generator[31]:
Answer-focused and position-aware model for QG using
the pointer-generator mechanism. (3) Transformer[32]:
Transformer-based end-to-end QG. (4) ELMo-QG[33]:
Apply a pointer network to copy words from the input.
(5) AG-GCN[7]: A QG model with a GCN-based encoder
using LSTM.

For fairness, our answer tagging policy is also applied
to the baselines. Further, the encoder of each baseline
uses a two-layer bidirectional LSTM, and the decoder is
a one-layer unidirectional LSTM. The remaining settings
are remained untouched.

5 Result and Analysis

5.1 Automatic evaluation

We will automatically evaluate the similarity between
the generated questions and real questions. To carry
out evaluation tasks comprehensively, we select
metrics from the perspectives of precision, recall, and
semanteme. To this end, we employ BLEU-(1–4)[34],
ROUGE-L[35], and METEOR[36]. BLEU evaluates n-
gram precision between the generated questions and the
real questions. ROUGE-L is responsible for evaluating
the recall rate. Note that the above two metrics belong to
literal similarity. However, the evaluation with semantic
similarity must be introduced, so we employ the third
metric, METEOR.

In Table 2, the evaluation results are listed for our
model and baselines. By using the GAT mechanism
and GRU network, our model outperforms baselines
across all metrics. In addition, a clear performance
gap exists between the two baselines (i.e., seq-to-seq
and Transformer). The main reason could be that the
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Table 2 Comparative experimental results of different models.

Model
Evaluation metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METE0R
Seq-to-seq[30] 24:97 10:48 6:46 5:35 25:61 10:11

Pointer-generator[31] 30:47 14:57 8:89 6:59 31:81 13:8

Transformer[32] 30:44 15:44 9:52 6:85 34:22 15:03

ELMo-QG[33] 34:46 17:79 12:00 8:83 34:05 14:89

AG-GCN[7] 35:59 21:09 15:21 12:12 34:71 15:14

Our model 36.61 21.32 15.26 12.56 36.03 16.48

Transformer uses the same hierarchical architectures as
our model. In addition, our model performs better than
Transformer, which indicates that the GAT mechanism
plays a vital role in capturing information from intra-
sentence and inter-sentence. Finally, our model with
GAT+GRU is better than AG-GCN[7] with GCN+LSTM
in key metrics. We also compared the Jaccard distance
of 10 questions generated by the beam search algorithm,
and we found that the quality of these questions
decreased sequentially. The reason may be that the latter
questions have a lower likelihood.

In Table 3, we show the superiority of our dataset
RACE4QG over the previous dataset EQG-RACE;
we train our model on RACE4QG and EQG-RACE,
separately. Experimental results show that our dataset
RACE4QG can perform better than EQG-RACE.

In Table 4, to assess the effectiveness of both the GAT
mechanism and GRU network, we conduct two types
of ablation experiments. First, our model has various
degrees of performance degradation after removing
GAT and GRU. Second, our model uses the style of
GAT+GRU, compared to the GCN+LSTM style of
the previous AG-GCN. Table 4 shows that our GAT
mechanism is superior to GCN, which indicates that
GAT can better capture the important semantic and
syntactic information within and between sentences.
Similarly, if the encoder’s GRU is replaced with a

traditional LSTM, the performance of our model also
drops because the GRU fits our dataset better.

5.2 Human evaluation
To assess the performance between the generated
questions and the real questions, the human evaluation is
utilized to compare the baseline (i.e., seq-to-seq model)
with our model. We invited five evaluators to score [0, 1,
2] the generated questions on the basis of the following
three metrics:
� Fluency: The grammatical and structural fluency

of the generated questions.
� Answerability: The extent to which the generated

questions can be answered.
� Comprehension: The level of reading

comprehension can be tested by the generated
questions. The score of comprehension falls between
0 and 2. The higher the score, the higher the reading
level. A question with a higher comprehension score
means that the question assesses a student’s higher-level
reading comprehension.

After obtaining the scores of the five evaluators, we
averaged the scores and placed them in Table 5. The
results in Table 5 show that our model has a clear
advantage over the baseline. In addition, we observe that
the comprehension metrics are all lower, which indicates
that the generated questions are not enough to meet the
teaching needs.

Table 3 Superiority of our RACE4QG dataset.

Dataset
Evaluation metrics

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METE0R
Previous EQG-RACE[7] 36:1 21:02 15:04 12:38 35:53 16:25

Our RACE4QG 36.61 21.32 15.26 12.56 36.03 16.48

Table 4 Results of the ablation experiments for our model.
Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METE0R

All=GRU+GAT 36:61 21:32 15:26 12:56 36:03 16:48

GRU+GCN 35:66 18:68 11:61 8:03 35:34 15:90

LSTM+GAT 36:11 21:24 15:24 12:36 35:43 15:97

GRU 34:25 17:31 10:34 6:92 34:52 14:75

LSTM+GCN 35:60 21:16 15:21 12:16 34:84 15:45
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Table 5 Results of the human evaluation for the generated
questions between our model and the baseline (seq-to-seq).

Model
Metrics

Fluency Answerability Comprehension
Baseline 1:62 1:47 0:8

Our model 1.76 1.76 1.1

5.3 Case study

To demonstrate our QG tasks in practice, we generated
questions based on a passage from our dataset. The
generated and actual questions are displayed in Table 6.
In Table 6, given a passage and three real questions,
our model generated a fourth and fifth question in
addition to the three questions that correspond to the
real question. The first question generated by our
model closely resembles the first actual question but
contains ambiguities. The quality of the second and third
questions is high. Additionally, our model generated two
additional questions, numbered 4 and 5.

Passage: What is your idea of a good time? What
about dancing in a rainy field with 150 000 other people
while a famous rock band plays on a stage so far away
that the performers look like ants? It may sound strange,
but that is what many hundreds of thousands of young
people in the UK do every summer. Why? Because
summer is the time for outdoor music festivals. Held
on a farm, the Glastonbury Festival is the most well-
known and popular festival in the UK. It began in 1970
and the first festival was attended by one thousand five
hundred people, each paying an admission price of
PS1—the ticket included free milk from the farm. Since
then, the Glastonbury Festival has gone from strength
to strength—in 2004, one hundred and fifty thousand
fans attended, paying PS112 each for a ticket to the
three-day event. Tickets for the event sold out within
three hours. Performers included superstars such as Paul
McCartney and James Brown, as well as new talents
like Franz Ferdinand and Joss Stone. Although man,
Glastonbury is a charity event, donating millions of
pounds to local and international charities. Glastonbury
is not unique in using live music to raise money to fight
global poverty. In July of this year, eight live concerts

were held simultaneously in London, Paris, Rome, and
Berlin. Superstars such as Madonna, Sir Elton John,
and Stevie Wonder performed to highlight international
poverty and debt.

6 Conclusion

In the teaching of reading comprehension, the gains
of teaching are limited by a long-standing pain point,
where teachers are unable to automatically and timely
generate questions based on arbitrary passages (i.e.,
reading comprehension materials). For this reason, we
propose an end-to-end QG model that is trained on
a reconstructing dataset called RACE4QG. To enrich
the passage-answer embedding representations, we
introduce an AO-GAT mechanism combined with a
gated self-attention approach and a union strategy in
the model’s encoder. In addition, the performance of
the model’s decoder is enhanced by introducing an
attention mechanism and pointer network. Experimental
results show that our model outperforms baselines in
both automatic evaluation and human evaluation.

However, a gap exists between experimental results
and the expected results of humans. There may be
two reasons. First, our dataset is inadequate in size.
To construct RACE4QG, we remove 52.5% of Cloze-
style questions (i.e., fill-in-the-blank questions) from the
original RACE dataset. Therefore, our future efforts
will concentrate on converting the cloze-style questions
into standard questions, thereby doubling the size of
our RACE4QG. Besides, utilizing recent advances in
text representation—deep language representation—can
further enhance the performance of our model[19].
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Table 6 Case study of our generated questions.
Real question Generated question

Question 1: What did the performers look like? Question 1: What is the name of a rock band that plays on a stage?
Question 2: How many people attended the second festival? Question 2: How many fans attended the Glastonbury Festival in 2004?
Question 3: Where were the eight live concerts held in July 2014? Question 3: Where were the eight live concerts held in July of this year?

– Question 4: What is the time for outdoor music festivals?
– Question 5: How many people attended the first Glastonbury Festival?
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